
Saarland University
Faculty of Mathematics and Computer Science

Department of Computer Science

Master’s Thesis

Verifying Hyperliveness

Author:
Norine Coenen

Advisor:
Prof. Bernd Finkbeiner, Ph.D.

Reviewers:
Prof. Bernd Finkbeiner, Ph.D.

Prof. Dr. Cas Cremers

Submitted: 30th September 2019

Preface

This Master’s Thesis is based on the paper “Verifying Hyperliveness” [15]
by Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup.
This paper was accepted at the 31st International Conference on Computer-
Aided Verification (CAV’19) held from July 13 to July 18 2019 in New York
City, NY, USA. According to the CORE2018 ranking [50], this conference
is an A∗ conference. It accepts ‘Regular Papers’ of up to 16 pages (plus
references), as well as ‘Tool Papers’ and ‘Industrial Experience Reports and
Case Studies’ (up to 8 pages plus references each). This year, there were 258

submissions and 67 papers were accepted. Thus, the overall acceptance rate
was 26% and, according to the business meeting, 23% for regular papers (52

were accepted).

Our paper is a regular paper that successfully went through the full double
blind review process. The relevant artifacts were submitted to the artifact
evaluation committee for evaluation. This was done on invitation to obtain
the artifact evaluation seal, but it was not required for publication.

Norine Coenen is the corresponding author for this paper and managed the
publication process of this paper with Springer. Further, Norine Coenen
presented this paper at the conference in New York City.

This thesis is based on the accepted paper which presents a new approach to
the verification of hyperliveness properties expressed as HyperLTL formulas
with quantifier alternation. Strategic choice is substituted for existential
choice, thereby expanding the set of problems to which automatic verification
can be applied. The paper mainly considers the model checking problem and
later explores the problem of automatically synthesizing reactive systems.

In the following, the individual contributions of each co-author to the paper
are clarified. Then, the technical content follows, based on the model check-
ing parts of the paper. The presentation of the content is adapted, especially
the presentation of the implementation and the experimental evaluation is
much more detailed than in the paper. Finally, this thesis includes all the
reviews that we have received for our paper and the submitted artifacts.

Individual Contributions

In the following, the individual contributions are clarified.

• Norine Coenen did the majority of the work leading to the model

checking part of the paper (Section 3.1, Subsection “Hardware Model

Checking with Given Strategies” in Section 5). She developed the

problem and the approach to the presented solution in discussions

with Bernd Finkbeiner and César Sánchez. The majority of the re-

search was done by Norine Coenen. She also implemented the exten-

sion of MCHyper, performed the corresponding experimental evalua-

tion and wrote the sections of the paper on model checking (including

Subsection “Model Checking HyperLTL” in Section 2). Further, she

contributed large parts to the rest of the paper and provided criti-

cal feedback to the sections on synthesis after having discussed the

presented research with Leander Tentrup.

• Leander Tentrup mainly contributed to the synthesis part of this paper

(Section 3.2, Section 4, Subsection “Strategy and System Synthesis”

in Section 5). In cooperation with Norine Coenen, he developed the

solution to the synthesis problem for liveness hyperproperties. He

implemented the extension of BoSy, performed the corresponding ex-

periments and wrote the sections of the paper regarding the synthesis

problem. He also contributed to writing the rest of the paper.

• Bernd Finkbeiner supervised the project. He discussed the approach

and the research regarding the model checking problem with Norine

Coenen and provided critical feedback to earlier versions of the paper.

He also contributed to writing parts of the paper.

• César Sánchez participated in discussions about the model checking

problem and its solution resulting in the presented approach. He also

contributed to writing parts of the paper.

All authors approved the final version of the paper. For her Master’s Thesis,

Norine Coenen would like to submit the model checking part of the paper

“Verifying Hyperliveness”.

Saarbrücken, 30th September 2019

Norine Coenen Bernd Finkbeiner

César Sánchez Leander Tentrup

Statement and Declaration of Consent

I hereby confirm that I have written the parts of the paper as described in
the “Individual Contributions” section and that I have not used any other
media or materials than the ones referred to in this thesis.

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Erklärung und Einverständniserklärung

Ich erkläre hiermit, dass ich die beschriebenen Teile des Papiers selbständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel ver-
wendet habe.

