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Abstract

In this thesis we approach the problem of automatically generating naturally sounding
sentences. We discover the similarities between a search based realization process and
searches in the field of artificial intelligence. These allow us to compile the problem of
sentence realization into a representation on which we can use well established techniques
from the automatic planning community. We introduce a polynomially space and time
bound algorithm and proof its correctness. After various experiments we gathered em-
pirical data, which allows an analysis regarding its practical relevance. Conclusively, we
propose ways to further improve the process in the future.
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Chapter 1

Introduction

Since the 1950s, natural language processing has been an active field of research as sub-
area of artificial intelligence. The overall goal is to make machines able to communicate
with humans, which means understanding as well as generating natural language. This
seems to be a simple task because for humans processing language is a crucial part of
the everyday life since their early childhood and they do this without spending a lot of
thoughts on it. However, it quickly turned out to be not that simple. Early projects
included primitive language processing by pattern matching, as seen in ELIZA [14], a
program pretending to be a psychiatrist. Even though in 1966, when it was first presented,
people were astonished by its realism, for today’s standards, ELIZA is easily recognizable
as a machine. It is overshadowed by tools like the Google’s search engine now, which - in
its beginnings - was merely searching for keywords found in a sequence of words and is now
capable of answering natural questions in text as well as spoken form. Nowadays, tools
are developed with the purpose of allowing a discourse between human and computer in
a natural way.

In recent years, mobile devices became more and more ubiquitous with the intend
to assisting the user though their whole day. So highly domain specific approaches like
ELIZA’s became less interesting; the need for broad coverage tools grew. Moreover, dialog
systems should be able to react according to the user’s situation, i.e. refrain from complex
syntax when the user is already in a stress-situation and generate utterances that are easy
to understand and rather contain redundant information than risking a misunderstanding.
This level of complexity in terms of conveyed information is called information density.
This information density should be flexible and adaptive while the process of obtaining
an utterance has to be fast enough to simulate a discourse that feels natural to the user.

In this thesis we try to approach this problem with techniques from the field of au-
tomatic planning, another sub-area of artificial intelligence, in which a generic problem
is solved automatically by performing a search for a sequence of steps leading to the de-
sired solution. We do this by adapting the problem of sentence realization, i.e. how we
say something, to a problem representation on which planning techniques can be used.
A realization framework called OpenCCG uses a search based realization process which
is thus naturally similar to planning problems. So we want to make advanced research
results from the planning community usable for search based realization processes allow-
ing to find solutions faster and aim for more complex results like generating utterances
featuring a specific information density.
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For this, we introduce the necessary background knowledge in Chapter 2 allowing us
to present a compilation technique transforming the OpenCCG problem into a planning
problem in Chapter 3. However, this is a theoretical approach, so for practical use some
further adaptations are required which are discussed in Section 3.6. We also present and
discuss experiments using said transformation and their results in Chapter 4. Lastly, a
perspective on future work taking the experiment’s results into account is presented in
Chapter 5.
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Chapter 2

Background

In this thesis we combine the concept of automatic planning with the problem of realizing
sentences using the grammar formalism CCG. To understand this we will give a quick
overview of what CCG is and how we can use it on the example of OpenCCG, a state
of the art tool to parse and realize sentences based on a CCG lexicon. Afterwards we
introduce the basic definitions of a planning task as well as heuristic functions, especially
the h

max heuristic.

2.1 CCG

CCG (Combinator Categorial Grammar) is a grammar formalism, which - in a nutshell
- assigns syntactic categories (or short categories) to words or sequences thereof and
provides a set of rules to combine these. We call the combination of a word and its
category a lexical entry. Categories can be either atomic (e.g. n) or complex, i.e. an atomic
category has been combined with another category using the forward concatenation (/)
or backward concatenation (\) operator. The rules are defined as follows where each rule
exists in a forward (left) and a backward fashion (right):

Application rules
A/B B

>

A

B A\B
<

A

Composition rules
A/B B/C

>B
A/C

A\C B\A
<B

A\C
Type raise rules

A
>T

T/(T\A)
A

<T
T\(T/A)

On the example of the forward application rule, we can combine a category A/B with
a category B to get A as a result.

When trying to parse a sentence, we use a lexicon which yields a lexical entry for
a given word. We then try to combine these lexical entries until we get the syntactic
category s, for sentence. Other common categories are n for noun, np for an noun phrase,
pp for prepositional phase, and punc for punctuation. The process is depicted in a parse
tree.

Example 2.1.1.
Consider the sentence “I love the cup that Germany won”. Its parse tree is illustrated
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I love the cup that Germany won

np (s\np)/np np/n n (n\n)/(s/np) np (s\np)/np
>T

s/(s\np)
>B

s/np
>

n\n
<n
>np
>

s\np
>s

Figure 2.1: Parse tree for “I love the cup that Germany won”

in Fig. 2.1 where the topmost row is the sentence itself. Below each word there is its
syntactic category given by the lexicon. First we raise Germany’s category by type s.
The result thereof is combined with “won”’s category by forward composition to acquire
the category s/np. Combining this with the category of “that” via forward composition
completes parsing the relative clause. One backward application followed by three forward
applications completes the parsing process.

Note that the concatenation operators are left associative, so we can equivalently write
A/B/C instead of (A/B)/C. Nonetheless, the following composition is possible:

A/B B/C/D
>B

A/C/D

One advantage of CCG is the simplicity of its rules which is provided by moving complexity
into the lexicon itself, i.e. into finding fitting categories for the words.

2.2 OpenCCG

In 1987, Mark Steedman proposed to use CCG to parse sentences with a chart-based
algorithm [10]. Chart parsing is a dynamic programming technique introduced by Martin
Kay [8] avoiding the need of backtracking when resolving the grammar’s ambiguities. This
technique is commonly used in computer linguistics, e.g. in the Early parser [2] and in
OpenCCG [15].
The process of realizing a sentence can roughly be divided into three phases as depicted
in Fig. 2.2.

Document Planning In this phase we figure out what we want to express, how to
structure the information, and how to involve world knowledge.

Micro Planning The micro planner decides how information can be aggregated, how
references can be used, and performs the lexicalization, i.e. decides what words can
be used to express the semantics.
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Figure 2.2: Schematic illustration of a realization process

w0
win
htenseipast

w1
Germany
hnumisg

< actor >

w2

cup
hnumisg
hdetithe

< patient >

Figure 2.3: Graph representation of 2.1

Surface Realization Here, the process is finalized to form a grammatically valid sen-
tence expressing the output of the document planner entirely. This can then be
used as output.

There is no clear line between the last two phases, e.g. when the usage of a reference is
not fixed in the micro planning phase, the surface realizer has to come up with a solution.

In this thesis we will solely focus on the third phase where we use OpenCCG to realize
the input logical formula (LF), which is an HLDS (hybrid logic dependency semantics)
term capturing everything we want to convey. To better understand this, we will run an
example.

Consider we want to express, that “Germany won the cup” after the last championship
match. An appropriate HLDS term can look like the following:

@
w0(win ^ htenseipast

^ hactori(w1 ^Germany ^ hnumisg)
^ hpatienti(w2 ^ cup ^ hnumisg ^ hdetithe)) (2.1)

This is isomorphic to a more illustrative tree representation shown in Fig 2.2. Here we can
see that the verb “win” has to have the linguistic feature htenseipast and is depending on
two arguments, its actor and patient. These again have linguistic features, namely both
have to be singular and “cup” has to be accompanied by the determiner “the”.

At the beginning of the realization, we want to allow easier handling of the term, which
in this case means faster comparisons in terms of equality and overlapping. For this, the
term becomes flattened. This process leads to the LF being a conjunction of elementary
predications (EPs), each representing a semantic item that has to be expressed. Flattening
2.1 will result in:

@
w0win ^@

w0htenseipast ^@
w0hactoriw1 ^@

w0hpatientiw2

^@
w1germany ^@

w1hnumisg
^@

w2cup ^@
w2hnumisg ^@

w2hdetithe (2.2)
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The EPs in the first line capture all properties of the verb, the second line captures the
actor and the last line captures the patient.

Next comes the lexical look-up in which we look for lexical entries covering parts of the
LF making them potentially useful for the realization. An entry in OpenCCG consists
of three parts: the word or word sequence, its syntactic categories and the covered EPs.
The result of the look-up phase can look like the following, depending on the lexicon in
use:

(a) Germany ` np : @
x

Germany ^@
x

hnumisg
(b) the ` np/n : @

x

hdetithe
(c) cup ` n : @

x

cup ^@
x

hnumisg
(d) won ` s\np : @

x

win ^@
x

htenseipast ^@
x

hactoriy ^@
x

hpatientiz
(e) won ` (s\np)/np : @

x

win ^@
x

htenseipast ^@
x

hactoriy ^@
x

hpatientiz
(f) won ` ((s\np)/np)/np : @

x

win ^@
x

htenseipast ^@
x

hactoriy ^@
x

hpatientiz
(g) wins ` (s\np)/np : @

x

win ^@
x

htenseipres ^@
x

hactoriy ^@
x

hpatientiz
(h) win ` (s\np)/np : @

x

win ^@
x

^@
x

hactoriy ^@
x

hpatientiz
(i) did ` (s\np)/np/((s\np)/np) : @

x

htenseipast
The entries (a) - (c) are not surprising. (d) - (f) cover the same semantics but have
di↵erent syntactic categories to fit their role as intransitive, transitive, and ditransitive
verbs.

The transitivity of a verb states the number of arguments a verb needs to form a
valid sentence. For example consider the intransitive verb “to rush”, which requires only
a subject to form a sentence like “We rush.”. When adding an additional argument we
get e.g. “Mike rushes Steve” which is not valid (the sentence is incoherent). Conversely,
when providing only a subject to the transitive verb “bury”, the sentence is incomplete
and therefore invalid (e.g. “Sammy buries.”). This syntactic property is reflected in the
verb’s category: To get an s out of (s\np)/np we need to provide an np to the left and
one to the right, hence this is a transitive verb. Some verbs, like “win”, can be any subset
of intransitive, transitive and ditransitive.

(g) represents the present tense version of “win” and (h) the infinite form. Moreover,
by (i) we have an entry for “did” which provides only the EP for the past tense. Its
category is canonical for a modifier : It takes a syntactic category and results in the very
same category, which renders the modifier syntactically optional.

In addition to these lexical entries we have words that are semantically null, like the
infinitive “to”. They do not convey any semantics and are treated specially as they are
not entries themselves.

The entries we now have will then be filtered. To do so, we check the semantics for
contradictions like in g. It provides a htenseipres EP and is therefore contradictory to
the htenseipast EP in (2.2). (h) is not filtered since it does not specify a tense and hence
does not contradict anything in this regard.

We can now transform the lexical entries in edges, a data type used in OpenCCG
containing (among others) the category, word sequence, and a bit vector. This vector’s
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length is equal to the number of EPs in 2.2 and each bit represents whether or not a
specific EP is expressed by the edge. The index of each bit is the unique id of the EP it
represents. The edge containing the information of the lexical entry for “cup” has the bit
vector h000000110i since index 7 represents @

w2cup and index 8 represents @
w2hnumisg.

These bit vectors allow near-constant time checks for overlapping semantics. We will
see why this is needed when looking at the next phase of OpenCCG’s realization: The
combination phase. For this an agenda and a chart are used. The former one is initialized
with all initial edges, i.e. the edges representing the lexical entries we found. The latter
is initialized empty.

Now, the elements in the agenda are consecutively removed and each element e is
attempted to be combined with elements in the chart. When this is possible, the result is
added to the agenda. Afterwards, e is added to the chart independently of whether we were
able to combine it with any other edge or not.1. To combine two edges they have to meet
two criteria. Firstly, the syntactic categories have to be combinable by the rules of CCG.
Secondly, the covered EPs have to be disjoint, i.e. the bitwise conjunction has no bit set.
When a combination is possible, the resulting edge’s semantics is the bitwise disjunction of
the original edges’ semantics. It’s category is the result of combining the edges’ categories
according to the rules of CCG. The new edge represents the word sequence which is
acquired by concatenating the word sequence of both edges. Additionally, a unary rule
can be applied to obtain a new edge. When doing so, there is no change in the covered
EPs.

We can see that (a) cannot be combined with (b) since we cannot apply any CCG
rule on np/n and np. Similarly we cannot combine (d) with (h) for their overlapping bit
vectors. However, we can combine (b) with (c) to get

the cup ` np : @
x

cup ^@
x

hnumisg ^@
x

hdetithe

In addition to that, OpenCCG allows more rules than the before-mentioned to be
specified. As an example consider the uncountable noun “fruit” which act as ordinary
noun in “I eat the sweet fruit” but does not require a determiner (here: “the”) as in “I
eat fruit” where it is a noun phrase by itself. So we can specify the rule n

mass

) np

mass

.
Moreover, unary rules can contribute to the covered semantics [5], i.e. after applying the
rule, the resulting edge covers more EPs.

