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input glucose: UInt 
input admin_insulin: Bool 

output clean_glucose !:= if glucose > 10 ∧ glucose < 300  
                           then glucose else glucose.last(or: 90) 
output admin_long  @1Hz   !:= admin_insulin.aggr(over: 10min, ∃) 
output admin_short @100Hz !:= admin_insulin.aggr(over: 10sec, ∃) 

trigger clean_glucose > 120 ∧ ¬admin_long.hold(or: ⊥)  
                              “hyperglycemia untreated” 
trigger clean_glucose < 60  ∧  admin_short.hold(or: ⊥)  
                               “insulin despite hypoglycemia”
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                  Helps specifiers to understand: 
‣ Resource Consumption 
‣ Timing Behavior 
‣ Running Time

!
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           How dependent on the input is the monitor?!
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A system is robust iff 

minor input deviation → minor output deviation
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transparent and mathematically rigorous approach to monitoring
even in the complex setting of CPS. It is based on the RTLola spec-
i!cation languagewith formal semantics. The framework compiles
a speci!cation into either a hardware description language [2]with
traceability annotations or a high-level programming languagewith
annotations enabling an automatic veri!cation [11]. This lays a
foundation for comprehensible and thus certi!ablemonitoring. The
language also enables an analysis that provides several guarantees
on the runtime behavior of the monitor, such as an upper bound on
the memory consumption. As a result, an RTLola monitor is able
to complement an opaque controller with mathematically sound
static guarantees.

Thiswork-in-progress paper reports on an extension of the suite
of static analyses for RTLola speci!cations. For this, it!rst presents
a formal de!nition of ε-δ -Robustness for stream-based languages
such as RTLola. Intuitively, it requires that an ε perturbation dis-
tributed over the set of sequences of input values alters the out-
put only by at most δ . The input perturbation follows a malicious
resource distribution model, i.e., arbitrarily many data points may
be changed provided the di'erence with respect to either the L1
or L∞ metric remains below ε . The second part of the work con-
cerned with devising an SMT encoding of the robustness property
for an RTLola speci!cation. This allows an SMT solver such as z3
to automatically determine the robustness of the speci!cation. A
preliminary empirical evaluation reveals that the running time of
the solver scales su(ciently well.

While the resource distribution model is particularly suited for
dealing with random noise, it is not the only sensible one. A con-
tinuation of this work also considers the outlier model, which al-
lows for a certain number of outliers, independent of their absolute
deviation from reality. A third model is the natural model. Here,
changes are not spurious and abrupt as are noise and outliers, but
gradual. This models a temporary but natural deviation from the
norm, such as the time leading up to a re-calibration of a sensor.
Figure 1 illustrates all three models. Note, that the choice depends
on the speci!cations: a natural increasemight indicate a critical sit-
uation and hence warrant an immediate response from the system.
Thus, robustness concerning natural perturbations is undesired.

1.1 Related Work
For safety-critical systems, trustworthiness plays an increasingly
important role. This includes traceability [1], certi!ability [3], ver-
i!cation [15], and robustness. The former two are particularly hard
when neural networks are involved [5, 25], which happens increas-
ingly more often [16, 26]. Veri!cation thereof is still in its early
stages with successes in autonomous driving [19], computer vi-
sion [20], and chaotic, continuous systems [23] and aircraft traf-
!c control [12]. Robustness is a complementary approach. It was
investigated for hybrid systems [22], i.e., systems with a mix of
discrete and continuous components, and internet-of-things de-
vices [14].

Analyzing the robustness of a runtime monitor scales signi!-
cantly better than analyzing the system itself. These monitors usu-
ally operate with respect to a formal speci!cation language such
as a temporal logic. Dokhanchi et al. [9] monitor the robustness of
the past fragment of metric temporal logic [13]. In contrast to that,
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Figure 1: Illustration of three input perturbationmodels: re-
source allocationmodel in blue, outliermodel in purple, and
natural model in green. This paper presents the resource
distribution model.

Mascle et al. [17] monitor a variant of linear temporal logic [21]
which incorporates robustness in its language [28]. Their notion
of robustness, however, diverges from the one presented in this
paper. In their work a system is robust if a mild violation of the
assumptions on the input only translate to mild violations of the
guarantees provided by the system.