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Ver-
sionen in die Bibliothek der Informatik aufgenommen und damit veröffent-
licht wird.

Saarbrücken, 30th September 2019

Norine Coenen

Contents

Preface iii
Individual Contributions . vi
Statement and Declaration of Consent vii

Abstract xi

1 Introduction 1
1.1 Related Work . 4

2 Preliminaries 7
2.1 LTL . 7
2.2 HyperLTL . 8
2.3 Transition Systems . 10
2.4 Büchi Automata . 10
2.5 Model Checking HyperLTL 11
2.6 Strategies . 13

3 Model Checking HyperLTL with Quantifier Alternations 15
3.1 Using Strategies . 15
3.2 Using Prophecy Variables . 17
3.3 Towards Completeness . 21

4 Implementation and Experimental Evaluation 23
4.1 Implementation of MCHyper 23
4.2 Extension of MCHyper . 27

4.2.1 Using Prophecy Variables 30
4.3 Experimental Evaluation . 31

4.3.1 Symmetry in Mutual Exclusion Protocols 32
4.3.2 Software Doping . 35

4.4 Tutorial and Online Interface 39

5 Conclusions 41

x 0. CONTENTS

Bibliography 43

A Completeness Proof 49

B Reviews 55
B.1 Reviews to the Paper . 55

B.1.1 Changes Made for the Camera-Ready Version 60
B.2 Reviews to the Artifact . 60

Abstract

Hyperliveness describes the class of liveness hyperproperties. Just like for
trace properties, that are expressible, e.g., in Linear-time Temporal Logic
(LTL), liveness captures that something good eventually has to happen. Hy-
perproperties are a generalization of trace properties where relations between
multiple execution traces can be expressed. This is necessary to formal-
ize information-flow policies like generalized noninterference or the symme-
try requirement. Hyperproperties can be expressed in the temporal logic
HyperLTL which extends LTL by explicit quantification over trace variables.

Verifying hyperproperties has been studied before. In particular, there is an
automata-based algorithm for model checking HyperLTL. Unfortunately, its
complexity increases exponentially with every quantifier alternation in the
formula. Therefore, the only practical tool for model checking HyperLTL,
MCHyper, is limited to alternation-free formulas. The alternation-free frag-
ment, however, cannot express hyperliveness properties since these hyper-
properties require, in general, a quantifier alternation in the formula.

We present a proof technique for model checking HyperLTL that avoids the
exponential increase in complexity by shifting the perspective to a game-
theoretic view. In our approach, we consider the model-checking problem as
a game between the ∀-player and the ∃-player. The moves of the ∃-player
are determined by an appropriate strategy, thereby fixing the existentially
quantified traces.

We have implemented this approach as an extension of the tool MCHyper
such that it now can handle formulas with up to one quantifier alterna-
tion. Our experimental evaluation shows the practical applicability of the
extended version of MCHyper by examining symmetry in mutual exclusion
algorithms and checking the cleanness of emission control modules of cars.

Chapter 1

Introduction

Computer systems are getting more and more complex and, at the same
time, are being used in more and more areas of our lives. Therefore, these
systems must work as intended, especially in safety-critical areas like air
traffic control [33, 59]. Formally verifying these computer systems against
their specifications results in mathematical guarantees on their correctness.

When verifying the correctness of a system, its specification, describing the
desired system behavior in natural language, has to be formalized. One way
to do this is to express the specification mathematically as a logical formula.
Temporal logics, like the Linear-time Temporal Logic (LTL) [48], are used
to characterize the allowed system behavior. Such an LTL characterization
describes a trace property that decides for every individual execution trace
whether it is permitted in the system or not.

Unfortunately, checking individual execution traces does not suffice to cap-
ture all possible errors in a system [46]. A prominent example for this are the
Meltdown and Spectre attacks on computer processors [35, 39]. These pro-
cessors have been proven correct with respect to their trace properties [46],
yet, they were still vulnerable to the so-called side-channel attacks. In these
attacks, timing differences in multiple system executions are used to deduce
possibly secret information in the computer’s memory. This leakage of secret
information violates the intended information-flow policies for the computer
processors.