OpenCCG’s realization algorithm runs in an anytime fashion, i.e. when a time limit
is reached, it is possible to check the chart for the best edge and use this as output even
though there are still elements in the agenda. This might lead to invalid or sub-optimal
results but this is in practice often good enough or rather better than no result at all.
Two kinds of time limits are used, both determined statically: First of all, an overall
time limit. When this one is reached, the search stops and the currently best edge is
the result. Secondly, the next best time limit states how much time is spent to find a
better edge after a potential result is found, i.e. an edge conveying all semantics with a
syntactically valid sentence. As soon as such an edge is found, the search continues for
at max x milliseconds, where x is the next best time limit. After this time the currently
best edge is considered the result. The algorithm is illustrated in Fig. 2.4.

In this thesis we try to improve this process by approximating whether an edge has
the potential to contribute to a solution. If not, the edge is not added to the agenda. The

1
Note that we skip over a lot of details here. These can be found in [15]

9



Figure 2.4: Schematic illustration of a OpenCCG’s search algorithm

details are explained in Section 3 after the groundwork is laid, but we will show the basic
idea on our running example.

To cover the whole semantics of the sentence “Germany won the cup” we need to
cover the EPs @

w0hactoriw1 and @
w0hpatientiw2 for the sentence’s subject and object.

For this to be possible, we need the category (s\np)/np representing the transitive version
of “win”. This renders the intransitive useless because there is no way to combine it to
form a valid sentence and cover all EPs. The sentence would metaphorically fall apart.

For this we want to use well established planning techniques, which is why we introduce
some basic concepts and definitions in the following section.

2.3 Planning

A planning task is a (formal) description for a problem, e.g. the towers of hanoi, for which
we want to find a solution, i.e. an ordered sequence of actions leading to the problem being
solved. This search for a solution is performed by a planner. There are two main ways
to formalize a planning task: Using the STRIPS (STanford Research Institute Problem
Solver) [3] formalism or FDR (Finite Domain Representation)[4]. We will first introduce
STRIPS, which is used for easier illustration of the key aspect used in section 2.4 and the
FDR which is what most planners today are based on.

Definition 2.3.1 (STRIPS Planning Task). A STRIPS planning task is denoted by a
quintuple ⇧ = (P,A, c, I, G). Its constituents are defined as follows:

• P is a finite set of binary facts which can either be fulfilled or not.

• A is a finite set of actions. Each action consists of three sets representing its precon-
ditions, add list, and delete list, all of which being subsets of P . All preconditions
pre

a

of an action a have to be true so that we can apply a. The add list add

a

contains all facts that become true after applying the action, the delete list del

a

,
accordingly, contains all facts that become false after the application.
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• c : A ! R+ is a cost function mapping an action to its cost. Unless otherwise
stated, we assume 8a 2 A : c(a) = 1.

• I ✓ P is the initial state. Each fact contained in I is initially true.

• G ✓ P is the goal state. When all elements of G are fulfilled, the task is complete.

A STRIPS task ⇧ is a way to formalize a problem. It induces a search space in which
the planner searches for a solution.

Definition 2.3.2 (STRIPS State Space). ⇧ induces a labeled transition system ⇥⇧ =
(S,A, T, I, SG) with

• S = 2P is the power set of P. Each element of S represents a state.

• A is the set of actions we get by ⇧.

• T = {(s, a, s0)|s, s0 2 S ^ a 2 A ^ pre

a

✓ s ^ s

0 = (s [ add

a

)\del
a

}. We denote
(s, a, s0) 2 T equivalently by s

a! s

0 and call it a transition.

• I is the initial state we get by ⇧.

• S

G = {s 2 S|G ✓ s} is the set of all goal states.

Example 2.3.1. Consider the following example where the task is to say a sentence
consisting of exactly one subject, object and verb.

P ={has subj, has no subj, has obj, has no obj, has verb, has no verb, said}
I ={has no subj, has no obj, has no verb}
G ={said}
A ={add subj, add obj, add verb, say}

11



With

add subj :

pre ={has no subj}
add ={has subj}
del ={has no subj}

add obj :

pre ={has no obj}
add ={has obj}
del ={has no obj}

add verb :

pre ={has no verb}
add ={has verb}
del ={has no verb}

say :

pre ={has subj, has obj, has verb}
add ={has no subj, has no obj, has no verb, said}
del ={has subj, has obj, has verb}

We have two facts per constituent, one for the absence and one for the presence. This
is necessary, because the STRIPS formalism does not allow to check for negative facts.
We will now introduce the FDR formalism, where several STRIPS facts can be collapsed
into a single variable which allows us to reduce the number of facts as well as check for
negative facts since a variable - as opposed to a fact - cannot be absent.

Definition 2.3.3 (FDR Planning Task). An FDR (finite-domain representation) planning
task ⇧ is a quintuple (V, I, c, A,G) where

• V is the finite set of variables v which domains D
v

are finite. We call {v := x 2 D

v

}
an assignment for v and a (partial) assignment for V . An assignment is complete
when there is a variable assignment for each variable in V .

• I is a complete variable assignment denoting the initial values for all variables.

• c : A ! R+
0 is a function mapping an action to its cost. Unless otherwise stated, we

assume 8a 2 A : c(a) = 1.

• A is the set of actions. Each action a consists of a (partial) assignment pre
a

denoting
the preconditions which have to be met so that the action can be applied, and a
(partial) assignment e↵

a

denoting the values of variables that might be alternated
by the application of this action.

• G is a (partial) variable assignment denoting the goal state.

Similarly to the STRIPS formalization, we can define an (induced) search space.

Definition 2.3.4 (FDR State Space). An FDR state space⇥⇧ is labeled transition system
defined by a quintuple (S,A, T, I, SG) with

12



• S being the set of all complete variable assignments for V .

• A being the set of actions we get by ⇧.

• T ✓ S⇥A⇥S is a (labeled) transition relation. We denote (s, a, s0) 2 T equivalently
by s

a�! s

0 and define T as

T = {(s, a, s0)|8v 2 V : ({v := x} 2 pre
a

) {v := x} 2 s)

^ {v :=

⇢
x if {v := x} 2 e↵

a

y otherwise with{v := y} 2 s

} 2 s

0}

That means, we need the preconditions to be met and keep all assignments from s

unless they are overwritten by the e↵ect of a.

• I is the initial state we get by ⇧.

• S

G ✓ S is the set of complete assignments in which the goal criterion is met, i.e.
S

G = {s 2 S|G ✓ s}.
Note that due to the agreement of c being a constant function, we leave the specification
thereof as optional. We will now transform example 2.3.1 into an FDR task with four
binary variables where 0 indicates that we have not yet reached the respective fact.

V ={subj, obj, verb, said}
I ={subj := 0, obj := 0, verb := 0, said := 0}
G ={said := 1}
A ={add subj, add obj, add verb, say}

With

add subj :

pre ={subj := 0}
e↵ ={subj := 1}

add obj :

pre ={obj := 0}
e↵ ={obj := 1}

add verb :

pre ={verb := 0}
e↵ ={verb := 1}

say :

pre ={subj := 1, obj := 1, verb := 1}
e↵ ={subj := 0, obj := 0, verb := 0, said := 1}

In the following we use the STRIPS and the FDR representation interchangeably.
The former one is used for explanation purposes, the latter one is used in practice, so the
compilate, i.e. the result of compiling the CCG task into a planning task, will be in FDR.

13



Definition 2.3.5 (search terms). For any search space ⇥ = (S,A, T, I, SG), we say a
sequence of actions ha0, . . . , an�1i is applicable to a state s i↵

9s1, . . . , sn 2 S : s
a0�! s0

a1�! . . .

an�! s

n

.

We denote this by s�ha0, . . . , an�1i = s

n

and, in case there are no ambiguities or the action
sequence is irrelevant, s !n

s

n

. If the action sequence was not sequentially applicable,
we say s � ha0, . . . , an�1i = undefined . A state s0 is reachable from a state s when there is
a sequence of actions resulting in s

0 i.e.

9n 2 N : s !n

s

0
.

A state is reachable in general if it is reachable from the initial state. The planning task
⇧ is solvable if any goal is reachable, i.e.

9n 2 N, 9g 2 S

G : s !n

g.

States from which no goal is reachable are called dead ends. A sequence of actions
ha0, . . . , ani leading from the initial state to the goal is called a plan, with the cost being
the sum of each action’s cost. A search works on (search) nodes. These are states with
additional information, e.g. the cost of a plan leading to this node or references to their
parents. The search algorithm tries to find a path to a goal state. These algorithms exist
in various flavors, some of which can be found in Russel, Norvig (2010) [12].

In example 2.3.1 a plan is

hadd subj, add obj, add verb, sayi
as well as

hadd subj, add obj, add verb, say, add verb, add obj, add subj, sayi
Obviously, all plans for the STRIPS version are also valid in the FDR version and vice
versa.

We later have to deal with conditional e↵ect, so we define them here.

Definition 2.3.6. A conditional e↵ect in a STRIPS planning task is an action’s e↵ect
that only occurs when specific preconditions are met. For example, a speeding driver will
only get a ticket if the police is near. We denote this the following way for p, p0 2 P [{>}
where p is the condition and p

0 is the conditional e↵ect:

{p ) p

0} 2 e↵
a

If p = > the conditional e↵ect always happens.

Example 2.3.2.

A = {speed} with

pre
speed

= {have car} and

e↵
speed

= {> ) arrive in time, police around ) ticket}
Neither STRIPS, nor FDR support conditional e↵ects, but we have to deal with them

later on.
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2.4 Heuristic functions

When trying to find a goal, one approach is searching through the transition system
blindly, which is called blind search but this is quite ine�cient when the transition system
grows large. As an improvement, we want to estimate, how good a state is and prioritize
the according nodes in the search, i.e. expanding them earlier and ignoring worse states.
This kind of estimation is done by a heuristic function taking a state and approximating,
how far the distance to a goal is [1].

Definition 2.4.1. A heuristic function is a function h : S ! R+
0 [ {1}. Its result is

called “heuristic value”.

In a perfect world, a heuristic function would give us the exact distance to a goal, but
computing this value is as hard as solving the problem in the first place. For this reason,
we use approximations that are computable in a reasonable amount of time. One way
to achieve this is by relaxing the problem, i.e. making it easier to solve and compute a
goal distance on the relaxed task. We will present and use the delete-relaxed critical path
heuristic h

max [6].

Definition 2.4.2 (Delete Relaxation). Let ⇧ = (P,A, I,G) be a STRIPS planning task.
We call ⇧+ the delete-relaxed planning task and obtain it by removing the delete list of
all actions.

In a nutshell we can say, that in a delete-relaxed world, everything that once was true,
will always be true. If we had $1000 and gave it to a friend, both will have the money. The
greatest improvement we get by delete-relaxing is that the problem of deciding whether
there is a solution for a given delete-relaxed problem is possible in polynomial time. This
is exactly what we need later on and h

max does this for us. To define hmax , the last thing
we need is regression:

Definition 2.4.3 (Regression). regr : A⇥S ! S is a function allowing us to regress over
a state, i.e. regr(s, a) = s

0 expresses we can use action a in state s

0 to reach s.

regr(s, a) =

⇢
(s\add

a

) [ pre
a

if add
a

\ s 6= ; ^ del
a

\ s = ;
undefined otherwise

regr(s, a) = undefined expresses that we cannot reach s using the action a since a’s delete
list contains a fact which is present in s or that a does not contribute in reaching s, so s

and add
a

are disjoint.

Definition 2.4.4 (Critical Path Heuristic hmax ). We define hmax as the point-wise great-
est function satisfying

h

max(s, g) =

8
<

:

0 if g ✓ s

min

a2Ac(a) + h

max(s, regr(g, a)) if |g| = 1 ^ regr(g, a) 6= undefined
max

g

02gh
max(s, {g0}) |g| � 1

For any state s 2 S we say h

max(s) := h

max(s,G).
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h

max can be computed very e�ciently, as described by Ho↵mann, Nebel in 2001 [6].
Lastly, at some point we need an abstraction which allows to collapse several search states
into one. There are two ways to apply an abstraction: We can define a heuristic which
internally uses an abstraction or we can use the abstraction on the search space we have
and let the heuristic work on the result. We chose the second approach.

Definition 2.4.5. Let ↵ : S ! S

↵ be a surjective function mapping one or more states
of a search space onto one state.

