Real-time Stream Monitoring with STREAMLAB

Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger, Leander Tentrup, Hazem Torfah

Saarland University
StreamLAB

Runtime Monitor

RTLola

Static Analyzer

Event Name Lecturer Reactive Systems Group
RTLola

input altitude, TAS, pitch: Float

Runtime Monitor

Assert: Do not fly below 2000ft.
Assert: Cover at least 200 miles per hour.
Assert: Altimeter samples with at least 10Hz.
input altitude, TAS, pitch: Float

trigger altitude < 2000 “Flying too low.”

output gnd_spd := cos(pitch) * TAS

output gnd_dist @5Hz := gnd_spd[∫], 1h

trigger gnd_dist < 200 “Flying too slow.”

Assert: Altimeter samples with at least 10Hz.

Runtime Monitor
Event-based

Periodic

Runtime Monitor
RTLola

input altitude, TAS, pitch: *Float*

trigger altitude < 2000 “Flying too low.”

output gnd_spd := cos(pitch) * TAS
output gnd_dist @5Hz := gnd_spd[∫, 1h]

trigger gnd_dist < 200 “Flying too slow.”

Assert: Altimeter samples with at least 10Hz.
RTLola

Asynchronous Model

Familiar “Feel”

Modular Specifications

Sliding Window Aggregations

Declarative Language
Trade-Off

StreamLAB

Formal Guarantees

- Specification logics
 - Correctness
 - Complexity bounds

Expressiveness

- Programming Languages
 - Complex computations
input lon, lat, velo: Float

output jump :=
\[\delta(\text{lon}) > 1 \lor \delta(\text{lat}) > 1 \]

trigger jump “GPS jump.”

trigger @5Hz velo[\int, 1\text{h}] < 200
“Too little ground covered”
No Pane, No Gain: Efficient Evaluation of Sliding-window Aggregates over Data Streams, Li et al. 2005
List Homomorphism:
\[\gamma : (\circ, \varepsilon, \text{map}, \text{fin}) \]
\[\gamma(a_1, \ldots, a_n) = \text{fin} \circ \text{map}(a_1) \circ \ldots \circ \text{map}(a_n) \]

Integral:
\[\varepsilon = \bot \]
\[\text{map}(v, ts) = \]
\[\bot \circ = \downarrow \]
\[\circ \bot = \downarrow \]
\[\text{fin} = \text{vol} \]

\[\int, 1h \]

\[\beta \times \text{sizeof(IV)} \]
StreamLAB

Runtime Monitor

RTLola

Static Analyzer

Try it: https://www.react.uni-saarland.de/tools/online/StreamLAB/