Information-flow policies are an example of a class of system requirements
that cannot be captured by trace properties. Consider, for example, nonin-
terference [30], an important information-flow policy on systems with secret
and public values. Intuitively, noninterference states that all execution traces
with the same public inputs should also have the same public outputs, re-
gardless of the values of the secret inputs. To show that some system violates

2 1. Introduction

this requirement, we have to find two system traces with the same public in-
puts but different public outputs. Only checking individual execution traces
cannot reveal such a violation. Instead, multiple execution traces need to
be considered and compared to one another. This is not possible with trace
properties, e.g., when using LTL. In fact, noninterference is an example for
a hyperproperty [12]. Hyperproperties are temporal properties that relate
multiple execution traces.

HyperLTL [13] is a temporal logic that can express hyperproperties. It ex-
tends LTL by explicit quantification over trace variables which allows spec-
ifying relations between several previously quantified traces. The ability to
relate multiple execution traces makes hyperproperties more expressive than
trace properties. This increased expressiveness is necessary to formalize, for
example, information-flow policies. Noninterference between a secret input h
and a public output o can be specified in HyperLTL by the following formula:

∀π. ∀π′.
(∧
i∈I\{h}

iπ ↔ iπ′
)
→ (oπ ↔ oπ′).

This formula states that all pairs of traces π and π′, where the public in-
puts i ∈ I \ {h} are the same in every step, must also have the same public
outputs o in every step. Thus, noninterference ensures that a change in the
secret input h alone cannot cause a change in the public output o.

To express noninterference for non-deterministic systems, the hyperproperty
generalized noninterference [42] has to be considered. The following Hyper-
LTL formula specifies generalized noninterference:

∀π. ∀π′. ∃π′′. (hπ ↔ hπ′′) ∧ (oπ′ ↔ oπ′′).

The existential quantifier is needed to handle the non-determinism in the
system. This specification allows the system to behave non-deterministically
on the public variables without permitting information flowing from secret
inputs into public outputs.

Verification of hyperproperties is conceptually more complicated than the
verification of trace properties because the specified relations between mul-
tiple execution traces have to be considered. For model checking HyperLTL
formulas without quantifier alternation, the self-composition [5] of the sys-
tem can be used. This self-composed system contains one system copy for
every quantifier. To check an alternation-free HyperLTL formula, it then suf-
fices to check a trace property (expressible in, e.g., LTL) on an appropriate
self-composition of the system. Thus, the complexity of model checking the
alternation-free fragment of HyperLTL is the same as model checking LTL. It
is NLOGSPACE-complete in the size of the system and PSPACE-complete
in the size of the formula.

3

However, the alternation-free fragment cannot express all formulas of inter-
est. Generalized noninterference, for example, has a quantifier alternation in
the formula. In general, many hyperliveness properties do not fall into the
alternation-free fragment.

Noninterference, on the other hand, belongs to the alternation-free fragment
of HyperLTL. Moreover, it is an example of a safety hyperproperty. Hy-
persafety properties are characterized as having bad prefixes that cannot
be extended in any way to satisfy the safety hyperproperty. Generalized
noninterference, on the other hand, is a liveness hyperproperty [12]. Hy-
perliveness properties do not have bad prefixes, i.e., any prefix violating the
liveness hyperproperty can be extended such that the hyperliveness property
is satisfied. For generalized noninterference, for example, we have to add an
appropriate trace π′′ for each offending pair of traces π, π′.

Other examples of hyperliveness properties include symmetry and robust
cleanness. Symmetry in mutual exclusion algorithms [23] ensures that no
process has an unfair advantage. Robust cleanness [17] of software systems
rules out unexpected jumps between the output behavior of several traces
when there has not been a significant difference in the input sequences.

Expressing liveness hyperproperties like generalized noninterference, sym-
metry, and robust cleanness in HyperLTL requires, in general, a quantifier
alternation in the formula. For HyperLTL formulas with quantifier alterna-
tion, the model checking problem is more complex.

There is an automata-based model checking algorithm for the full logic of
HyperLTL [23]. In this algorithm, ∀ quantifiers are represented as negated
∃ quantifiers over the negated subformula. Thus, the non-deterministic Büchi
automaton built by the algorithm has to be complemented. Complementa-
tion of non-deterministic Büchi automata, however, is exponential in the
size of the automaton [36]. Therefore, the complexity of the model-checking
problem of HyperLTL depends on the number of quantifier alternations in
the formula. Already for HyperLTL formulas with one quantifier alternation,
the model checking problem is PSPACE-complete in the size of the system
and EXPSPACE-complete in the size of the formula.