Every other definition can be left as it was just that the abstraction has to be applied
on each component. We do not spell this out in detail because in Chapter 3.3 we will see
that we merely borrow the concept of abstraction and adopt it to fit to our problem, i.e.
we will use it to collapse an infinite amount of di↵erent categories into one category.

Definition 2.4.6 (safe). A heuristic h is safe if the following equivalence holds:

h(s) = 1 () s is a dead end.

Furthermore, a compilation � mapping a search space onto another one is safe if the
existence of a plan in the original search space implies the existence of a plan in the
compiled one, i.e. 8⇥,⇥0 with ⇥ = (S,A, T, I, SG), ⇥0 = (S 0

, A

0
, T

0
, I

0
, (SG)0) and

�(⇥) = ⇥0:

8ha0, . . . , aii with I � ha0, . . . , aii = g 2 S

G

=) 9ha00, . . . , a0ji with I

0 � ha00, . . . , a0ji = g

0 2 (SG)0
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Chapter 3

Compilation

To be able to use the h

max heuristic in the context of OpenCCG, we need to build a
foundation on which h

max can work. That means, we have to compile the rules of CCG
into a set of facts and actions in an intelligent way such that we can proof desirable
properties, in this case safety. In addition we want the compilation to be tractable, i.e.
the runtime is polynomially bound on the CCG task’s size.

As a first step we are going to define a CCG task ⇥CCG in a formal way as well as what
is a dead end therein. On this base we can then define a compilation into an intermediate
planning task ⇥1 which is infinite in size and acts as a kind of interface between CCG
and planning. We improve this compilation by mapping ⇥1 onto another planning task
⇥↵k which is finite, but grows exponentially in the size of ⇥CCG and is only able to detect
some dead ends, as opposed to ⇥1. Another refinement finally yields ⇥⌃, which fulfills
our requirements of safety and tractability. Lastly, we adapt this problem minorly such
that we can use this result to classify edges as potentially useful or not which allows us
to exclude edges classified as not useful for the search.

In the following we use the convention that all variables defined in a CCG context are
Greek letters while variables in the planning context are denoted by Latin letters.

3.1 CCG Task

For defining the CCG task we use terms from the OpenCCG context, in particular the
term “edge” for the compound of a syntactic category and its coverage of the LF. We
intentionally skip over the word sequence associated with an edge because we do not
need any knowledge about the actual words for determining whether or not a problem is
solvable.

Definition 3.1.1 (CCG Task). A CCG task is a quintuple ⇥CCG as follows:

⇥CCG = (�,�0,⇤,⇤
I

,�

G)

where

• �0 is the set of atomic syntactic categories. We denote the set of all possible syntactic
categories by �.

• ⇤ = �⇥ ⌃ is the set of all edges with ⌃ = {>,?}n where n is the size of the LF.
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• � = (�B

,�U) denotes the transition relation with

– �B ✓ ⇤⇥ ⇤⇥ ⇤ representing the binary combination rules

– �U ✓ ⇤⇥ �⇥ ⇤ representing the unary combination rule

• ⇤I ✓ ⇤ defines the (finite) set of all edges on which we can work in the beginning of
the task. These edges represent the lexical entries we have in the lexicon initially.

• �

G 2 ⇤ represents the goal edge.

To sum this up, � represents an edge consisting of its category � and semantics �. �

represents an action consisting of either three edges in case of a binary combination, where
the first element of � represents the left operand, the second element the right operand,
and the third element the resulting edge. For unary actions the first component is the
original edge, the second one is the category by which we raise and the third component
is the resulting edge. To ease working with ⇥CCG we introduce some notational sugar.

Tuple access:
8� = (�, �) 2 ⇤ : �.� = � ^ �.� = �

8� = (�1,�2,�3) 2 �B : �.�1 = �1 ^ �.�2 = �2 ^ �.�3 = �3

8� = (�
b

, �,�

r

) 2 �U : �.�
b

= �

b

^ �.� = � ^ �.�

r

= �

r

This means that �.� gives us the � component of �.

Bit vector access:
8� 2 ⌃. 8i 2 {0, . . . , n� 1} : � = (b0, . . . , bn�1) ^ �[i] = b

i

Bit vector con- and disjunction:
8�1, �2 2 ⌃. 8� 2 {^,_} : �1 � �2 = (�1[0] � �2[0], . . . , �1[n� 1] � �2[n� 1])

Furthermore, unless otherwise defined, the �-operator denotes a slash operator in CCG,
i.e. � 2 {‘/’, ‘\’} with

�̄ =

⇢
‘\’ if � = ‘/’
‘/’ otherwise

Defining the constituents for a given CCG task is straight-forward. Note that we
require s 2 �0 as the goal category.

• �

G = (s ,>n) such that we have a syntactically valid sentence which su�ces the LF
entirely.

• ⇤I contains all lexical entries upon which we can build the sentence.

For gamma we need the union over categories consisting of i slashes for all i 2 N. We
have to make sure to include categories like np/(n/n).

�
i

=
[

�2�0,�
02�i�1

{� � (�0), � � �0
, ��̄(�0), ��̄�0

, �

0 � �, �0�̄�} 8i > 0

� =
1[

i=0

{�
i

}
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Note that this also includes categories like (np/n)/(np/n) because the first set of paren-
thesis is superfluous here, so we can equivalently write np/n/(np/n) with np 2 �0 and
n/(np/n) 2 �3.

We can now define the transition relation � which consists of 3 parts, one for each
binary and one for the unary rule. We compose all transitions resulting from the appli-
cation rule in �app, transitions from the composition rule in �comp and unary rules in
�U .

� = (�app [�comp

,�U)

For the application rule in terms of the categories we only require the right constellation
on the right and on the left hand side of each operand’s slash. We do not distinguish
between the direction of the slash operator because of before-mentioned irrelevance of the
actual word sequence. Regarding the semantics, we require the coverage vectors to be
disjoint and the resulting vector to be the disjunction of each operand’s coverage. We use
the following predicates to determine whether two categories can be combined:

left(�) =

8
<

:

left(�0) if � = �

0 � �00 ^ left(�0) 6= ?
�

0 if � = �

0 � �00 ^ left(�0) = ?
? if � 2 �0

(3.1)

right(�) =

⇢
�

00 if � = �

0 � �00

? if � 2 �0
(3.2)

fwd(�) ⌘ (� = �

0 � �00) ^ (� = ‘/’) (3.3)

appl(�0, �1) ⌘ (�0 = �

0
0 � �00

0 ) ^ (�00
0 = �1) (3.4)

comp(�0, �1) ⌘ right(�0) 6= ? ^ right(�1) 6= ? ^ (fwd(�0) = fwd(�1))

^
⇢

right(�0) = left(�1) if fwd(�0)
right(�1) = left(�0) otherwise

(3.5)

We defined left recursively to make sure categories like �0/�1 and �1/�2/�3 can be com-
posed.

�app ={(�1,�2,�3)|appl(�1.�,�2.�) ^ (�1.� = �

L

� �
R

) ^ (�3.� = �

L

)

^ (�3.� = �1.� _ �2.�) ^ (�1.� ^ �2.� = ?n)} (3.6)

�comp = {(�1,�2,�3)|comp(�1.�,�2.�) ^ (�3.� = �1.� _ �2.�) ^ (�1.� ^ �2.� = ?n)

^ �1.� = �

0
1 � �00

1 ^ �2.� = �

0
2 � �00

2

^ �3.� =

⇢
�

0
1 � �00

2 if fwd(�1.�)
�

0
2 � �00

1 otherwise
}

For the unary rule, we have no change in the edge’s semantics, hence the vector of the
result is equal to the one we have before applying the rule and the resulting category has
to have the right format.

�U = {(�
b

, �

t

,�

r

)|(�
r

.� = �

b

.�) ^ (�
r

.� = �

t

� (�
t

�̄�
b

.�)}

We can now define the terms search state, transition, reachable and solvable on any
CCG Task ⇥CCG = (�,�0,⇤,⇤I

,�

G) in a straight-forward way:
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Definition 3.1.2 (Search State). A search state s

CCG

✓ ⇤ defines a set of edges. The
initial state is denoted by ⇤I .

Definition 3.1.3 (Transition). A state s

CCG

allows a transition � = (�1,�2,�res

) 2 �B

to be made if and only if �1 2 s

CCG

^ �2 2 s

CCG

. Transitions � = (�1, �,�res

) 2 �U can
be made if and only if �1 2 s

CCG

. The resulting state in both cases is s0
CCG

= s

CCG

[�

res

.

We denote an applicable transition by s

CCG

��! s

0
CCG

. When there is no ambiguity we
omit �. By �!⇤ we denote the reflexive-transitive closure of the transition relation for
both �B and �U while s �!n

s

0 means that we need n transitions to reach s

0 starting at
s.

Definition 3.1.4 (Reachability). A state s

0
CCG

is reachable from any state s

CCG

if and
only if s

CCG

�!⇤
s

0
CCG

. A state s

CCG

is reachable for a CCG task if and only if
⇤I �!⇤

s

CCG

.

Definition 3.1.5 (Solvability). A CCG task is solvable, if and only if the goal is reachable,
i.e. 9⇤G ✓ ⇤ with �

G 2 ⇤G ^ ⇤I �!⇤ ⇤G.

Definition 3.1.6. A state s

CCG

is a dead end if no goal state is reachable.

Furthermore we can see that the following property holds:

Lemma 3.1.1 (Monotonicity). We will never lose what we once reached.

8⇤0
,⇤00 ✓ ⇤, 8� 2 � : ⇤0 ��! ⇤00 =) (8� 2 ⇤0 : � 2 ⇤00)

Proof. By definition.

In the following we will present a compilation which will be refined a number of
times until all desired properties are met. In proofs we omit a case distinction between
transitions based on a unary or binary rule for simplicity whenever the omitted case is
obvious, e.g. because it is analogous to the other case. We then silently assume the action
to be binary, i.e. we cover the more interesting case.

3.2 Intermediate Planning Task

Definition 3.2.1 (Intermediate Planning Task). An intermediate planning task ⇧
inter

is a quadruple (V,A, I,G) (cf. definition of planning task (2.3.3)). It is induced by a
CCG task ⇥CCG = (�,�0,⇤,⇤I

,�

G) but does not necessarily fulfill all requirements of a
planning task.

We define a first induced planning task ⇥1 as follows while ignoring the finiteness
aspect and tractability constraint of the compilation:

Each fact has a binary domain. For each edge, we have a fact (s
�

) stating whether we
are allowed to use this edge at this point in time. This is a very simple compilation and
its primary function is to be the base for further refinements.

V1 :=
[

�2⇤

{s
�

}
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So there is one variable for each potential edge.
The definitions for the initial and the goal state follow directly from the definition of a
fact: All initial edges are reached at the beginning and we want to reach the goal edge at
the end.

I1 :=
[

�2⇤

{s
�

:= (� 2 ⇤I)}

G1 := {s
�

G := >}

The actions are divided into unary and binary actions with appropriate preconditions and
e↵ects.

A1 := A

B

1 [ A

U

1

A

B

1 :=
[

�2�B

{aB
�

}

pre
a

B
�
:= {s

�.�1 := >, s

�.�2 := >}
e↵

a

B
�
:= {s

�3 := >}
A

U

1 :=
[

�2�U

{aU
�

}

pre
a

U
�
:= {s

�.�b
:= >}

e↵
a

U
�
:= {s

�.�r := >}

We denote states in any planning task (intermediate or not) by s

P lan

.
⇥1 is infinite in size because we can easily construct an infinite chain of actions resulting

in pairwise di↵erent states. We proof this claim in Theorem 3.3.1. However, we can see
that the following property holds:

Lemma 3.2.1 (Monotonicity). The intermediate task is a delete relaxed one, i.e. when
a variable becomes >, it never turns back to ?.

8s
P lan

, 8s 2 V1, 8a 2 A1 : {s := >} ✓ s

P lan

=) {s := >} ✓ (s
P lan

� hai)
Proof. By construction we know

8a 2 A1, 8s 2 S : {s := ?} 62 e↵
a

To proof that the construction of ⇥1 is safe, we need the following lemma2:

Lemma 3.2.2 (Mutual Consistency). For all transition sequences in the CCG task we
can find an action sequence in ⇥1 resulting in a state where the facts assigned to > reflect
the edges we have reached in the CCG task after taking these transitions.

8h�0, . . . , �k�1i : ⇤I

�0�! . . .

�k�1�! ⇤0 : 8� 2 ⇤ : (� 2 ⇤0 () {s
�

:= >} ✓ I1�ha�0 , . . . , a�k�1
i)

2
Please keep in mind that we use Greek letters for CCG related variables and Latin ones for planning

related variables
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Proof. Induction on k.
Base k = 0:

8� 2 ⇤ : (� 2 ⇤I () {s
�

:= >} ✓ I1) by construction

Step k ! k + 1:

We know ⇤I

�0�! . . .

