Modeling Systems
and Specifications
over Infinite Data

Hadar Frenkell

Joint work with Orna Grumberg® and Sarai Sheinvald?

(1) Technion - Israel Institute of Technology

(2) Braude college of engineering, Karmiel, Israel

*Develop a Model checking
process for systems over infinite
data domains

*using the automata-theoretic
approach

Model checking

specification

e
T

YES! NO! +
counter example

system

Model checking

specification

Given as an
LTL formula

YES! NO! +
counter example

inear lemporal Logic formulas.

* Describe occurrences of events during time

*E.g.:
G(send — F receive)

* Send, send, receive, send, receive,...

Model checking -
automata theoretic approach

specification

e
T

YES! NO! +
counter example

system

Model checking -
automata theoretic approach

specification
Ap
Recognizes all legal

computations of
the program

YES! NO! +
counter example

Model checking -

automata theoretic approach i
P

Recognizes the set

of computations
violating @

Ap
Recognizes all legal
computations of
the program

YES! NO! +
counter example

Model checking -
automata theoretic approach

olating t
specification

Model checking -
automata theoretic approach

Program Emptiness
automaton test to:

\ Intersection

automaton

/

LTL formula — Formula automaton

Model checking -
automata theoretic approach

Emptiness
test to:

Intersection
automaton

Alternating Non-Det
Blchi Blchi
automaton automaton

Model checking -
automata theoretic approach

natural Program Emptiness
- test to:
translation automaton
for LTL \ Intersection
formulas automaton

/

Alternating Non-Det
LTL formula —> Blichi — Blchi

automaton automaton

Model checking -
automata theoretic approach

natural Program Emptiness
: test to:
translation automaton
for LTL \ Intersection
formulas automaton
: / Eas
Alternating Non-Det . Y
LTL formula — Biichi - Biichi emptiness

automaton automaton test

Non-Deterministic Blchi automaton
Over Infinite Words

* L ={w € {a, b}* |W has infinite number of a’s}

e Blichi automaton:

* Visit an accepting state infinitely often

Alternating Blchi Automaton
Over Infinite Words

* Transition function is a positive boolean
expression over states

*6(q,a) = (qoNq1) V q2

w e “

1
4
Run #1 Run #2

« Each infinitgpath has to visit an accepting state infinitely often

The Formula Automaton jvosj

* Alinear translation of an LTL formula to an alternating
Blichi automaton

* G (send— XF receive)

10

Receive/ @

Example - a Run of an
Alternating Blchi automaton

@ receive
Send

11

Example - a Run of an e (@,
Alternating Blchi automaton

@

Send

@

—— 0
@
@ u

Example - a Run of an e (@,
Alternating Blchi automaton

@

Send

receive

~——

Example - a Run of an e (@,
Alternating Blchi automaton

receive

~——
)

Send

~———

Example - a Run of an e (@,
Alternating Blchi automaton

receive

~——
)

Send

~——
)

Send

~———

Example - a Run of an = (@,

Alternating Blchi automaton

)

Send

receive

~——
)

Send

~——
)

Send

~———

)

receive

~———

Alternating to Non-Det [mrsa]

 Alternating Blichi automata are equivalent to @’
non-deterministic Blichi automata receive

non-deterministic Blchi automata

O

12

Alternating to Non-Det [mrsa]

 Alternating Blichi automata are equivalent to @’
non-deterministic Blichi automata receive

)
A

12

Summary: Model checking -
automata theoretic approach

Program Emptiness
automaton test to:

\ Intersection

automaton

/

Alternating Non-Det
LTL formula — Blichi — Blchi

automaton automaton

13

* An infinite (or as large as we want) data domain

* Motivation: dynamic creation (and deletion) of
processes, messages arriving...

e E.g.: server and clients, the set of clients is
unknown in advance.

* “every client is eventually active”
e LTL cannot express this property

* Example:

Vx: F active.x

* AP - finite set of propositions
* I/ - finite set of variables

propositions instead of atomic
propositions

e Quantifiers

3*-VLTL

* VLTL with only existential quantifiers
e G dx:send.x
* A possible satisfying computation:

16

Model checking Process
Infinite Data Domains

Emptiness
test to:

17

Automata With Variables [cksiz

 Variables (or parameterized propositions) as the alphabet

 Ability to reset a variable: “forget” its value and assign a new
value

* As long as there is no reset - the value cannot be changed

‘ send.x send.xeceive. ,‘

Satisfying computations:
send.l, send.2, receive.2

send.3, send.§, receive.8

18

Non-Det Buchi Automaton With
Variables

e ¢ dx:send.x

send. x

19

Model checking Process
Infinite Data Domains

Program Emptiness
automaton test to:

\ Intersection
automaton
Non-Det /

3°-VLTL variable
formula Biichi
automaton

20

Alternating Blchi Variable
Automata rresi7)

e Similar semantics as non-deterministic
e G Ax(send.x AN XF rec.x)

21

Alternating Variable BlUchi Automata
* GAx(send.x AN XF rec.x)

0 send. x
reset(x,y) |(rec.y)

22

Alternating Variable Blchi Automata

* GAx(send.x AN XF rec.x)

|

0 send. x
reset(x,y) |(rec.y)

send. x)l 05(\6«

(rec.y
d1
reset(y, z) (send.y,
rec.x rec.z)
(send.y)

22

Alternating Variable Blchi Automata

* GAx(send.x AN XF rec.x)
}

0 send. x
reset(x,y) |(rec.y)

send. x)l O“d

(rec.y
d1
reset(y, z) (send.y,
rec.x rec.z)
(send.y)

22

Alternating Variable Automata are
Stronger than Non-Det Variable Automata

* GAx(send.x N XF rec.x)
* Consider the following computation

- send. 2 send. 4 send. 6
rec. 2 rec.3

* In Blichi:
Increasing gaps between send. x, rec. x.
Not enough variables and states to remember all
values

Unlike the
finite

alphabet
case!

send.