Other noteworthy robustness-related analyses are fuzzing [4]
and reliability metrics. The former executes the system at hand
with di'erent inputs, subjecting them to slight systematic changes
between executions and compares their outputs. While this scales
well, it requires the system as a whole to be repeatedly executable
under controlled conditions and does not provide formal guar-
antees. Reliability metrics such as mean time between failure and
mean time to failure [27] provide insight into the expected failure
rates of a system. This analysis is on a more concrete level than
the one presented in this paper as it is concerned with factor like
hardware decay.

2 ROBUST RTLOLA
RTLola is a stream-based runtime monitoring framework revolv-
ing around a formal speci!cation language of the same name. It
analyzes such a speci!cation and generates an executable mon-
itor plus static guarantees on its runtime behavior. The RTLola
framework is a suitable target for a robustness analysis since it is
speci!cally designed for safety-critical CPS focusing on compre-
hensiveness and certi!ability.

An RTLola speci!cation consists of input and output streams,
as well as trigger declarations. An input stream represents a typed
data source of the monitor, such as a sensor. Output streams de-
clare how to !lter and process input data to assess the state of
the system accurately. Lastly, triggers are boolean conditions upon
which satisfaction the monitor raises an alarm. This alarm can lead
to the initiation of emergency landings in aircraft or the interven-
tion regarding a spurious treatment in MCPS.

Consider the following excerpt of a speci!cation for an AP.

A system is robust iff 
minor input deviation → minor output deviation



ERROR MODELS: COMPLETENESS

15

WIP

2s 4s1s 3s

0-order  
hold



ERROR MODELS: COMPLETENESS

15

WIP

2s 4s1s 3s

0-order  
hold



ERROR MODELS: COMPLETENESS

15

WIP

2s 4s1s 3s

0-order  
hold

γ



ERROR MODELS: COMPLETENESS

15

WIP

2s 4s1s 3s

0-order  
hold

γ



A monitor is ε-δ-robust iff 

minor input deviation → minor output deviation
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∀v, v : dist(v, v) ≤ ε ⟹ dist(M(v), M(v)) ≤ δ
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           Fix point computation over length of traces!
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Figure 3: Plots reporting on the running time as a function on n. The underlying speci!cation for the plot on the left-hand
side is robust whereas the one for the right-hand side plot is not. Each dot is the average running time over 100 repetitions.
Superimposed: Lowess trend line.

5.3 Conclusion
Robustness is an important metric for safety-critical systems such
as MCPS. Determining the robustness of an RTLola speci!cation
is aworthwhile goal since the framework focuses on improving the
certi!ability of CPS particularly in presence of machine-learned
components. Past successes regarding integrating RTLola moni-
tors into low-resource environments such as autonomous drones
make it an intriguing candidatewhen designingMCPS. The promis-
ing results of the preliminary experimental evaluation suggest that
extensions to the encoding will still scale su(ciently well.
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side is robust whereas the one for the right-hand side plot is not. Each dot is the average running time over 100 repetitions.
Superimposed: Lowess trend line.

5.3 Conclusion
Robustness is an important metric for safety-critical systems such
as MCPS. Determining the robustness of an RTLola speci!cation
is aworthwhile goal since the framework focuses on improving the
certi!ability of CPS particularly in presence of machine-learned
components. Past successes regarding integrating RTLola moni-
tors into low-resource environments such as autonomous drones
make it an intriguing candidatewhen designingMCPS. The promis-
ing results of the preliminary experimental evaluation suggest that
extensions to the encoding will still scale su(ciently well.
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           This only works with numeric values.!



input glucose: UInt 
input admin_insulin: Bool 

output clean_glucose !:= if glucose > 10 ∧ glucose < 300  
                           then glucose else glucose.last(or: 90) 
output admin_long  @1Hz   !:= admin_insulin.aggr(over: 10min, ∃) 
output admin_short @100Hz !:= admin_insulin.aggr(over: 10sec, ∃) 

trigger glucose > 120 ∧ ¬admin_long.hold(or: ⊥)  
                       “hyperglycemia untreated” 
trigger glucose < 60  ∧ admin_short.hold(or: ⊥)  
                       “insulin despite hypoglycemia”
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WIPinput glucose: UInt 

output clean_glucose !:= if glucose < 300  
                           then glucose else glucose.last(or: 90) 

trigger glucose > 150 “hyperglycemia untreated”

MCPS ’21, May 18, 2021, Nashville, TN, USA Bernd Finkbeiner, Andreas Keller, Jessica Schmidt, and Maximilian Schwenger
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+0

+5

+0

Figure 2: Sample input and output trace for the running example speci!cation. When the glucose readings are in a “sane”
range, the output streammirrors the input. Values over the threshold of 300 are classi!ed as outliers and thus ignored. Hence,
perturbations in the input result in lower or equal alterations in the output.

stems from the default values provided to last [7, 24]. Hence, the en-
coding unrolls the cyclic computation up ton. For some speci!cations,
the unrolling can !nd a !xed point, so increasing n cannot reveal a
greater level of robustness.