�k�1�! ⇤0 �k�! ⇤00 and

8� 2 ⇤ : (� 2 ⇤00 (⇤)() (� 2 ⇤0 _ �

k

.�3 = �))

IH() 8� 2 ⇤ : (� 2 ⇤00 () ({s
�

:= >} ✓ I1 � ha�0 , . . . , a�k�1
i _ �

k

.�3 = �))
(⇤⇤)() 8� 2 ⇤ : (� 2 ⇤00 () ({s

�

:= >} ✓ I1 � ha�0 , . . . , a�k�1
i _ e↵

a�k
= {s

�

:= >}))
(⇤⇤⇤)() 8� 2 ⇤ : (� 2 ⇤00 () ({s

�

:= >} ✓ I1 � ha�0 , . . . , a�k�1
, a

�k
i))

(⇤) by 3.1.1 (Monotonicity) and definition of transitions

(⇤⇤) by construction

(⇤ ⇤ ⇤) by applying the IH twice resolving the universial quantifier with

�

k

.�1 and �

k

.�2 to meet �
k

’s preconditions and 3.2.1 (Monotonicity)

Theorem 3.2.3. A transition sequence h�0, . . . , �k�1i leads to a goal state if and only if
the action sequence ha

�0 , . . . , a�k�1
i leads to a goal, i.e.

⇤I

�0�! . . .

�k�1�! ⇤G 3 �

G () I1 � ha�0 , . . . , a�k�1i ◆ G1

Proof.

⇤I

�0�! . . .

�k�1�! ⇤G 3 �

G () I1 � ha�0 , . . . , a�k�1i ◆ {s
�

G := >} by lemma 3.2.2

() I1 � ha�0 , . . . , a�k�1i ◆ G1 by construction

Corollary 3.2.3.1. ⇥CCG solvable () (V1, A1, I1, G1) solvable

So the compilate ⇥1 is equivalent since each transition in the CCG task can be sim-
ulated by an action in the intermediate planning task and vice versa. Hence there is a
bijection between any transition sequence and the according plan resulting in equivalent
states regarding the goal status. Nonetheless, one can easily see that the compilate is not
finite and therefore not particularly useful when trying to run a heuristic on it.

3.3 Restricting the Number of Categories

To tackle the problem of infiniteness we introduce a way to stop infinite sequences of
rule applications resulting in pairwise di↵erent states. So �,� and ⇤ become finite. The
consequence is that the set of reachable edges and the set of syntactic categories also
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become limited in size so that we can find a compilation that su�ces the criteria for a
planning task.

Firstly, we define # : � ! N as a function giving us the number of slashes in a
category.

#(�) =

⇢
1 + #(�0) + #(�00) if � = �

0 � �00

0 otherwise

The problem of infiniteness does not only occur in rare cases but rather in all non-trivial
CCG task, which allows us to proof the following theorem:

Theorem 3.3.1. All non-trivial CCG tasks are infinite.

8⇥CCG = (�,�0,⇤,⇤
I

,�

G) : ⇤I 6= ; =) |⇤| = 1^ |�| = 1^ |�| = 1

Proof. It su�ces to show that we can find an infinite sequence of transitions leading
to pairwise di↵erent states, i.e. there is an infinite, acyclic path through the transition
system. More formally:

Lemma 3.3.2 (Infinite Transition Sequences).

9h�0, �1, ...i : ⇤I

�0�! ⇤0 �1�! . . .

Proof. We construct a sequence of unary rules inductively:
For �0 2 ⇤I we define �0 := (�0,�0.�,�1) with �1 = (�0.� � (�0.��̄�0.�),�0.�)
Obviously, �1.� 2 � and �1 2 ⇤ due to the definition of the type raising rule.
Now for the induction step we define

�

i

:= (�
i�1.�r

,�0.�,�i

) with �

i

= (�0.� � (�0.��̄�i�1.�),�i�1.�)

This way, we have an infinite sequence of applicable transitions starting from the non-
empty initial state.

Using this construction we can proof its acyclicity.

Lemma 3.3.3 (Acyclicity).

8i, j 2 N : i 6= j =) �

i

.�

r

6= �

j

.�

r

Proof. W.l.o.g. i < j: We know by definition: 8m 2 N : #(�
m

.�

b

) < #(�
m

.�

r

)
With �

i

.�

r

�!j�i�1
�

j

.�

b

we know #(�
i

.�

r

)  #(�
j

.�

b

) < #(�
j

.�

r

).

Hence, there is an infinite (3.3.2), acyclic (3.3.3) sequence of transitions applicable
from ⇤I , so �,� and ⇤ have to be infinite.

We can see that the function value of # increases after each type raising. The com-
position rule can have a similar property, e.g./ when composing n/n/np with np/pp/s to
get n/n/pp/s. In contrast, the application rule poses no problem: The number of slashes
decreases after each application.

We now want to limit the number of elements in � while keeping safety in mind. That
means, we still want to be able to proof that a dead end in the new intermediate planning
instance is also a dead end in the CCG task. To do so, we introduce an abstraction on
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the syntactic categories collapsing an infinite amount of di↵erent categories into a single
one. We then allow combinations in an unrestrictive manner to preserve safety.

The idea is to define a maximal number of slashes k of which a category can consist.
Everything after the k-th slash will then be discarded. Discarding everything on the left
hand side would result in a loss of information about what the category results in. As
a result we would have to consider every category to result in an s which renders the
problem unnecessarily easy. For this reason we discard everything on the right hand side.

We adapt the composition and application rules in a way that all formerly possible
combinations are still possible; the loss of information leads to some invalid combinations,
though.

Definition 3.3.1. Let ↵
k

: � ! �⇤ be a parametrized abstraction with k > 1 mapping a
category onto either the identity or a star category �

⇤, which get a special treatment for
combinations. We will see this in Chapter 3.3.2.

↵

k

(�) =

⇢
� if #(�)  k

↵

0
k

(�) otherwise

↵

0
k

(�) =

8
<

:

�

⇤ if #(�) = k

↵

0
k

(�
L

) if � = �

L

� �
R

^#(�
L

) � k

�

L

� ↵0
k�#(�L)�1(�R) if � = �

L

� �
R

^#(�
L

) < k

Example 3.3.1.

↵2(s/np) = s/np

↵2(s/np\s/np) = s/np\s⇤
↵2(s/(s\np/pp)) = s/(s\np⇤)

↵2(s/(s\np/pp)/np) = s/(s\np⇤)

We say �⇤ = ↵

k

(�) and define for convenience for all sets S and � 2 ⇤:

↵

k

(S) =
[

s2S

{↵
k

(s)}

↵

k

(�) = (↵
k

(�.�),�.�) 2 ⇤⇤ = �⇤ ⇥ ⌃

Furthermore we find (�
L

� �
R

)⇤ = �

L

� �⇤
R

to be valid since we never remove slashes from
the left hand side of a slash while preserving the right hand side.
To see how star categories are handled, consider the following examples:

(np)* pp

>

(np)*

This way we cover the possibility that (np)⇤ was formally, i.e. before applying the ab-
straction, np/pp, as well as np/�1/pp for any �1.

a/b

*
b

>

a

So we allow the star category to become a normal category. This is necessary e.g. for
a type raised goal category to become �

G

.� instead of �G

.�

⇤ so that the task can be
completed.
Not using parenthesis around categories introduces no ambiguities, hence (�)⇤ = �

⇤.
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3.3.1 Finiteness Considerations

We can see that the proof for theorem 3.3.1 (None-trivial CCG tasks are infinite) breaks
now because lemma 3.3.3’s proof relies on the fact that each type raising will yield a larger
category regarding the number of slashes. By limiting the number of slashes any category
can have, we will naturally restrict � to be finite under one assumption: the number
of atomic categories3 is finite. This assumption is perfectly valid since we retrieve the
initial edges from a finite lexicon and the only way to introduce an arbitrary new atomic
category �

new

is raising by type �

new

. But there is no use in doing so because there is no
partner for combinations except results from other raises by �

new

. However, in these cases
we could have raised by any other already present type in the first place with equivalent
results so it makes no sense to raise by �

new

.

3.3.2 Second Compilation Approach

We now extend the set of transitions by taking star categories into account. To do so, we
say ⇤⇤ = �⇤⇥⌃ and revise the predicates determining which categories can be combined.
Due to the star categories, we no longer require strict equality, it su�ces to have a match
for which definition we also need to revise right to be able to return ⇤ as wildcard to be
matched with anything. We leave left as it is since a star can never occur on the left hand
side of a slash.

isStar(�) ⌘
⇢

� = (�
G

)⇤ if � 6= �

L

� �
R

isStar(�
R

) otherwise � = �

L

� �
R

(3.7)

match(�0, �1) ⌘ (�0 = �1) _ �0 = (�
G

)⇤ _ �1 = (�
G

)⇤

_ ((�0 = �

0
0 � �00

0 ) ^ (�1 = �

0
1 � �00

1 )

^match(�00
0 , �

00
1 ) ^match

0(�0
0, �

0
1)) (3.8)

match

0(�0, �1) ⌘ (�0 = �1) _ ((�1 = �

0
1 � �00

1 ) ^match

0(�0, �
0
1)) (3.9)

So apply and comp become

appl

⇤(�0, �1) = (�0 = �

0
0 � �00

0 ) ^match(�00
0 , �1) (3.10)

comp

⇤(�0, �1) = (�0 = �

0
0 � �00

0 ) ^ (�1 = �

0
1 � �00

1 ) (3.11)

^ ((match(�00
0 , �

0
1) ^ (� = ‘/’)) _ (match(�0

0, �
00
1 ) ^ (� = ‘\’))) (3.12)

The definition of match makes sure that match(a/(b/c⇤), a/(b/c/d)) holds. This is nec-
essary to allow compositions like:

s/(a/(b/c*)) a/(b/c/d)/np
>B

s/np

3
reminder: � atomic , #(�) = 0
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Using this, we define the set �B⇤ including transitions with star categories.

�B⇤ =�B1 [�B2 [�B3 [�B4

�B1 =
[

�,�

02⇤⇤

{(�,�0
, (�.�,�.� _ �

0
.�)|isStar(�.�) ^ (�.� ^ �

0
.� = ?n)} (3.13)

�B2 =
[

�,�

02⇤⇤

{(�,�0
, (�

L

,�.� _ �

0
.�))|appl⇤(�.�,�0

.� ^ (�.� ^ �

0
.� = ?n)} (3.14)

�B3 =
[

�,�

02⇤⇤

{(�,�0
, (�

res

,�.� _ �

0
.�)|�.� = �

L

� �
R

^ �

0
.� = �

0
L

� �0
R

^ comp

⇤(�.�,�0
.�) ^ (�.� ^ �

0
.� = ?n) ^ �

res

=

⇢
�

L

� �0
R

if � = ‘/’
�

0
L

� �
R

otherwise
} (3.15)

�B4 =
[

�2�B

{�|�.�1, �.�2 2 (�⇤ \ �)} (3.16)

By 3.13 we allow star-categories to be applied to or composed with other categories
without losing the star-category status. To allow termination, i.e. becoming a non-star-
category, we have rule 3.14 for the application and 3.15 for the composition rule. Lastly,
3.16 allows to keep all transitions where both operands are not star categories.

Definition 3.3.2. We retrieve another intermediate planning task ⇥↵k = (V2, A2, I2, G2)
by defining V2, I2, G2, and A2 very similar to their corresponding sets in ⇥1. We now use
a fact s

↵k(�) representing whether or not we have reached ↵

k

(�) instead of �. This way,
the number of facts is depending on �⇤ ⇥ ⌃ instead of � ⇥ ⌃. Furthermore we use �B⇤

instead of �B to make sure all newly acquired combinations are covered as well:

V2 :=
[

�2⇤

{s
↵k(�)} (3.17)

I2 :=
[

�2⇤

{s
↵k(�) := (� 2 ⇤I)} (3.18)

G2 := {s
↵k(�G) := >} (3.19)

A2 := A

B

2 [ A

U

2 (3.20)

A

B

2 :=
[

�2�B⇤

{aB
�

} (3.21)

pre
a

B
�
:= {s

�.�1 := >, s

�.�2 := >} (3.22)

e↵
a

B
�
:= {s

↵k(�.�3) := >} (3.23)

A

U

2 :=
[

�2�U

{aU
�

} (3.24)

pre
a

U
�
:= {s

↵k(�.�b) := >} (3.25)

e↵
a

U
�
:= {s

↵k(�.�r) := >} (3.26)

In the next section we will proof the finiteness of our construction and afterwards show
that ⇥↵k simulates the ⇥1 in terms of solvability. Unlike with ⇥CCG and ⇥1 we will see
that this is no bisimulation4.