This exponential increase in complexity prevents the efficient implementa-
tion of this algorithm. Instead, the only practical model checking tool for
HyperLTL, MCHyper, exploits the self-composition technique and is, there-
fore, limited to the alternation-free fragment of HyperLTL. This, however,
excludes hyperproperties like generalized noninterference, symmetry, and ro-
bust cleanness from automatic verification.

4 1. Introduction

In this thesis, we present a proof technique that uses strategies to avoid this
exponential increase in complexity. We consider the model-checking problem
as a game between a ∀-player and an ∃-player. Depending on the choices
of the ∀-player, the strategy for the ∃-player determines the existentially
quantified traces. If the strategy for the ∃-player always makes the correct
choices for the existentially quantified traces, then the system satisfies the
hyperproperty that is model checked. Such a strategy is called winning, and
it generates the witnesses for the existential trace quantifiers.

There are, however, cases where no appropriate strategy for the ∃-player
exists, even though the system satisfies the hyperproperty. We explore this
lack in completeness in more detail and show how prophecy variables [1] can
be used to partly overcome the incompleteness.

We implemented this proof technique as an extension of the model checker
MCHyper such that the tool can handle HyperLTL formulas with up to
one quantifier alternation. To demonstrate the practical usefulness of this
extension, we evaluated it on two sets of examples from the literature that
considered symmetry and robust cleanness [17, 23]. Direct model checking
of these hyperliveness properties was not possible with the previous version
of MCHyper and, therefore, the hyperproperties had to be approximated
by alternation-free HyperLTL formulas. With our extension, we can model
check the hyperproperties of interest directly, and we report our verification
results for these two sets of experiments.

1.1 Related Work

There are many temporal logics that are used to express system specifi-
cations. Besides the linear-time logic LTL, there are also branching-time
temporal logics like CTL [11] and CTL∗ [18]. Even though these logics sup-
port existential and universal quantification over the computation paths in
a tree, they cannot express hyperproperties: As soon as a second path is
quantified, the previously quantified path is no longer accessible, and the
subformula cannot refer to this path anymore.

To express branching-time hyperproperties, we need to be able to access
several paths at the same time to establish relations between them. The
temporal logic HyperCTL∗ [13] can do this. It extends CTL∗ with quan-
tification over path variables, similar to the extension of LTL to HyperLTL.
Just like CTL∗ subsumes LTL, HyperCTL∗ subsumes HyperLTL [20].

There are several other logics, besides HyperLTL and HyperCTL∗, that can
express hyperproperties including first-order logic extended with the equal-

1.1. Related Work 5

level predicate E (FO[<,E]) [22]. These logics differ in their expressive power
and the complexity of their satisfiability problem [14].

The automata-based model checking algorithm for HyperLTL also works for
HyperCTL∗ [23]. Also, in this case, the complexity depends on the number
of quantifier alternations in the formula.

The practical model checking tool MCHyper [23] can handle alternation-
free HyperLTL formulas. We extend MCHyper to obtain the first practical
model checking tool for HyperLTL that can handle formulas with up to one
quantifier alternation.

In MCHyper, self-composition [5] is used to reduce the problem of checking
a hyperproperty to checking a trace property. This technique has been used
before, for example for the verification of information-flow policies [6, 32, 55,
56]. However, in these approaches, the verification method is specialized to
the information-flow policy that is considered. Our approach is much more
flexible as it allows the practical verification of every hyperproperty that is
expressible as a HyperLTL formula with up to one quantifier alternation.

In our extension of MCHyper, we use strategies to determine the existential
traces incrementally. This is only an approximation of the HyperLTL seman-
tics. In the case of a ∀∗∃∗ HyperLTL formula, the choice of the existentially
quantified traces depends on the infinite traces chosen for the universally
quantified trace variables. So in our game-theoretic view, the ∃-player has
infinite lookahead. Previous work on finite lookahead [34] can, therefore, not
be directly applied to our setting.

To capture the HyperLTL semantics more accurately, we use prophecy vari-
ables [1]. These variables predict the future behavior of the ∀-player and
make this information accessible to the strategy. Prophecy variables were
previously used to obtain simulations between automata [40] as well as in the
verification of branching-time properties expressed as CTL∗ formulas [16].

