Cost-Parity and Cost-Streett Games

Joint work with Nathanaël Fijalkow
(LIAFA & University of Warsaw)

Martin Zimmermann
University of Warsaw

November 28th, 2012

Algosyn Seminar, Aachen
Introduction

Boundedness problems in automata theory

- Star-height problem, finite power problem
- Automata with counters: BS-automata, max-automata, R-automata
- Logics with bounds: MSO+U, Cost-MSO
Introduction

Boundedness problems in automata theory

- Star-height problem, finite power problem
- Automata with counters: BS-automata, max-automata, R-automata
- Logics with bounds: MSO+U, Cost-MSO

What about games?

- Finitary games: bounds between requests and responses
- Consumption and energy games: resources are consumed and recharged along edges
- Use automata with counters as winning conditions
Introduction

Boundedness problems in automata theory

- Star-height problem, finite power problem
- Automata with counters: BS-automata, max-automata, R-automata
- Logics with bounds: MSO+U, Cost-MSO

What about games?

- Finitary games: bounds between requests and responses
- Consumption and energy games: resources are consumed and recharged along edges
- Use automata with counters as winning conditions

Here: an extension of ω-regular and finitary games
Outline

1. Cost-Parity Games

2. Cost-Streett Games

3. Conclusion
Parity Games and Extensions

Games are played in arena G colored by $\Omega: V \to \mathbb{N}$

Parity condition: Player 0 wins play \iff maximal color seen infinitely often is even
Parity Games and Extensions

Games are played in arena G colored by $\Omega: V \rightarrow \mathbb{N}$

Parity condition: Player 0 wins play \iff maximal color seen infinitely often is even

Equivalently:

- Request: vertex of odd color
- Response: vertex of larger even color
- Parity condition: almost all requests are answered
Extensions of Parity Games

- Parity condition: almost all requests are answered
Extensions of Parity Games

- Parity condition: almost all requests are answered
- Finitary parity condition \([\text{Chatterjee, Henzinger, Horn}]\): there exists a \(b \in \mathbb{N}\) s.t. almost all requests are answered within \(b\) steps
Extensions of Parity Games

- Parity condition: almost all requests are answered
- Finitary parity condition [Chatterjee, Henzinger, Horn]:
 there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered within b steps

Now, label edges with costs in \mathbb{N}

- Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b
Extensions of Parity Games

- Parity condition: almost all requests are answered
- Finitary parity condition [Chatterjee, Henzinger, Horn]: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered within b steps

Now, label edges with costs in \mathbb{N}

- Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

<table>
<thead>
<tr>
<th>condition</th>
<th>complexity</th>
<th>memory Pl. 0</th>
<th>memory Pl. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>parity</td>
<td>$\text{NP} \cap \text{coNP}$</td>
<td>positional</td>
<td>positional</td>
</tr>
<tr>
<td>finitary parity</td>
<td>PTIME</td>
<td>positional</td>
<td>infinite</td>
</tr>
<tr>
<td>cost-parity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extensions of Parity Games

- Parity condition: almost all requests are answered
- Finitary parity condition [Chatterjee, Henzinger, Horn]: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered within b steps

Now, label edges with costs in \mathbb{N}

- Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

<table>
<thead>
<tr>
<th>condition</th>
<th>complexity</th>
<th>memory Pl. 0</th>
<th>memory Pl. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>parity</td>
<td>$\text{NP} \cap \text{coNP}$</td>
<td>positional</td>
<td>positional</td>
</tr>
<tr>
<td>finitary parity</td>
<td>PTIME</td>
<td>positional</td>
<td>infinite</td>
</tr>
<tr>
<td>cost-parity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: cost-parity subsumes parity and finitary parity
Extensions of Parity Games

- Parity condition: almost all requests are answered
- Finitary parity condition [Chatterjee, Henzinger, Horn]:
 there exists a \(b \in \mathbb{N} \) s.t. almost all requests are answered within \(b \) steps

Now, label edges with costs in \(\mathbb{N} \)

- Cost-parity condition: there exists a \(b \in \mathbb{N} \) s.t. almost all requests are answered with cost less than \(b \)

<table>
<thead>
<tr>
<th>condition</th>
<th>complexity</th>
<th>memory Pl. 0</th>
<th>memory Pl. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>parity</td>
<td>(\text{NP} \cap \text{coNP})</td>
<td>positional</td>
<td>positional</td>
</tr>
<tr>
<td>finitary parity</td>
<td>(\text{PTIME})</td>
<td>positional</td>
<td>infinite</td>
</tr>
<tr>
<td>cost-parity</td>
<td>(\geq \text{NP} \cap \text{coNP})</td>
<td>(\geq) positional</td>
<td>infinite</td>
</tr>
</tbody>
</table>

Note: cost-parity subsumes parity and finitary parity
Another example

Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b
Another example

Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

- Player 0 wins since only finitely many requests are seen
- Player 1 wins since he can stay longer and longer in loop
From Cost-Parity to Bounded Cost-Parity

- Cost-parity condition: there exists a \(b \in \mathbb{N} \) s.t. almost all requests are answered with cost less than \(b \)
Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Bounded Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞
From Cost-Parity to Bounded Cost-Parity

- **Cost-parity condition**: there exists a $b \in \mathbb{N}$ such that almost all requests are answered with cost less than b
- **Bounded Cost-parity condition**: there exists a $b \in \mathbb{N}$ such that almost all requests are answered with cost less than b, and no unanswered request with cost ∞.