4
Note that we omitted the proof for bisimulation since we only need the weaker proposition of equiv-

alent goal statuses.
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Algorithm 1 Computing �⇤

1: � := �0

2: for i in 1 . . . k + 1 do
3: �

i

:= ;
4: for � in �

i�1 do
5: for �

0 in �0 do
6: �

i

:= �
i

[ {�/�0
, �/(�0), �\(�0), �\�0

, �

0
/�, �

0\�}
7: end for
8: end for
9: � := � [ �

i

10: end for
11: for � 2 � with #(�) = k + 1 do
12: replace � by ↵

k

(�)
13: end for

3.3.3 Space and Time Analysis

We now want to proof that the size of ⇥↵k is space bound, i.e. not infinite. To do so, we
first show some lemmas and assemble them afterwards.
In regards of a later proof of tractability we already introduce an algorithm to compute �
and proof it time bound. Since we know P ✓ PSPACE, we can conclude the component
to be space bound as well. We denote |�0| by x.

� lays the ground for all further definitions, hence we will compute this first.

Lemma 3.3.4. Finding ↵

k

(�) is polynomially time bound by x and exponentially bound
by k.

Proof. With Algorithm 1 we have an algorithm computing �⇤ which first computes
[

ik+1

{�
i

}

in line 2 - 10. To obtain �
i

, we successively add elements of �0 to element of �
i�1 (line

6). This is then extended by categories with star status by replacing categories with
too many slashes with their according star category (line 12), which all have exactly k

slashes5. This coincides with the rules we defined in 3.13 - 3.16. The runtime r� is bound
by

r�(x, k)  2 ⇤
k+1X

i=0

x

i 2 O(xk)

for building the cross product over �
i

with �0 for i 2 {0, . . . , k+1} and iterating over the
result once afterwards.

Lemma 3.3.5. V2 is finite.

Proof. Since acquiring �⇤ is time bound by Lemma 3.3.4, �⇤ itself is space bound and
thereby finite. We know that ⌃ is finite, so the cross product ⇤⇤ = �⇤ ⇥ ⌃ is finite as
well. As a trivial result, V2 is finite.

5
This algorithm has an illustrative purpose and is thus not very e�cient.
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Lemma 3.3.6. A2 is finite.

Proof. We show this property in two steps. First we proof �B⇤ and thereby A

B

2 finite.
For �B1 � �B3 we need to iterate over the cross product of ⇤⇤ with itself and compute
simple predicates whose structural recursion obviously terminates always. ⇤⇤’s size is the
multiplication of �⇤ and ⌃. Hence the runtime of each is bound by

r�B1�B3(x, k, n)  3 ⇤ (r�(x, k) ⇤ |⌃|)2 = 3 ⇤ (r�(x, k) ⇤ 2n)2 2 O((r�(x, k) ⇤ 2n)2).

We can see that this set’s size grows exponentially in the number of semantic items. We
will have to compensate this for a tractable compilation later on in Section 3.4.
Obtaining �B4 is a little more involved. Obviously we cannot filter the infinite set �
by any predicate, neither can we build the intersection �⇤ \ � in a straight forward way.
However, the latter can be acquired by removing all star categories from �⇤ in linear
runtime.
Instead of filtering �B, we use the contrary approach of building possible combinations
based on the set of categories we already have. The result is not necessarily in �⇤, we
ensure this membership when building up A

B

2 by applying the abstraction on the result
(cf. 3.23). For this, we use oracle functions determining whether two categories can
be combined and how the result looks like. We have already spelled out the details on
this in definitions 3.4 and 3.5, so we omit explicitly defining these functions. We use
composable fwd and composable bkwd to check whether two categories can be composed
with the forward and backward rules respectively. The same holds for applicable fwd

and applicable bkwd. The results are given by compose fwd, compose bkwd, apply fwd,
and apply bkwd. Putting all this together gives us Algorithm 2 where we iterate over the
categories contained in the earlier mentioned intersection of �⇤ and � and add combination
results to�B4. We can see that the runtime is bound by |⇤⇤|2 so r�B4(x, k) 2 O((r�⇤(x, k)⇤
2n)2).
Computing A

B

2 involves iterating over �B⇤ once, which takes linear time, so

r

A

B
2
(x, k) 2 O(r�⇤(x, k)2),

which completes the first part of the proof.
For the second part it su�ces to show that AU

2 is finite.
For this we need to iterate over �U which is not possible. Alternatively, we can simply
take all elements of ⇤⇤, apply the type raising rule, and the abstraction on the result.
Since ⇤⇤ contains all possible categories with a limited number of slashes, this method
yields the same result as iterating over �U . In Algorithm 3 we can see a way to compute
�U⇤: We iterate over the set of possible edges and raise each element by every possible
type in a forward and a backward fashion. We can use this result instead of �U in 3.24.
The runtime is bound by |⇤⇤| and r�⇤ so

r�U⇤(x, k, n) 2 O(r�⇤(x, k) ⇤ |⌃| ⇤ r�⇤(x, k) ⇤ 2) = O(xk ⇤ 2n ⇤ xk ⇤ 2) = O(x2k ⇤ 2n).

As a result we can conclude that A2 is finite.

Now we can finally proof the theorem:

Theorem 3.3.7. ⇥↵k = (V2, A2, I2, G2) is space bound.
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Algorithm 2 Computing �B4

1: �
B

:= (�⇤ \ �)
2: �B4 := ;
3: for �, �

0 2 �
B

do
4: if composable fwd(�, �0) ^ compose fwd(�, �0) /2 �

B

then
5: �B4 := �B4 [ {(�, �0

, compose fwd(�, �0))}
6: end if
7: if composable bkwd(�, �0) ^ compose bkwd(�, �0) /2 �

B

then
8: �B4 := �B4 [ {(�, �0

, compose bkwd(�, �0))}
9: end if
10: if applicable fwd(�, �0) ^ apply fwd(�, �0) /2 �

B

then
11: �B4 := �B4 [ {(�, �0

, apply fwd(�, �0))}
12: end if
13: if applicable bkwd(�, �0) ^ apply bkwd(�, �0) /2 �

B

then
14: �B4 := �B4 [ {(�, �0

, apply bkwd(�, �0))}
15: end if
16: end for

Algorithm 3 Computing �U⇤

1: �U⇤ := ;
2: for � 2 ⇤⇤ do
3: for � 2 �⇤ do
4: for � 2 {‘/’, ‘\’} do
5: �U⇤ = �U⇤ [ {(�, �, � � (��̄�.�))}
6: end for
7: end for
8: end for

Proof.

• V2 is finite by lemma 3.3.5.

• A2 is finite by lemma 3.3.6.

• I2 is bound by V2 and hence finite.

• |G2| = 1  1.

So with ⇥↵k we have a valid planning task which grows polynomially in the number
of atomic categories and exponentially in the number of semantic items and k.

3.3.4 Simulation

Now we want to proof that ⇥↵k simulates ⇥1.
We first find and proof several auxiliary lemmas, then we construct a simulation relation
which we can proof very easily using the lemmas.
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Lemma 3.3.8.
8�, �0 2 � : appl(�, �0) =) appl

⇤(�, �0)

Proof.

appl(�, �0) () � = �

L

� �
R

^ �

R

= �

0

=) � = �

L

� �
R

^match(�
R

, �

0)

() appl

⇤(�, �0)

Lemma 3.3.9.
8�, �0 2 � : comp(�, �0) =) comp

⇤(�, �0)

Proof.

comp(�, �0) () right(�) 6= ? ^ right(�0) 6= ? ^ fwd(�) = fwd(�0)

^
⇢

right(�) = left(�0) if fwd(�)
right(�0) = left(�) otherwise

() � = �

L

� �
R

^ �

0 = �

0
L

� �0
R

^
⇢

right(�) = left(�0) if fwd(�)
right(�0) = left(�) otherwise

=) � = �

L

� �
R

^ �

0 = �

0
L

� �0
R

^ (right(�) = left(�0) _ right(�0) = left(�))

=) � = �

L

� �
R

^ �

0 = �

0
L

� �0
R

^ (match(right(�), left(�0)) _match(right(�0), left(�)))

() comp

⇤(�, �0)

Lemma 3.3.10. Given the left argument has less slashes, match recognizes equality under
↵, i.e.

� = �

0 =) 8 0 < i  k : match(↵
i

(�),↵
k

(�0))

Proof.
We have three cases:
Case 1: ↵

i

(�) = � ^ ↵

k

(�0) = �

0.
This case is trivial since match(�, �) holds for all �.
Case 2: ↵

i

(�) 6= � ^ ↵

k

(�0) = �

0

This case cannot occur since i  k.
Case 3: ↵

k

(�0) 6= �

0

For 0 < i  k, we know:

↵

i

(�) = �

↵L

� �
↵R

^ ↵

k

(�0) = �

0
↵L

�0 �0
↵R

with �0 2 {‘/’, ‘\’}
And by definition of match:

match(�0, �1) ⌘ �0 = �1 _ �0 = �

⇤
G

_ �1 = �

⇤
G

_ (�0 = �

0
0 � �00

0 ^ �1 = �

0
1 � �00

1

^match(�00
0 , �

00
1 ) ^match

0(�0
0, �

0
1))

match(↵
i

(�),↵
k

(�0)) ⌘ ↵

i

(�) = ↵

k

(�0) _ ↵

i

(�) = (�
G

)⇤ _ ↵

k

(�0) = (�
G

)⇤

_ (↵
i

(�) = �

↵L

� �
↵R

^ ↵

k

(�0) = �

0
↵L

�0 �0
↵R

^match(�
↵R

, �

0
↵R

) ^match

0(�
↵L

, �

0
↵L

))
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We know that match

0(�
↵L

, �

0
↵L

) holds since � = �

0 and i  k: ↵ leaves everything left of
the k-th/i-th slash as it was and match

0’s recursion is on the left hand side of the topmost
slash. So at some point, both arguments have to be equal, since we successively remove
slashes from the right argument, which has k slashes, i.e. a greater or equal amount than
the left argument.
Moreover, we know that match(�

↵R

, �

0
↵R

) holds since after i�#(�
↵L

) recursive calls, the
left argument has to be a star category. This number of recursive steps is possible because

#(�0
↵R

) = k �#(�0
↵L

) � i�#(�0
↵L

) � i�#(�
↵L

),

where the last step can be justified by match

0(�
↵L

, �

0
↵L

).

First we notice that every category � with #(�) � 1 has the following form before and
after the application of ↵

k

:

� = �0 �0 . . . �i �i
↵

k

(�) = �0 �0 . . . �j�2 �j�1 �j�1 �↵

where again two cases can occur:

a) �

↵

= �

⇤
j

b) �

↵

= ↵

k�⌘

(�
j

) with ⌘ = 1 +
P

j�1
x=0 #(�

x

)

We now say �

L

= �0 �0 . . . �j�2 �j�1 and observe further, that by applying ↵, we lose
information about �

j+1 . . . �i. This is compensated by allowing combinations with all
categories and choosing the unchanged left operand as result (see definition of �B1 3.13).
This way, no combination gets lost. For i = j, this obviously has no impact at all. Now,
to combine ↵

k

(�) = �

L

� �
↵

, only the last category is relevant. Using this observation, we
can proof the following two lemmas:

Lemma 3.3.11.
appl(�, �0) =) appl

⇤(↵
k

(�),↵
k

(�0)) (3.27)

Proof.

appl(�, �0) () appl(�
L

� �
j

, �

0)
def() �

j

= �

0

In the before-mentioned case a) we know

�

j

= �

0 =) match(�
j

, �

0)

=) match(�⇤
j

, �

0)

=) appl

⇤(�
L

� �⇤
j

, �

0)
(⇤)() appl

⇤(↵
k

(�),↵
k

(�0))

(⇤) We know #(�
j

)  k and thus #(�0)  k

Hence
appl(�

L

� �
j

, �

0) =) appl

⇤(↵
k

(�),↵
k

(�0)
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For case b) we know �

↵

= ↵

k�⌘

(�
j

) and k � ⌘  k, hence

�

j

= �

0 =) match(�
j

, �

0)
3.3.10
=) match(↵

k�⌘

(�
j

),↵
k

(�0))

=) appl

⇤(�
L

� �
↵

,↵

k

(�0))

() appl

⇤(↵
k

(�),↵
k

(�0)

Lemma 3.3.12.
comp(�, �0) =) comp

⇤(↵
k

(�),↵
k

(�0))

Proof. We can see that it actually makes no di↵erence whether we have a forward or
backward composition, so we consider the forward application only.

comp(�, �0) () comp(�
L

� �
j

, �

0)

() �

0 = �

0
L

� �0
R

^ �

j

= �

0
L

However, we distinguish between the following cases.
Case 1: ↵

k

(�0
L

) = �

0
L

�

0 = �

0
L

� �0
R

^ �

j

= �

0
L

() ↵

k

(�0) = �

0
L

� �0
R

^ �

j

= �

0
L

=) ↵

k

(�0) = �

0
L

� �0
R

^match(�
j

, �

0
L

)

In case a) we get

↵

k

(�0) = �

0
L

� �0
R

^match(�
j

, �

0
L

) () ↵

k

(�0) = �

0
L

� �0
R

^match(�⇤
j

, �

0
L

)

=) comp

⇤(�
L

� �⇤
j

,↵

k

(�0))

=) comp

⇤(↵
k

(�),↵
k

(�0))

In case b) we can conclude

↵

k

(�0) = �

0
L

� �0
R

^match(�
j

, �

0
L

)
3.3.10
=) ↵

k

(�0) = �

0
L

� �0
R

^match(↵
k�⌘

(�
j

),↵
k

(�0
L

))

=) comp

⇤(�
L

� ↵
k�⌘

(�
j

),↵
k

(�0))

=) comp

⇤(↵
k

(�),↵
k

(�0))

Case 2: ↵
k

(�0
L

) 6= �

0
L

(*).