Besides the model checking problem, also various other problems of Hy-
perLTL have been considered before. The satisfiability problem has been
explored [19, 24, 26] where, given a HyperLTL formula, a model satisfying
this formula is found if one exists. In runtime verification, the monitor-
ing problem of HyperLTL has been studied [25, 28, 31]. When a system is
monitored, an alarm is raised as soon as a violation of the specification is
detected. The model-checking problem for quantitative hyperproperties has
been considered as well [29]. This class of hyperproperties can be model
checked by exploiting model-counting algorithms.

Moreover, the synthesis problem of HyperLTL has been studied. In synthe-
sis, we try to automatically find an implementation that satisfies a given

6 1. Introduction

specification. For HyperLTL, a synthesis algorithm for the alternation-free
fragment exists [27]. This algorithm performs bounded synthesis [21] to en-
sure that the smallest possible solution is found.

Recently, this algorithm has been extended to work for HyperLTL formulas
with up to one quantifier alternation [15]. This extension is also based on a
game-theoretic view. The extended synthesis algorithm searches for a sys-
tem implementation and an additional system representing a strategy. This
strategy is used to determine the existential choices and shows that the gen-
erated system satisfies the hyperproperty. When the system implementation
is given, synthesis can be used to model check this implementation [15]. In
this case, the synthesis algorithm only tries to find the system representing
a winning strategy. For sufficiently small strategies, strategy synthesis can
be used to automate the manual work of finding a winning strategy in our
approach.

Chapter 2

Preliminaries

We start by giving some basic definitions. First, we introduce the temporal
logic LTL before defining its extension to hyperproperties, HyperLTL. We
then specify transition systems as our model of computation. After explain-
ing Büchi automata, we recap the automata-based model checking algorithm
for HyperLTL. Preparing our shift in perspective to a game-theoretic view,
we formally introduce strategies.

2.1 LTL

Linear-time Temporal Logic (LTL) [48] is a temporal logic that can express
trace properties. Using LTL, the correct behavior of execution traces of a
system can be defined by describing the allowed sequences of states.

Let AP be a finite set of atomic propositions and Σ = 2AP the corresponding
alphabet. A trace t ∈ Σω is an infinite sequence of elements of Σ. With t[i],
we denote the i-th position in trace t.

LTL formulas are built according to the following grammar, where a ∈ AP:

ψ ::= a | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ.

In addition to the boolean operators negation (¬ψ) and conjunction (ϕ∧ψ),
we allow the derived boolean connectives (disjunction: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ),
implication: ϕ→ ψ ≡ ¬ϕ ∨ ψ, equivalence: ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)).
Additionally, we use the temporal operators next (ψ states that ψ should
hold in the next state) and until (ϕ U ψ states that ϕ should be true in
every state until ψ holds) as well as the derived temporal operators (release:
ϕR ψ ≡ ¬(¬ϕ U ¬ψ), eventually : ϕ ≡ true U ϕ, globally : ϕ ≡ ¬ ¬ϕ,
as well as weak until : ϕW ψ ≡ ϕ ∨ (ϕ U ψ)).

8 2. Preliminaries

For a trace t and a natural number i representing the current point in time,
the semantics of LTL is given by the satisfaction relation � that is defined
as follows:

t, i � a iff a ∈ t[i]
t, i � ¬ψ iff t, i 2 ψ
t, i � ϕ ∧ ψ iff t, i � ϕ and t, i � ψ

t, i � ψ iff t, i+ 1 � ψ

t, i � ϕ U ψ iff ∃j ≥ i. t, j � ψ and ∀i ≤ k < j. t, k � ϕ.

We write t � ϕ for t, 0 � ϕ.

Every trace property is the intersection of a safety and a liveness trace prop-
erty [3]. Safety properties [2, 38] stipulate that nothing bad ever happens.
Liveness properties [3, 38], on the other hand, stipulate that something good
eventually happens.

2.2 HyperLTL

The temporal logic HyperLTL [13] extends LTL by adding explicit quantifi-
cation over trace variables π from an infinite set of trace variables V. By
linking atomic propositions to these trace variables, it is possible to define
relations between several traces, thereby expressing hyperproperties.