[S

23

Alternating Variable Automata are
Stronger than Non-Det Variable Automata

* GAx(send.x N XF rec.x)
* Consider the following computation

- send. 2 send. 4 send. 6 send. 8
rec. 2 rec.3 rec. 4

* In Blchi:
Increasing gaps between send. x, rec. x.

Not enough variables and states to remember all
values

23

Model checking Process
Infinite Data Domains

Program
automaton

Emptiness
test to:

Intersection
automaton

Partial translation algorithm,
later

24

Alternating Variable Automata
and 3*-VLTL

e All 3*-VLTL formulas can be translated into
alternating variable automaton, based on [v9e]
construction

* “dx” is translated to reset(x) in the corresponding
state

25

Model checking Process
Infinite Data Domains

Program
automaton

Non-Det

variable
Blchi

automaton

Emptiness
test to:

Intersection
automaton

26

Model checking Process
Infinite Data Domains

Program
automaton

Non-Det

variable
Blchi

automaton

Emptiness
test to:

Intersection
automaton

26

Emptiness Test to Alternating
Variable BUchi Automata?

* Not possible

* Satisfiability problem of 3*-VLTL formulas is
[SW14]

* Emptiness problem = satisfiability problem

* The formula automaton language is empty iff
the formula is unsatisfiable

27

Recap - Alternating Variable Blchi
Automata

* Can express all 3*-VLTL

* Are stronger than non-deterministic variable
Blichi automata

* No emptiness test

28

Alternating Variable BlUchi Automata
— Non-Det BUlchi Variable Automata

* A partial algorithm for translation

* Tracks paths that “owe” a visit in an accepting state [MH84]
AND

* Reuses variables that have been reset

Translation is possible when the number of new variables is
bounded

Translation is not possible when the number of new variables
is unbounded

29

Example
Alternating Variable = Non-Det Variable

Gax:a.x NXX b.x

30

Example
Alternating Variable Automaton = Non-Det Variable Automaton

’ ({ (G0, D) },{(ql,x N Z1)}) a.z,

(Ch; X = Zl)

(90,2}, 0) —

31

Example

Alternating Variable Automaton = Non-Det Variable Automaton

0 l
reset(x,

[({

AN RSN

reset(z,)

a.z, !

-

{

(40, D)
(q1,x = 23) ¢, {(q2,x = 71)}

(g2, x = z1)

~

)

a.zq

(90,2}, 0) —

31

Example

Alternating Variable Automaton = Non-Det Variable Automaton

0 l
reset(x,

[({

(40, D)

(CI1; X = Zl)
reset(z,)

a.z, !

bix-my) | &5

(40, D)
(q1,%x = 23) ¢,{(q2, x = 71)}

(CIZ; X = Zl)
reset(z3)

~

(90,2}, 0) —

a.23, (40, D)
b.z, (q1,x = z3) ¢, {0}
(g2, x = z;)

)

reset(zy)

31

Example

Alternating Variable Automaton — Non-Det Variable Automaton

9o l
reset(x,

(40, D) a.z
[({(ql,x O () B e -
reset(z,)
(a.y,b.w) 4% A 4
g (40, D) A CI;. 3 (40, D)
(q1,%x = 23) ¢, {(q2,x = z1)} '21, (q1,x = z3) ¢, {0}
(@2, x = z;) (g2, x = z;)
u reset(z3)) reset(z,)
a.zs, b.Z1 /l Zq, b.ZZ

[

.

(40, D)
(q1,x = 22) ¢,{(q2, x = 1)}
(Qz,x - Zl)
reset(z3)

~

J

a.z,,

b.Z3

I

.

(G0, D)
(g1, x = 21)
(qllx - Zl)};{(q;’x N Z;)

(g2, x > z3)
reset(z,)

?)

~

J

31

Example: Translation fails
Alternating Variable Automata — Non-Det Variable
Automata

32

Example: Translation fails
Alternating Variable Automata — Non-Det Variable
Automata

32

Example: Translation fails
Alternating Variable Automata = Non-Det Variable
Automata

* Every translation
algorithm is incomplete!

32

Example: Translation fails
Alternating Variable Automata = Non-Det Variable
Automata

L= Q) &3 reset(x)
a.x a.x
* Every translation
algorithm is incomplete! %,
e Structural a.x
characterization for
halting

32

Summary - Model checking Process
Infinite Data Domains

3*-VLTL
formula

Program Emptiness
automaton test to:

\ Intersection

automaton
Alternating Non-Det /

variable . variable
Blichi Blchi
automaton automaton

Sometimes possible

33

e Bounded model checking algorithm for 3*-VLTL
formulas, based on the partial translation
algorithm.

e Extending our model to more expressive logics
(Presburger / linear arithmetic)

e Synthesis

Questions?