�

0 = �

0
L

� �0
R

^ �

j

= �

0
L

k>0
=) ↵

k

(�0) = �

0
↵L

� �0
↵R

^ �

j

= �

0
L

=) ↵

k

(�0) = �

0
↵L

� �0
↵R

^match(�
j

, �

0
L

)

Case a) cannot occur because after (*) we know that #(�0
L

) � k and thus #(�
j

) � k. Since
#(�

L

) > 0, we can conclude #(�
L

� �⇤
j

) 6= k which is a contradiction to ↵

k

(�) = �

L

� �⇤
j

.

Case b):

↵

k

(�0) = �

0
↵L

� �0
↵R

^match(�
j

, �

0
L

)
3.3.10
=) ↵

k

(�0) = �

0
↵L

� �0
↵R

^match(↵
k�⌘

(�
j

),↵
k

(�0
L

))
(⇤)
=) ↵

k

(�0) = �

0
↵L

� �0
↵R

^match(↵
k�⌘

(�
j

),↵
k

(�0))

() comp

⇤(�
L

� ↵
k

(�),↵
k

(�0))

() comp

⇤(↵
k

(�),↵
k

(�0))
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Theorem 3.3.13 (Simulation Relation). Let ⇠ ✓ S1 ⇥ S2 be a relation defined as

s ⇠ s

0 () 8{s
�

:= >} 2 s : {s
↵k(�) := >} 2 s

0
.

⇠ is a simulation relation, i.e.

8s1, s01 2 S1, s2 2 S2, a�i 2 A1

s1 ⇠ s2 ^ s1

a�i�! s

0
1 =) 9s02 2 S2.9a 2 A2 : s2

a�! s

0
1 ^ s

0
1 ⇠ s

0
2

Proof. For actions in A2 there are the same constraints on semantics as for actions in A1,
i.e. we require disjointness for an action to be existent and the result is the disjunction.
Hence, we do not need to consider this during the proof. Furthermore, the desired property
holds for unary actions by definition. Considering actions where both operands remain
unchanged by ↵

k

, we trivially have an element in �B4 giving us an action in A2 with the
desired property.
We now distinct two cases:
Case 1:

�

i

2 �app () appl(�
i

.�1.�, �i.�2.�)
3.3.11
=) appl

⇤(↵
k

(�
i

.�1.�),↵k

(�
i

.�2.�))
(⇤)
=) 9a 2 A2 : pre

a

= {s
↵k(�.�1.�) := >, s

↵k(�.�2.�) := >}
^ e↵

a

= {s
↵k(�.�3.�) := >} (3.28)

=) 8s 2 S2 : {s↵k(�.�3.�) := >} 2 s � hai (3.29)

(*) Here, two cases can occur. Firstly, ↵
k

(�3.�) = ↵

k

(�1.�). In this case we know that a is
the result of an element of �B1. Otherwise, i.e. ↵

k

(�3.�) 6= ↵

k

(�1.�), there is a respective
element in �B2 because appl

⇤ holds.

We can now instantiate the universal quantifier properly and use the definition of the
simulation relation to get the desired property.

s1 ⇠ s2 ^ �

i

2 �app ^ s1

a�i�! s

0
1

a�i=) s1 ⇠ s2 ^ �

i

2 �app ^ s1

a�i�! s

0
1 ^ {s

�i.�1.� := >, s

�i.�2.� := >} ✓ s1

3.28
=) s1 ⇠ s2 ^ �

i

2 �app ^ s1

a�i�! s

0
1

^ 9a0 2 A2 : s2 � ha0i 6= undefined ^ e↵
a

0 = {s
↵k(�.�3.�) := >}

3.29
=) s1 ⇠ s2 ^ �

i

2 �app ^ s1

a�i�! s

0
1 ^ 9a0 2 A2 : {s↵k(�.�3.�) := >} 2 s2 � ha0i

=) 9a0 2 A2 : s2
a

0�! s

0
2 ^ s

0
1 ⇠ s

0
2
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Case 2 works very similar because all significant changes in handling these kinds of
actions are already dealt with in the preceding lemmas:

�

i

2 �comp () comp(�
i

.�1.�, �i.�2.�)
3.3.12
=) comp

⇤(↵
k

(�
i

.�1.�),↵k

(�
i

.�2.�))
(⇤)
=) 9a 2 A2 : pre

a

= {s
↵k(�.�1.�) := >, s

↵k(�.�2.�) := >}
^ e↵

a

= {s
↵k(�.�3.�) := >} (3.30)

=) 8s 2 S2 : {s↵k(�.�3.�) := >} 2 s � hai (3.31)

(*) Confer the remark in case 1.
This allows us to conclude

s1 ⇠ s2 ^ �

i

2 �comp ^ s1

a�i�! s

0
1

a�i=) s1 ⇠ s2 ^ �

i

2 �comp ^ s1

a�i�! s

0
1 ^ {s

�i.�1.� := >, s

�i.�2.� := >} ✓ s1

3.30
=) s1 ⇠ s2 ^ �

i

2 �comp ^ s1

a�i�! s

0
1

^ 9a0 2 A2 : s2 � ha0i 6= undefined ^ e↵
a

0 = {s
↵k(�.�3.�) := >}

3.31
=) s1 ⇠ s2 ^ �

i

2 �comp ^ s1

a�i�! s

0
1 ^ 9a0 2 A2 : {s↵k(�.�3.�) := >} 2 s2 � ha0i

=) 9a0 2 A2 : s2
a

0�! s

0
2 ^ s

0
1 ⇠ s

0
2

So we have a simulation relation by ⇠ granting us the following corollary:

Corollary 3.3.13.1.

8ha
�0 , . . . , a�k�1i 2 A1 ⇥ . . .⇥ A1.9ha0, . . . , ak�1i 2 A2 ⇥ . . .⇥ A2 :

I1 � ha�0 , . . . , a�k�1i ◆ G1 () I2 � ha0, . . . , ak�1i ◆ G2

So this compilate is finite and safe, but it is not tractable because the size of the
planning task grows exponential in the number of semantic items. We now introduce a
new compilation compensating this problem.

3.4 Compensating the semantics

We can see that in ⇥↵k the problem is that we work on ⇤⇤, which is by definition exponen-
tial in size, due to its semantics component ⌃ = {?,>}n. The new approach is to split
the handling of syntax, i.e. the syntactic categories and semantics, apart. We then keep
track of the semantic items we already reached for each category using binary facts and
compose edges with the same category by building the disjunction of each semantics to
preserve safety. So for each former fact s

�

we have one fact s
�.�

representing its category
and n facts s

�.�

�[i] representing its semantics. Initially, we build the disjunction over all
edges with the same category and for each set bit, the respective fact is >. The goal is
to reach the goal category and all its semantic items have to be >.
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Definition 3.4.1. Let ⇧⌃ = (V3, A3, I3, G3) be a planning task. Let

�

�

=
^

s�2V2:�.�=�

�.�

for � 2 �⇤. So we can define:

V3 :=
[

s�2V2

({s
�.�

} [
n�1[

i=0

{s�.�
�[i]}) (3.32)

I3 :=
[

s�2V2

({s
�.�

:= ({s
�

:= >} 2 I2)} [
n�1[

i=0

{s�.�
�[i] := �

�.�

[i]}) (3.33)

G3 := {s
�

G
.�

:= >} [
n�1[

i=0

{s�G
.�

�[i] := >} with G2 = {s(�G
.�,>n) := >} (3.34)

Regarding the actions, we cannot have one action per possible semantics vector and
category to avoid exponential grow. We also cannot know the semantics a given category
fulfills at all points during the search simply because in the initial state we already collapse
several initial edges and merge their semantics disjunctively. Moreover, figuring out for a
specific category what semantic items it can potentially fulfill, is as hard as solving the
problem in the first place (consider the category being the goal category and the semantics
vector being >n). As a result, we also do not require disjointness in semantics because we
do not exactly know where each set bit came from. To clarify this, consider the following
example:

Example 3.4.1. We have the initial edges np : h110i, np : h011i, s\np : h100i, so the
resulting initial state looks like:

I3 ◆ {s
np

:= >, s

s\np := >, s

np

�[0] := >, s

np

�[1] := >, s

np

�[2] := >,

s

s\np
�[0] := >, s

s\np
�[1] := ?, s

s\np
�[2] := ?}

When requiring �[0] to be ? to combine s\np with np, we cannot apply any action. As a
result, we have to allow potential overlapping semantics.

The next challenge are conditional e↵ects. When combining two edges, having a
semantic item reached in an edge should result in it being set in the resulting edge as well,
otherwise not. This is called conditional e↵ect. Nebel discussed a way to compile these
into FDR in [11] and we will use his technique allowing a polynomial time compilation.
Instead of having one action distinguishing between the already reached semantics via
having exponentially many di↵erent actions or using conditional e↵ects, we introduce
several actions simulating this behavior. Concretely, for each action a

i

we have one action
a

c

i

in which e↵ect we mark the resulting category to be reached. Additionally, for each

semantic item with index j, we have two actions a

�[j]
i,L

and a

�[i]
i,R

for the left operand and
the right operand respectively. The preconditions are that the semantic item is reached
and the action’s e↵ect allows to reach it as well. So applying one action in the original
task requires the application of several actions in the compilate. As a result, the length
of a plan in the compilate increases significantly but we do not need to compensate this
in any way: In the end we only care about having a dead end or not, i.e. we distinguish
between values greater than 0 or not. The actual value makes no di↵erence.
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Example 3.4.2. Consider again example 3.4.1. We now get the following actions for
combining the np with s\np:

• a

c

0 : pre
a

= {s
np

:= >, s

s\np := >}, e↵
a

= {s
s

:= >}
• a

�[0]
0,L : pre

a

= {s
np

:= >, s

s\np := >, s

np

�[0] := >}, e↵
a

= {ss
�[0] := >}

• a

�[1]
0,L : pre

a

= {s
np

:= >, s

s\np := >, s

np

�[1] := >}, e↵
a

= {ss
�[1] := >}

• a

�[2]
0,L : pre

a

= {s
np

:= >, s

s\np := >, s

np

�[2] := >}, e↵
a

= {ss
�[2] := >}

• a

c

1 : pre
a

= {s
np

:= >, s

s\np := >, s

s\np
�[0] := >}, e↵

a

= {ss
�[0] := >}

• a

�[0]
1,R : pre

a

= {s
np

:= >, s

s\np := >, s

s\np
�[0] := >}, e↵

a

= {ss
�[0] := >}

• a

�[1]
1,R : pre

a

= {s
np

:= >, s

s\np := >, s

s\np
�[1] := >}, e↵

a

= {ss
�[1] := >}

• a

�[2]
1,R : pre

a

= {s
np

:= >, s

s\np := >, s

s\np
�[2] := >}, e↵

a

= {ss
�[2] := >}

Now we can define A3 accordingly. For this let AB

2 = {a0, . . . , am�1} with
pre

ai
= {s

�i := >, s

�

0
i
:= >} and e↵

ai
= {s

�

00
i
:= >}.