HyperLTL formulas are built according to the following grammar, where
a ∈ AP and π ∈ V:

ψ ::= ∀π. ψ | ∃π. ψ | ϕ, and
ϕ ::= aπ | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ.

The atomic proposition a is linked to the trace that is referenced by π by
writing aπ. Like for LTL, we derive the boolean connectives (∨,→,↔) as
well as the additional temporal operators (R, , ,W).

Let Tr ⊆ Σω be a set of traces and Π : V → Σω an assignment that maps
trace variables to infinite traces. We denote the empty assignment with {}. A
given trace assignment Π can be updated by Π[π 7→ t] such that the resulting
trace assignment is the same as Π, except that the trace variable π maps to
trace t.

2.2. HyperLTL 9

The semantics of HyperLTL is given by the satisfaction relation �Tr defined
as follows:

Π, i �Tr aπ iff a ∈ Π(π)[i]

Π, i �Tr ¬ϕ iff Π, i 2Tr ϕ

Π, i �Tr ϕ ∧ ψ iff Π, i �Tr ϕ and Π, i �Tr ψ

Π, i �Tr ϕ iff Π, i+ 1 �Tr ϕ

Π, i �Tr ϕ U ψ iff ∃j ≥ i. Π, j �Tr ψ and ∀i ≤ k < j. Π, k �Tr ϕ

Π, i �Tr ∀π. ψ iff for all t ∈ Tr it holds that Π[π 7→ t], i �Tr ψ

Π, i �Tr ∃π. ψ iff there is some t ∈ Tr such that Π[π 7→ t], i �Tr ψ.

We write Tr � ϕ for {}, 0 �Tr ϕ.

Consider a HyperLTL formula of the form Q1π1 · · · Qnπn. ϕ, where, for all
i ≤ n we have that Qi ∈ {∀,∃}, and ϕ is a quantifier free HyperLTL formula
that denotes the body of the formula. If all quantifiers in the quantifier
prefix are of the same kind, we call the HyperLTL formula alternation free,
or equivalently, we say the formula is in the alternation-free fragment of
HyperLTL. If it only contains ∀ quantifiers (or ∃ quantifiers), we say it is a
universal formula (it is an existential formula, respectively). Further, we say
a HyperLTL formula has one quantifier alternation if the quantifier prefix
consists of a sequence of ∀ quantifiers followed by a sequence for ∃ quantifiers
(e.g., ∀π. ∃π′. ϕ), or vice versa (e.g., ∃π. ∀π′. ϕ).

Hyperproperties can, similar to trace properties, be classified as safety and
liveness hyperproperties [12]. These hyperproperties are called hypersafety
and hyperliveness properties, respectively. Hypersafety properties stipulate
that nothing bad ever happens. They are characterized as having bad prefixes,
i.e., there are finite sets of finite traces that cannot be extended in a way
that the resulting (possibly infinite) set of infinite traces satisfies the safety
hyperproperty.

Analogously, hyperliveness properties stipulate that something good eventu-
ally happens. These hyperproperties are characterized as not having any bad
prefixes. This means that every finite set of finite traces can be extended to
a (possibly infinite) set of infinite traces that satisfies the liveness hyperprop-
erty. Following this definition, every hyperproperty with ∃ quantifiers is a
hyperliveness property since it does not have any bad prefixes. Instead, every
violation of the hyperproperty by a set of traces can be overcome by adding
the appropriate traces for the ∃ quantifiers. Moreover, every hyperproperty
is an intersection of a hypersafety and a hyperliveness property [12].

10 2. Preliminaries

2.3 Transition Systems

Our model of computation are transition systems that model reactive sys-
tems by reading input sequences and producing output sequences. Formally,
transition systems consume sequences over an input alphabet by transform-
ing their internal state in every step and producing the corresponding se-
quence over an output alphabet.

The input alphabet is Υ = 2I , where I is the finite set of input propo-
sitions. Analogously, Γ = 2O is the output alphabet with the finite set
of output propositions O. A Γ-labeled Υ-transition system S is a tuple
〈S, s0, τ, l〉, where S is a finite set of states, s0 ∈ S is the designated initial
state, τ : S ×Υ→ S is the transition function, and l : S → Γ is the state-
labeling function.