Lemma

Let $C = (G, \text{CostParity}(\Omega))$ and let $B = (G, \text{BndCostParity}(\Omega))$.

1. $W_0(B) \subseteq W_0(C)$.
2. If $W_0(B) = \emptyset$, then $W_0(C) = \emptyset$.

Corollary

"To solve cost-parity games, it suffices to solve bounded cost-parity games."
From Bounded Cost-Parity to ω-regular

Bounded Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞.
From Bounded Cost-Parity to ω-regular

Bounded Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞

- Parity(Ω): plays satisfying the parity condition
- FinCost: plays with finite cost
- RR(Ω): plays in which every request is answered

$$PFRR(\Omega) = (\text{Parity}(\Omega) \cap \text{FinCost}) \cup \text{RR}(\Omega)$$
From Bounded Cost-Parity to ω-regular

Bounded Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞

- Parity(Ω): plays satisfying the parity condition
- FinCost: plays with finite cost
- RR(Ω): plays in which every request is answered

$$PFRR(\Omega) = (\text{Parity}(\Omega) \cap \text{FinCost}) \cup \text{RR}(\Omega)$$

Lemma

Let $B = (G, \text{BndCostParity}(\Omega))$, and let $P = (G, PFRR(\Omega))$. Then, $W_i(B) = W_i(P)$ for $i \in \{0, 1\}$.
From Bounded Cost-Parity to ω-regular

Bounded Cost-parity condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b, and no unanswered request with cost ∞

- Parity(Ω): plays satisfying the parity condition
- FinCost: plays with finite cost
- RR(Ω): plays in which every request is answered

$\text{PFRR}(\Omega) = (\text{Parity}(\Omega) \cap \text{FinCost}) \cup \text{RR}(\Omega)$

Lemma

Let $\mathcal{B} = (G, \text{BndCostParity}(\Omega))$, and let $\mathcal{P} = (G, \text{PFRR}(\Omega))$. Then, $W_i(\mathcal{B}) = W_i(\mathcal{P})$ for $i \in \{0, 1\}$.

- $\text{PFRR}(\Omega)$ is ω-regular
- \mathcal{P} can be reduced to parity game using small memory
- Thus, small finite-state winning strategies for both players in \mathcal{P}
Theorem
Given an algorithm that solves parity games in time $T(n, m, d)$, there is an algorithm that solves cost-parity games in time $O(n \cdot T(d \cdot n, d \cdot m, d + 2))$.
Theorem

Given an algorithm that solves parity games in time $T(n, m, d)$, there is an algorithm that solves cost-parity games in time $O(n \cdot T(d \cdot n, d \cdot m, d + 2))$.

Theorem

The following problem is in $\text{NP} \cap \text{coNP}$: given a cost-parity game G and a vertex v, has Player 0 a winning strategy from v?
Recall: Player 0 has finite state winning strategy σ in (bounded) cost-parity game

Theorem

Player 0 has positional winning strategies in (bounded) cost-parity games.
Recall: Player 0 has finite state winning strategy σ in (bounded) cost-parity game

Theorem

Player 0 has positional winning strategies in (bounded) cost-parity games.

Idea: use quality measure $\text{Sh}: V^+ \to (D, \leq)$ for play prefixes with:

- (D, \leq) is total order
- Sh is congruence, i.e., $\text{Sh}(x) \leq \text{Sh}(y) \implies \text{Sh}(xv) \leq \text{Sh}(yv)$
- $\{\text{Sh}(w) \mid w \sqsubseteq \rho\}$ is finite $\implies \rho$ is winning or Player 0
- Finite-state strategies only allow plays ρ s.t. $\{\text{Sh}(w) \mid w \sqsubseteq \rho\}$ is finite

Half-positional Determinacy

Martin Zimmermann University of Warsaw Cost-Parity and Cost-Streett Games 10/15
Half-positional Determinacy

Recall: Player 0 has finite state winning strategy σ in (bounded) cost-parity game

Theorem

Player 0 has positional winning strategies in (bounded) cost-parity games.