A3 = A

B

3 [ A

U

3

A

B

3 =
m[

i=0

({ac
i

} [
n�1[

j=0

{a�[j]
i,L

, a

�[j]
i,R

}) (3.35)

pre
a

c
i
= {s

�i.� := >, s

�

0
i.�

:= >} (3.36)

e↵
a

c
i
= {s

�

00
i .�

:= >} (3.37)

pre
a

�[j]
i,L

= {s
�i.� := >, s

�

0
i.�

:= >, s

�i.�

�[j] := >} (3.38)

e↵
a

�[j]
i,L

= {s�00
i .�

�[j] := >} (3.39)

pre
a

�[j]
i,R

= {s
�i.� := >, s

�

0
i.�

:= >, s

�

0
i.�

�[j] := >} (3.40)

e↵
a

�[j]
i,R

= {s�00
i .�

�[j] := >} (3.41)

Now, let analogously A

U

2 = {a0, . . . am�1} with pre
ai
= {s

�i := >} and
e↵

ai
= {s

�

0
i
:= >}.

A

U

3 =
m[

i=0

({ac
i

} [
n�1[

j=0

{a�[j]
i,L

, a

�[j]}) (3.42)

pre
a

c
i
= {s

�i.� := >} (3.43)

e↵
a

c
i
= {s

�

0
i.�

:= >} (3.44)

pre
a

�[j]
i

= {s
�i.� := >, s

�i.�

�[j] := >} (3.45)

e↵
a

�[j]
i

= {s�0
i.�

�[j] := >} (3.46)

(3.47)
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3.4.1 Space and Time Analysis

We now want to show that the compilation is polynomially time bound. Note that k

can be chosen freely so even though the compilation is exponentially bound by k, it is
polynomially bound by the CCG task. We refrain from mentioning this in the following.

Lemma 3.4.1. Computing V3 is polynomially time bound by the size of the CCG task.

Proof. One can easily see that - due to set semantics - we can rewrite the definition of V3

as

V3 =
[

�2�⇤

({s
�

} [
n�1[

i=0

{s�
�[i]})

In lemma 3.3.4 we showed that |�⇤| is bound by O(xk), so r

V3(x, k, n) 2 O(xk ⇤ n) is an
appropriate time and space bound.

Lemma 3.4.2. Computing A3 is polynomially time bound.

Proof. For binary actions we know that each category in �⇤ can maximally be combined
with each other, so the number of actions is at most

✓|�|
2

◆
=

|�|2
2

2 O((xk)2). (3.48)

Checking whether two categories can be combined happens in a negligible amount of time,
so by 3.48 we have also found a time bound. For unary actions, we have one action per
category in �⇤, that means they are asymptotically irrelevant.

Theorem 3.4.3. Computing ⇧⌃ is polynomially time bound.

Proof. We can compute V3 and A3 in polynomial time (lemma 3.4.1 and 3.4.2 resp.), so
it is su�cient to show that the same holds for I3 and G3. By definition of I2 we can say

{s
�

:= >} 2 I3 () 9� 2 ⇤I : �.� = �.

Regarding the facts representing the semantics of each category, we can initialize all of
them with ? except the ones where there is an according element in ⇤I . Those have to be
set in respect to the (initially known) semantics. This process is spelled out in algorithm
4. We can see that for each category in � we loop over ⇤I and i 2 {0 . . . n}, so a runtime
bound r

I3 can be constructed as follows:

r

I3(x, k, n)  x

k ⇤ (|⇤I |+ n)  x

k ⇤ (xk + n) 2 O((xk)2 + x

k ⇤ n).

To obtain G3, we only need linear runtime bound by n, which completes the proof.
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Algorithm 4 Computing I3

1: I3 := ;
2: for � 2 � do
3: � := None
4: for �

I

.� 2 ⇤I do
5: if �

I

.� = � then
6: � := �

I

7: break
8: end if
9: end for
10: if � = None then
11: I3 := I3 [ {s

�

:= ?}
12: � := (None,?n)
13: else
14: I3 := I3 [ {s

�

:= >}
15: end if
16: for i := 0 . . . (n� 1) do
17: I3 := I3 [ {s�

�[i] := �.�[i]}
18: end for
19: end for

3.4.2 Simulation

The last step is to proof that the new construction simulates the last one. The proof is very
simple, so we present only a proof sketch. For each action a 2 A2 representing a binary rule
application there are two preconditions. These preconditions make sure that we already
reached the necessary categories and their semantics do not overlap. By construction,
there is a set of actions A

a

✓ A3 which preconditions only require the categories to be
reached. We keep track of this by dedicated facts representing the category rather than
the respective edges. So if a is applicable, all actions in A

a

will be applicable, too. For
each semantic item there is an action in A

a

allowing us to carry over the semantic of
each operand. Hence, we can apply up to 2 ⇤ n + 1 (one action for the category and n

actions per operand for the semantics) actions to reach a state simulating the respective
state after applying a. For unary actions we use the same technique to keep track of the
preconditions and the e↵ect, especially allowing to carry over semantics of the category
that is raised.

Carrying over semantics is not always necessary, because we collapse edges with the
same category and use the disjunction of their semantics, but this way no formerly reached
semantic item can get lost. Hence a plan leading to a goal state in ⇧↵k can be simulated
by a (potentially longer) plan in ⇧⌃.

We have now shown that ⇧⌃ is a compilation for ⇥CCG which can be acquired in a
polynomially bound runtime and is safe in terms of dead ends.
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3.5 Combining CCG and planning

Our results so far are still lacking a crucial feature: We wanted to be able to classify edges
as potentially useful or not. But the construction can only tell whether or not there could
be a solution for the CCG task. That means, we have to adapt the problem one last time.

Definition 3.5.1. We call the edge �I the edge in question. We say the edge is potentially
useful if there is a plan combining it with other edges to get a valid output. Otherwise,
it is useless.

We encode this into the planning task ⇧⌃ by handling the edge in question strictly
separate. We introduce facts representing only this edge, one fact sC for its category and
n facts s

C

�[i] for its semantics. During the search we call its category the main category

which (as opposed to the other category-facts) specifies the category itself instead of its
status as reached or not reached.

Example 3.5.1. Let the initial edges be s/np : h01i, np : h10i with the latter one as
the edge in question. As a result, we will get an initial state I containing the following
information:

I � {s
s/np

:= >, s

s/np

�[0] := ?, s

s/np

�[1] := >, s

C := np, s

C

�[0] := >, s

C

�[1] := ?}
The need of using the edge in question will be encoded in the goal state, where we

require the main category to be �

G

.� and all its semantics facts to be >. Regarding the
actions, for each binary action we have to include two more actions, where the edge in
question acts as left or right operand, and for each unary actions we have to add an action
allowing the main category to be raised.

Definition 3.5.2. We define the compiled planning task ⇧ = (V,A, I,G) as follows:

V := V3 [ {sC} [
n�1[

i=0

{sC
�[i]} (3.49)

I := I3 [ {sC := �

I

.�} [
n�1[

i=0

{sC
�[i] := �

I

.�[i]} (3.50)

G := {sC := �

G

.�} [
n�1[

i=0

{sC
�[i]:=>} (3.51)

We obtain A by extending A3. Assume we have the following actions in A3 representing
one action in A2 (cf. definitions 3.36 - 3.41):

pre
a

c
i
= {s

�i.� := >, s

�

0
i.�

:= >}
e↵

a

c
i
= {s

�

00
i .�

:= >}
pre

a

�[j]
i,L

= {s
�i.� := >, s

�

0
i.�

:= >, s

�i.�

�[j] := >}
e↵

a

�[j]
i,L

= {s�00
i .�

�[j] := >}
pre

a

�[j]
i,R

= {s
�i.� := >, s

�

0
i.�

:= >, s

�

0
i.�

�[j] := >}
e↵

a

�[j]
i,R

= {s�00
i .�

�[j] := >}
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We include four actions to simulate this behavior for the main category as well. Hereby
ā

c

i

and ¯̄
a

c

i

allow combinations where the main category is the left and right operand

respectively while ā

�[j]
i,L

and ā

�[j]
i,R

allow to carry over the semantics of the left and right
part respectively. We do not need actions carrying over the main categories semantics
because the category itself changes, so there is no need to carry anything over.

pre
ā

c
i
= {sC := �

i

.�, s

�

0
i.�

:= >}
e↵

ā

c
i
= {sC := �

00
i

.�}
pre ¯̄

a

c
i
= {sC := �

0
i

.�, s

�i.� := >}
e↵ ¯̄

a

c
i
= {sC := �

00
i

.�}
pre

ā

�[j]
i,L

= {s
�i.� := >, s

C := �

0
i

.�, s

�i.�

�[j] := >}
e↵

ā

�[j]
i,L

= {sC
�[j] := >}

pre
ā

�[j]
i,R

= {sC := �

i

.�, s

�

0
i.�

:= >, s

�

0
i.�

�[j] := >}
e↵

ā

�[j]
i,R

= {sC
�[j] := >}

The correctness of the construction is obvious: We can still simulate each CCG rule
as before when the main category is not involved. Otherwise there is a respective action
for the main category being the left or right operand. The only thing that changes is the
goal: We only reach the goal when the main category is involved. Assume there is a rule
sequence including the main category that leads to the goal. Then we can simulate each
rule’s application in the same way we did in ⇧⌃. And whenever the main category or one
of its combinations is involved, we can use the new actions to simulate that. This way it
is assured, that the main category is the goal category in the end. All semantics can be
carried over as before, so this criterion is fulfilled, too.

Regarding the runtime we can see that it is strictly bound by the size of ⇧⌃, so the final
compilation fulfills all our criteria. Nonetheless, theory and practice oftentimes diverge
in several points, so we will discuss some of these aspects in the next section. Also the
construction is polynomially time bound, and we will see in chapter 4 whether this is
su�cient to be useful in practice or not.

3.6 Implementation

When realizing a sentence with OpenCCG, we do not want to invoke a planner using only
its heuristic because we potentially do this hundreds or even thousands of times and invok-
ing another program inside of a program is always accompanied by some computational
overhead. This sums up during the process and slows the realization down unnecessarily.
So it is faster to include the heuristic directly in the OpenCCG project such that we do
not have to call another program but merely another method. That means, we do no
longer compile the problem into a planning task but adapt it.

So there are two points in which we have to make changes to OpenCCG. Firstly,
when we have gathered all initial edges, we use an adapter transforming these edges into
a planning instance using the techniques presented in the preceding chapter. However,
when building up the set of categories, we use a di↵erent, significantly more e�cient
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Figure 3.1: OpenCCG algorithm annotated with the changes

algorithm. This algorithm starts with the initial edges’ categories and builds the cross
product over them. Whenever two of them are combinable, we add the result to the
set of already reached categories. Doing this successively will at some point yield a fix
point (i.e. we do not discover new categories) in the worst case after discovering all of
them. During this process we already gather all necessary information, that means which
categories can be combined, to obtain the set of actions quickly. In practice this allows to
prune various unreachable categories and due to the abstraction we have a guarantee to
terminate. The abstraction itself is another point where theory and practice diverge: An
permissive handling of star categories results in the problem, that merely any edge can
be considered a dead end. As a result, we handle them restrictively, i.e. a star category
cannot be combined with any other category. We discuss this decision more intensively
in the Section 3.6.1.

The planning instance acts as base for the hmax implementation: it provides all neces-
sary information h

max needs to work properly. This especially means that other heuristics
can be plugged in without further changes. A quick overview about the potential behind
this is given in Section 5. The implementation of hmax itself is completely generic and
can potentially be enhanced with domain specific knowledge.

After creating the planning instance, OpenCCG continues with its initialization until
the actual search starts, i.e. the agenda is initialized with the edges we used to build up
�. But instead of adding them to the agenda, we first invoke the heuristic to potentially
filter some of them out. This process is illustrated in Fig. 3.1 where in 1� we do the
precomputation for the heuristic and in 2� we actually invoke the heuristic before adding
edges to the agenda, especially not only when initializing, but also when an edge is about
to be added to the agenda after a combination.

Moreover, we use CCG’s type raise rule as the only unary rule unless the lexicon
specifies otherwise. In practice, allowing any category to be raised by any type is often
not necessary, so we can specify type raises that are only applicable on nps and pps as
proposed e.g. by Lewis and Steedman (2014) [9].
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3.6.1 Restrictive versus Permissive

The adaptation we presented used a permissive handling for star categories. However,
this only makes sense when the value for k is large enough, i.e. categories that occur very
frequently are not a↵ected, because otherwise it is easy to combine potential dead end
edges with other edges such that the category becomes a star category. As a result, we
can cover all EPs by combining with any edges, even though they are not syntactically
compatible, because we have to allow such combinations due to the loss of information.
Lastly, we can combine the star category to get the goal category relatively easy, because
the underlaying non-star category is small in size.