3.1 Interpretation of the SMT Output
If the SMT solver terminates, it will always yield a positive result
since an RTLola speci!cation describes a computable, total func-
tion. A result of δ = 0 proves that the output of the monitor is
independent of the input. Note that a stream in such a speci!ca-
tion can still have di'erent values in di'erent positions; it can, for
example, count the number of times it was evaluated. Other than
that, the output is δ = αε where α is a polynomial of degree ≤ n
where each coe(cient is a linear combination of scalars occurring
in the speci!cation. If the degree is less than n, further increas-
ing n cannot lead to greater values of δ . If the degree is exactly n,
then limn→∞ δ can be∞ or be bound by a polynomial of a greater
degree than n.

4 EVALUATION
Even though the work is not fully mature, an evaluation allows for
estimating the feasibility for varying values ofn and di'erent kinds
of speci!cations. The prototype implementation is written in Rust
and uses the open-source frontend of the RTLola framework2. It
uses the z33 [8] SMT solver as a backend.

All experiments were conducted on an Intel®Core™ i7-9750H
CPU running at 2.60GHz. The resource consumption when com-
puting the encoding of speci!cations was entirely negligible. Fig-
ure 3 reports the running times plotted against n for two di'erent
speci!cations. Each dot is the average over 100 repetitions, super-
imposed by a Lowess trend line. The underlying speci!cation for
the plot on the left-hand side is robust and monitors an arti!cial
pancreas similar albeit more complex than the running example.
The running time never exceeded 40 s for the L1 metric and 100 s
for the L∞ metric. When compared to the plot on the right-hand
side, the impact of n was relatively low. The reason behind this is
that its underlying speci!cation is not robust, i.e., δ is unbounded.
Lastly, note that the choice of ε has no measurable impact on the
running time.

The bottom line of the evaluation is that the running time signif-
icantly worsens for non-robust speci!cations. Hence, determining

2Project: rtlola.org, Frontend: https://crates.io/crates/rtlola-frontend
3Frontend: https://crates.io/crates/z3

whether a speci!cation is robust for some δ before-hand can im-
prove the applicability of the approach. However, even without
this information, the running time is su(ciently small to encour-
age a continuation of the work.

5 OUTLOOK
The algorithm outlined in this paper allows for analyzing the ro-
bustness of speci!cations composed of a subset of RTLola. There
are two major limitations, which will be addressed in future work:
asynchrony and proper treatment of non-numeric values.

5.1 Asynchrony
One major advantage of RTLola over its predecessor Lola [7] is
asynchrony. In Lola, every input stream receives a new value si-
multaneously, prompting the monitor to re-compute every output
stream. In RTLola, however, the monitor can receive partial in-
puts, i.e., only some inputs receive a new value. As a result, the
monitor only evaluates the relevant subset of outputs. Moreover,
some outputs are computed periodically, independent of the arrival
of input values.

The incorporation of periodic streams into the SMT encoding
is straight-forward. Asynchronous arrivals, however, severely in-
crease the degree of freedom for the SMT solver: each new value
is time-stamped, and between two values of a stream, there may
be an arbitrary amount of new values on another stream. Without
some limitations on the temporal behavior of streams, the SMT
solver might be unable to terminate within a reasonable time.

5.2 Robustness of Boolean Values
The computation of the robustness of the running example dis-
regarded the trigger due to its boolean nature. Nevertheless, the
speci!cation contains three threshold checks, two in the trigger
and one in the conditional expression. The former are fragile by na-
ture: a glucose reading of 60 dLmg−1 is considered perfectly !ne,
whereas for any ε ∈ R+, 60 − ε raises the alarm. This is intended
as the threshold precisely determines when a value is supposed to
be classi!ed as problematic. Hence, the fragility of the range check
should not negatively in&uence the robustness. However, the other
check in&uences the numerically-valued output stream, rendering
it relevant for the robustness of the speci!cation. Identifyingwhich
boolean checks need to be ignored and which do not is subject of
the ongoing work.
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