Idea: use quality measure $Sh: V^+ \rightarrow (D, \leq)$ for play prefixes with:

- (D, \leq) is total order
- Sh is congruence, i.e., $Sh(x) \leq Sh(y) \implies Sh(xv) \leq Sh(yv)$
- $\{Sh(w) \mid w \sqsubseteq \rho\}$ is finite $\implies \rho$ is winning or Player 0
- Finite-state strategies only allow plays ρ s.t. $\{Sh(w) \mid w \sqsubseteq \rho\}$ is finite

Positional winning strategy: always play like you are in the worst situation possible that is consistent with σ
Outline

1. Cost-Parity Games

2. Cost-Streett Games

3. Conclusion
Requests: sets of vertices Q_i for $i = 1, \ldots, d$
Responses: sets of vertices P_i for $i = 1, \ldots, d$
Cost functions for every pair (Q_i, P_i)
Cost-Streett condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b
Cost-Streett Games

- Requests: sets of vertices Q_i for $i = 1, \ldots, d$
- Responses: sets of vertices P_i for $i = 1, \ldots, d$
- Cost functions for every pair (Q_i, P_i)
- Cost-Streett condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Theorem

*Given an algorithm that solves Streett games in time $T(n, m, d)$, there is an algorithm that solves cost-Streett games in time $O(n \cdot T(2^d \cdot n, 2^d \cdot m, 2d))$.***
Cost-Streett Games

- Requests: sets of vertices Q_i for $i = 1, \ldots, d$
- Responses: sets of vertices P_i for $i = 1, \ldots, d$
- Cost functions for every pair (Q_i, P_i)
- Cost-Streett condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Theorem

Given an algorithm that solves Streett games in time $T(n, m, d)$, there is an algorithm that solves cost-Streett games in time $O(n \cdot T(2^d \cdot n, 2^d \cdot m, 2d))$.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Complexity</th>
<th>Memory Pl. 0</th>
<th>Memory Pl. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streett</td>
<td>coNP-com.</td>
<td>$d!d^2$</td>
<td></td>
</tr>
<tr>
<td>finitary Streett</td>
<td>EXPTIME-com.</td>
<td>$d2^d$</td>
<td>infinite</td>
</tr>
</tbody>
</table>
Cost-Streett Games

- Requests: sets of vertices Q_i for $i = 1, \ldots, d$
- Responses: sets of vertices P_i for $i = 1, \ldots, d$
- Cost functions for every pair (Q_i, P_i)
- Cost-Streett condition: there exists a $b \in \mathbb{N}$ s.t. almost all requests are answered with cost less than b

Theorem

*Given an algorithm that solves Streett games in time $T(n, m, d)$, there is an algorithm that solves cost-Streett games in time $O(n \cdot T(2^d \cdot n, 2^d \cdot m, 2d))$.***

<table>
<thead>
<tr>
<th>condition</th>
<th>complexity</th>
<th>memory Pl. 0</th>
<th>memory Pl. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streett</td>
<td>coNP-com.</td>
<td>$d!d^2$</td>
<td>positional</td>
</tr>
<tr>
<td>finitary Streett</td>
<td>EXPTIME-com.</td>
<td>$d2^d$</td>
<td>infinite</td>
</tr>
<tr>
<td>cost-Streett</td>
<td>EXPTIME-com.</td>
<td>$2^d(2d)!(2d)^2$</td>
<td>infinite</td>
</tr>
</tbody>
</table>
Outline

1. Cost-Parity Games

2. Cost-Streett Games

3. Conclusion
Overview of Results

<table>
<thead>
<tr>
<th>condition</th>
<th>complexity</th>
<th>memory Pl. 0</th>
<th>memory Pl. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>parity</td>
<td>$\text{NP} \cap \text{coNP}$</td>
<td>positional</td>
<td>positional</td>
</tr>
<tr>
<td>finitary parity</td>
<td>PTIME</td>
<td>positional</td>
<td>infinite</td>
</tr>
<tr>
<td>cost-parity</td>
<td>$\text{NP} \cap \text{coNP}$</td>
<td>positional</td>
<td>infinite</td>
</tr>
<tr>
<td>Streett</td>
<td>coNP-com.</td>
<td>$d!d^2$</td>
<td>positional</td>
</tr>
<tr>
<td>finitary Streett</td>
<td>EXPTIME-com.</td>
<td>$d2^d$</td>
<td>infinite</td>
</tr>
<tr>
<td>cost-Streett</td>
<td>EXPTIME-com.</td>
<td>$2^d(2d)!(2d)^2$</td>
<td>infinite</td>
</tr>
</tbody>
</table>
Open Questions

- Memory requirements of Player 1 in bounded cost-parity games
- Memory requirements in (bounded) cost-Streett games
Open Questions

- Memory requirements of Player 1 in bounded cost-parity games
- Memory requirements in (bounded) cost-Streett games

Cost-parity games with multiple cost functions (one for each odd color). Preliminary results:

- Complexity: between \textbf{PSPACE}-hard and \textbf{EXPTIME}
- Both Players need exponential memory
Open Questions

- Memory requirements of Player 1 in bounded cost-parity games
- Memory requirements in (bounded) cost-Streett games

Cost-parity games with multiple cost functions (one for each odd color). Preliminary results:

- Complexity: between \textbf{PSPACE}-hard and \textbf{EXPTIME}
- Both Players need exponential memory

Tackle stronger winning conditions:

- Max-automata: deterministic automata, with multiple counters than can be incremented and reset, acceptance condition is boolean combination of boundedness requirements
- Equivalent to WMSO^+U