Unfortunately, choosing k large enough is impractical, because of the memory con-
sumption (as we will see in the next chapter). Hence, we have to work with a small
value for k. To compensate the before-mentioned problem, we handle the star categories
restrictively by disallowing all combinations, thus rendering edges with large categories
dead ends right away.
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Chapter 4

Experiments

The following experiments have been run on a machine with a 2.4 GHz Intel Core i5
processor and a 1600 MHz DDR3 RAM. The JVM had a memory limit of 4 GB.

We wanted to find answers to the following questions:

• What are the limits to k, i.e. how high can we chose k without running out of
memory?

• Can we save time using the heuristic by speeding up the process of realization?

• How many nodes can we prune using the heuristic?

• Does it make a di↵erence when invoking the heuristic only on initial edges or on all
edges?

To find an answer to the last question, we have to keep the time limit in mind: When
realizing larger sentences or paragraphs, the time limit might be exceeded and thus the
search cut o↵. As a result, less edges are created, so comparing the number of created
edges in a search with and without the heuristic might not be su�cient. Instead we
introduced the concept of hypothetical edges. Intuitively, these are edges that would have
been pruned if we used the heuristic but are kept for the sake of discovering the impact
thereof. We acquire these edges the following way: Whenever an edge is created, we run
the heuristic on it. If it reports a dead end status for this edge, we do add it to the agenda,
but mark it as hypothetical. When a combination or unary rule application takes place,
the resulting edge is marked hypothetical if either one of the parents is hypothetical or
the edge itself is marked as a dead end. The process is illustrated in Fig. 4.1 where DE:1
means the edge is a dead end, DE:0 means the opposite. The same holds for H:1 and H:0
for hypothetical and non-hypothetical edges respectively.

We wanted to create realistic conditions, so we ran OpenCCG with a next best time
limit of 2 seconds the 3-best pruning strategy, i.e. a set of edges sharing the same syntactic
category is built and everything worse than the three best edges, in terms of their n-gram
score6, is discarded.

For most of the tests we used the SPaRKy (Sentence Planning with Rhetorical Knowl-
edge) [13] restaurant corpus as lexicon. OpenCCG comes with several lexica but in com-
parison to SPaRKy, these are small and allow less extensive test runs, which rendered the

6
An n-gram is a sequence of n words. The n-gram score is the probability of occurrence relative to a

given corpus, e.g. a set of text passages which we use to extract these probabilities.
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Figure 4.1: Propagation of hypothetical edges

results rather uninteresting. For this reason we will only present one example run in the
world cup domain. This is a grammar where the lexicon consists mostly of words that are
used in the context of a football world cup.

Using SPaRKy we realized 15 di↵erent logical formulas in several settings: Firstly, we
realized these with k set to 3 and 5. For each of these, we conducted one run for counting
the number of dead ends and one for the hypothetical edges.

Moreover we used a less restrictive version of the heuristic, in which we classify edges
with more than k slashes as potentially useful instead of dead ends. To answer the
question whether it is better to use the heuristic during the whole search or only on the
initial edges, we ran these tests for both settings. Lastly, we ran OpenCCG without the
heuristic to obtain data for comparisons.

4.1 SPaRKy

The SPaRKy grammar allows to realize sentences as well as paragraphs. For this it
introduces punctuation having its own syntactic category and semantics. As an example
consider a period (.) which is placed in-between two sentences. Hence its syntactic
category is s/s\s, so the compound of both sentences is treated as sentence itself allowing
further combinations with potentially following sentences.

When realizing the logical formulas, the first thing we noticed is that it makes no
di↵erence when using the heuristic on all edges instead of only on the initial ones; we were
not able to find additional dead ends. However, the only di↵erence is the significantly
higher run time caused by the additional calls to h

max . We do not rule out the possibility
of finding additional dead ends during the search because of the following example:

Example 4.1.1. We want to realize the sentence “The Polish, successful, well-dressed
athlete won the race”. Consider we only have one edge per word, hence there is no useless
initial edge. Nonetheless, an edge representing “The Polish athlete won the race” is a
dead end because we are not able to add any further adjectives describing the athlete and
hence we cannot convey the complete semantics. However, in the tested domain we were
able to add additional adjectives simply be adding another sentence, so we could obtain
“The Polish athlete won the race. The athlete was successful and well-dressed”. As a
result, we are able to find a solution, hence dead ends during the search occur rarely.
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When measuring the number of edges, due to the time limit in use, the heuristic’s run
time reduces the number of edges created. So as a reference we use the number of edges
created when running the heuristic but ignoring the result.

The results of our tests are gathered in Table 4.1. The values are averages over all
runs, where one value is annotated as ahb/c/di with a being the average and b, c and d

being the 25th, 50th and 75th quantile respectively. All time values are in Milliseconds.
The first row shows the results when running OpenCCG without using the heuristic

for dead end detection. In the second row, we set k to 3, in the third row k is 5. Out of
the 15 sample LFs, we ran out of memory in two cases when setting k to 5, because these
two cases were significantly larger than the others. For this reason we excluded them from
the results and present them in more detail afterwards.

The first column states the number of initial edges. The second column contains the
absolute number of dead ends found beneath the initial edges and their relative occurrence
ratio compared to the number of initial edges. Next is the n-gram score for the resulting
utterance, followed by the number of created edges in the edge-column. The number of
hypothetical edges, i.e. how many edges we can prune, annotated with the relative ratio
compared to the overall number of edges is listed in the next column. In the last column
we report the time needed for realization.

Note that we omitted the percentiles for the n-gram score, because for k = 3 as well
as k = 5, all percentiles were 0.

In Table 4.1 we can see that the run time needed for the realization was significantly
higher when using the heuristic even though we created less edges. The reason for this is
that the adaptation step as well as the computation of hmax take way too long to be of prac-
tical relevance. In the 13 sample sentences, the adaptation took 2063 h709/1701/2169i ms
and on average each call to h

max took 153.6 h92/131/157i ms 7. Taking into account that
the overall realization without heuristic takes 990 ms, this overhead is completely imprac-
tical. The adaptation creates a planning instance with 433339 h270862/469706/552035i
actions and 19238 h14148/21624/23088i facts, where most of the actions are completely
useless. In the next chapter we present an example and elaborate in a little more detail
how we can improve this. However, we can see that the n-gram score decreases when
using the heuristic, especially for k = 3. The reason for this is that we disallow several
words that would lead to an increased score, so the realization has to fall back on less
natural and hence less frequent formulations resulting in a decreased score. This thesis
is supported by the increased score for k = 5 and the even higher score when being less
restrictive as seen in Table 4.2.

With k = 3 we can prune about 40.6% of the state space whereas k = 5 prunes only
25.9% at a cost of an about 9 times higher run time and for the gain of better resulting
sentences. These results, however, are still significantly worse than without the heuristic.

We can see that the less restrictive variant performs better in terms of score, but the
number of dead ends among the initial edges drops by about 33%, so we have to explore
more edges.

An astonishing result is that there is no di↵erence between k = 3 and k = 5 anymore
when using the less restrictive variant. So the detected dead ends with k = 3 are either
dead ends regardless of the restriction of category length or we would need an even higher
value for k for these edges to become useful.

7
Note that we obtained these numbers by computing the average of the hmax

run time per call for

each sentence and computed the average and percentiles of the results.
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k run initial de(%) n-gram edges hypo(%) real time
� 1 144 - 0.0021 27072 - 6182
� 2 141 - 0.0021 26771 - 4475
3 1 144 40(27.8%) 0 6381 4290(67.2%) 55637
3 2 141 39(27.7%) 0 9364 6712(71.7%) 58547

Table 4.3: Results of the experiments for larger instances. Key: de - Dead End, hypo -
hypothetical edges

heuristic edges time score
no 53 69 1.0
yes 40 241 1.0

Table 4.4: Results for “Brazil will not win the cup”. Key: de - dead ends

In Table 4.3 we can see the results for the larger instance where a run with k = 5
ran out of memory. For k = 3, however, we can see that about 70% of the edges became
hypothetical. So we had significantly less edges to explore but in terms of run time the
ratio of a run with and without the heuristic remains roughly at 9, similar to the smaller
instances.

4.2 World Cup

In this domain we realized the sentence “Brazil will not win the cup”. In all tested
sentences there were no significant di↵erences in the result of all measured parameters,
hence we leave this as the only sample sentence. Due to the small size of the problem, we
chose k as 20, so that no cut-o↵ will take place. Here, we used OpenCCG to parse the
sentence and extract the semantics, which we then used as input for the realization.

The result is collected in Table 4.4. We can see that the results are similar to the ones
from SPaRKy only in a smaller scale, except for the score which is 1 in both cases since
we were able to perform an exhaustive search and hence did not miss the “perfect” result.

To put this in a nutshell, we have seen that there is potential for pruning dead ends
using the heuristic. However, the score decreases significantly when using a small value for
k but can be improved by using the less restrictive variant. In all cases, the computational
overhead is by far greater than the run time gain by pruning parts of the search tree.
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Chapter 5

Future Work

In the preceding chapter we have seen that the computational overhead is not worth the
gain of the pruning. So we want to present ways to potentially improve this behavior by
either improving the adaptation or moving some of the computations in an o↵-line phase,
i.e. computing some results before starting the application in which we need them. This
has the benefit that the on-line phase can use these results immediately instead of having
to compute them first. So the run time is reduced.

5.1 Improving the Adaptation

h

max is considered an extremely fast heuristic but during the adaptation we have to
generate a myriad of actions: for each category combination we need one action per
semantic item and many of these actions are actually unnecessary because there are parts
of the LF that will never be covered by an edge with this specific category. Consider for
example a set of initial lexical entries where one of them is a period covering the first of
the 100 EP and nothing else. The period’s category is punc. Now we create 100 actions8

for carrying over the semantics but only one of those actions will ever be of use: The
action carrying over the information that the first EP is covered.

So finding a way to e�ciently identify unnecessary actions and preventing the creation
of those can improve the runtime of the adaptation as well as hmax significantly.

We already mentioned that the implementation of hmax is generic, so some adaptations
might make it possible to remove the necessity of generating many very similar actions and
instead provide “generic” actions on which base hmax can reconstruct their preconditions
and e↵ects.

Lastly, one could omit the last adaptation phase, i.e. the usage of a “main category”,
and instead remove the edge in question. If the resulting task would be a dead end, we
can consider the edge in question a landmark edge [7], which is crucial for the task to be
solvable.

5.2 O↵-line Computations

A di↵erent approach is to move parts of the adaptation into an o↵-line precomputation
phase. That means instead of compiling only the initial edges, we compile the whole lexi-

8
in the presented adaptation, 300 actions are created of which 3 can be of use
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con. This would lead to an even greater amount of actions. But these can then be filtered
on-line according to the initial edges we have. Under the assumption that the filtering can
be performed e�ciently, this potentially reduces the run time significantly. Additionally,
in an o↵-line adaptation, we can chose k greater than in an on-line adaptation, hence we
have a more informed search. So there are two open questions here: Firstly, is there an
e�cient filtering possible, and secondly, is a precomputation for large lexica with su�-
ciently high values of k tractable. Even though the computation is o↵-line, the run time
grows exponentially in k and the size of broad-coverage lexica can exceed 100,000 entries,
so the tractability is not necessarily given.

5.3 Classifying Combinations

During the OpenCCG search, all edges from the agenda are attempted to be combined
with all elements in the chart but most of these attempts fail due to overlapping semantics
or syntactic incompatibility. Instead of removing edges from the agenda - resulting in
less edges in the chart as well - one can classify the edges and combinations in a way
that incompatible combinations are spotted earlier on, so there is no need to try a rule
application on them. For this classification, approximate results can be used.
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Chapter 6

Conclusion

To sum this thesis up, we have tried to improve the process of realizing a sentence by
using planning techniques. For the realization process, OpenCCG creates a set of edges
representing sequences of words, a category marking their syntactic role and the conveyed
semantics. These edges are then combined to form new edges. After discovering all initial
edges, we compiled this problem into a planning task on which we used h

max to filter out
useless edges. In Chapter 4 we have seen that there are in fact dead ends that we can
recognize, but the high computational overhead makes this process irrelevant for practice.
However, using an unsafe abstraction allows us to shorten the search in terms of generated
edges, so making the process more e�cient has the potential to improve the search.

Furthermore, in practice, time limits are used because an exhaustive search is too time
consuming. As a result, the pruning does not necessarily only make it possible to find a
result faster, but also to improve the result’s quality because we can explore a larger part
of the original search tree by pruning less promising parts. However, we discussed that
the question how to improve the process has no linear answer, it is necessary to consider
di↵erent approaches and evaluate how well they work in terms of potential pruning and
run time gain.
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