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*Develop a Model checking
process for systems over infinite
data domains

*using the automata-theoretic
approach
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inear lemporal Logic formulas.

* Describe occurrences of events during time

*E.g.:
G(send — F receive)

* Send, send, receive, send, receive,...
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Non-Deterministic Blchi automaton
Over Infinite Words

* L ={w € {a, b}* |W has infinite number of a’s}

e Blichi automaton:

* Visit an accepting state infinitely often



Alternating Blchi Automaton
Over Infinite Words

* Transition function is a positive boolean
expression over states

*6(q,a) = (qoNq1) V q2

w e “

1
4
Run #1 Run #2

« Each infinitgpath has to visit an accepting state infinitely often



The Formula Automaton jvosj

* Alinear translation of an LTL formula to an alternating
Blichi automaton

* G (send— XF receive)
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@ receive
Send
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Alternating to Non-Det [mrsa]

 Alternating Blichi automata are equivalent to @’
non-deterministic Blichi automata receive




non-deterministic Blchi automata
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* An infinite (or as large as we want) data domain

* Motivation: dynamic creation (and deletion) of
processes, messages arriving...

e E.g.: server and clients, the set of clients is
unknown in advance.

* “every client is eventually active”
e LTL cannot express this property



* Example:

Vx: F active.x

* AP - finite set of propositions
* I/ - finite set of variables

propositions instead of atomic
propositions

e Quantifiers



3*-VLTL

* VLTL with only existential quantifiers
e G dx:send.x
* A possible satisfying computation:
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Model checking Process
Infinite Data Domains

Emptiness
test to:
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Automata With Variables [cksiz

 Variables (or parameterized propositions) as the alphabet

 Ability to reset a variable: “forget” its value and assign a new
value

* As long as there is no reset - the value cannot be changed

‘ send.x send.xeceive. ,‘

Satisfying computations:
send.l, send.2, receive.2

send.3, send.§, receive.8
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Non-Det Buchi Automaton With
Variables

e ¢ dx:send.x

send. x
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Model checking Process
Infinite Data Domains

Program Emptiness
automaton test to:

\ Intersection
automaton
Non-Det /

3°-VLTL variable
formula Biichi
automaton
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Alternating Blchi Variable
Automata rresi7)

e Similar semantics as non-deterministic
e G Ax(send.x AN XF rec.x)
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Alternating Variable BlUchi Automata
* GAx(send.x AN XF rec.x)

0 send. x
reset(x,y) |(rec.y)
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Alternating Variable Blchi Automata

* GAx(send.x AN XF rec.x)

|

0 send. x
reset(x,y) |(rec.y)

send. x)l 05(\6«

(rec.y
d1
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Alternating Variable Blchi Automata

* GAx(send.x AN XF rec.x)
}

0 send. x
reset(x,y) |(rec.y)

send. x)l O“d

(rec.y
d1
reset(y, z) (send.y,
rec.x rec.z)
(send.y)
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Alternating Variable Automata are
Stronger than Non-Det Variable Automata

* GAx(send.x N XF rec.x)
* Consider the following computation

- send. 2 send. 4 send. 6
rec. 2 rec.3

* In Blichi:
Increasing gaps between send. x, rec. x.
Not enough variables and states to remember all
values

Unlike the
finite

alphabet
case!

send.

[ S
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Alternating Variable Automata are
Stronger than Non-Det Variable Automata

* GAx(send.x N XF rec.x)
* Consider the following computation

- send. 2 send. 4 send. 6 send. 8
rec. 2 rec.3 rec. 4

* In Blchi:
Increasing gaps between send. x, rec. x.

Not enough variables and states to remember all
values
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Model checking Process
Infinite Data Domains

Program
automaton

Emptiness
test to:

Intersection
automaton

Partial translation algorithm,
later
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Alternating Variable Automata
and 3*-VLTL

e All 3*-VLTL formulas can be translated into
alternating variable automaton, based on [v9e]
construction

* “dx” is translated to reset(x) in the corresponding
state
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Emptiness Test to Alternating
Variable BUchi Automata?

* Not possible

* Satisfiability problem of 3*-VLTL formulas is
[SW14]

* Emptiness problem = satisfiability problem

* The formula automaton language is empty iff
the formula is unsatisfiable
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Recap - Alternating Variable Blchi
Automata

* Can express all 3*-VLTL

* Are stronger than non-deterministic variable
Blichi automata

* No emptiness test
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Alternating Variable BlUchi Automata
— Non-Det BUlchi Variable Automata

* A partial algorithm for translation

* Tracks paths that “owe” a visit in an accepting state [MH84]
AND

* Reuses variables that have been reset

Translation is possible when the number of new variables is
bounded

Translation is not possible when the number of new variables
is unbounded
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Example
Alternating Variable = Non-Det Variable

Gax:a.x NXX b.x
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Example
Alternating Variable Automaton = Non-Det Variable Automaton

’ ({ (G0, D) },{(ql,x N Z1)}) a.z,

(Ch; X = Zl)

(90,2}, 0) —
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Example

Alternating Variable Automaton = Non-Det Variable Automaton

0 l
reset(x,

[({

AN RSN

reset(z,)

a.z, !

-

{

(40, D)
(q1,x = 23) ¢, {(q2,x = 71)}

(g2, x = z1)

~

)

a.zq

(90,2}, 0) —
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Example

Alternating Variable Automaton = Non-Det Variable Automaton

0 l
reset(x,

[({

(40, D)

(CI1; X = Zl)
reset(z,)

a.z, !

bix-my) | &5

(40, D)
(q1,%x = 23) ¢,{(q2, x = 71)}

(CIZ; X = Zl)
reset(z3)

~

(90,2}, 0) —

a.23, (40, D)
b.z, (q1,x = z3) ¢, {0}
(g2, x = z;)

)

reset(zy)
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Example

Alternating Variable Automaton — Non-Det Variable Automaton

9o l
reset(x,

(40, D) a.z
[({(ql,x O () B e -
reset(z,)
(a.y,b.w) 4% A 4
g (40, D) A CI;. 3 (40, D)
(q1,%x = 23) ¢, {(q2,x = z1)} '21, (q1,x = z3) ¢, {0}
(@2, x = z;) (g2, x = z;)
u reset(z3) ) reset(z,)
a.zs, b.Z1 /l Zq, b.ZZ

[

.

(40, D)
(q1,x = 22) ¢,{(q2, x = 1)}
(Qz,x - Zl)
reset(z3)

~

J

a.z,,

b.Z3

I

.

(G0, D)
(g1, x = 21)
(qllx - Zl)};{(q;’x N Z;)

(g2, x > z3)
reset(z,)

?)

~

J
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Example: Translation fails
Alternating Variable Automata — Non-Det Variable
Automata
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Alternating Variable Automata — Non-Det Variable
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Example: Translation fails
Alternating Variable Automata = Non-Det Variable
Automata

* Every translation
algorithm is incomplete!
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Example: Translation fails
Alternating Variable Automata = Non-Det Variable
Automata

L= Q) &3 reset(x)
a.x a.x
* Every translation
algorithm is incomplete! %,
e Structural a.x
characterization for
halting
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Summary - Model checking Process
Infinite Data Domains

3*-VLTL
formula

Program Emptiness
automaton test to:

\ Intersection

automaton
Alternating Non-Det /

variable . variable
Blichi Blchi
automaton automaton

Sometimes possible
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e Bounded model checking algorithm for 3*-VLTL
formulas, based on the partial translation
algorithm.

e Extending our model to more expressive logics
(Presburger / linear arithmetic)

e Synthesis



Questions?