The transition function τ is generalized to work with sequences over Υ.
The generalized transition function is τ∗ : Υ∗ → S. It is recursively de-
fined by τ∗(ε) = s0 and τ∗(υ0 · · · υn−1υn) = τ(τ∗(υ0 · · · υn−1), υn), for every
υ0 · · · υn−1υn ∈ Υ+.

A trace ρ through a Γ-labeled Υ-transition system is determined by the infi-
nite input sequence υ = υ0υ1 . . . ∈ Υω. The transition system reacts to this
input sequence by producing an infinite output sequence γ = γ0γ1γ2 . . . ∈ Γω,
where, for every i ≥ 0, γi = l(τ∗(υ0 . . . υi−1)). The trace ρ is then defined
as (υ0 ∪ γ0)(υ1 ∪ γ1) . . . ∈ Σω with AP = I ∪O. We denote the set of traces
of S by traces(S).

We define the product S × S ′ of two transition systems S = 〈S, s0, τ, l〉
and S ′ = 〈S′, s′0, τ ′, l′〉 as S × S ′ = 〈S × S′, (s0, s′0), τ ′′, l′′〉. S × S ′ is a Γ2-
labeled Υ2-transition system with τ ′′((s, s′), (υ, υ′)) = (τ(s, υ), τ ′(s′, υ′)) and
l′′((s, s′)) = (l(s), l′(s′)).

A transition system S satisfies an LTL formula ψ if, and only if, t � ψ for
all traces t ∈ traces(S). S satisfies a HyperLTL formula ψ if, and only if,
traces(S) � ψ.

2.4 Büchi Automata

A Büchi automaton [10] is an automaton over infinite words that, given such
a word, either accepts or rejects this word. Thus, a Büchi automaton defines
a language L(A) containing all words the automaton accepts.

Formally, a Büchi automatonA over a finite alphabet Σ is a tuple 〈Q, q0, δ, F 〉,
where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q× Σ→ 2Q

2.5. Model Checking HyperLTL 11

is the transition function, and F ⊆ Q is the set of accepting states. A safety
automaton is a Büchi automaton where every state is accepting.

The transition function δ returns, for a state q ∈ Q and some a ∈ Σ, the set of
possible successor statesQ′. If all of these sets only have one element, i.e., the
successor state is unique, we call the automaton deterministic. Otherwise, it
is non-deterministic and may choose to move to any of the successor states
in Q′.

A run of a non-deterministic Büchi automaton A on a word ρ ∈ Σω is an infi-
nite sequence of states s0, s1, . . . ∈ Qω such that s0 = q0 and δ(si, ρ[i]) = si+1

for all i ≥ 0. A run is accepting if, and only if, there are infinitely many po-
sitions i such that si ∈ F , i.e., infinitely many accepting states are visited.

The set of words ρ that have an accepting run on A is the language of A.
Formally, the language of A is L(A) = {ρ ∈ Σω | A accepts ρ}. An automa-
ton A accepts a transition system S, written S � A, if traces(S) ⊆ L(A).

2.5 Model Checking HyperLTL

In model checking, we want to show that a given system satisfies a given spec-
ification. The automata-based model checking algorithm for HyperLTL [23]
can handle the full logic. However, for every quantifier alternation in the
HyperLTL formula, the complexity of the algorithm increases exponentially.

In the simplest case, when considering alternation-free formulas, the com-
plexity of model checking HyperLTL is the same as the complexity of model
checking LTL formulas [51]. Thus, the model-checking problem of the al-
ternation-free fragment of HyperLTL is PSPACE-complete in the size of the
formula and NLOGSPACE-complete in the size of the transition system.
Already with one quantifier alternation in the formula, the model checking
problem is in EXPSPACE in the size of the formula and in PSPACE in the
size of the transition system.

For alternation-free HyperLTL formulas, there is the practical model check-
ing tool MCHyper [23]. It uses the idea of self-composition [5], where several
system copies are combined into a new system. Over this new system, we
then can check a standard trace property.

Let a tuple ~υ ∈ Υn contain n elements of Υ. We can apply a function
τ : Υ→ Γ to a tuple ~υ ∈ Υn to obtain the tuple where the function has been
applied to every component in ~υ: τ ◦ ~υ = (τ(~υ[1]), . . . , τ(~υ[n])) ∈ Γn. The
function zip maps an n-tuple of sequences to a single sequence of n-tuples,
for example, zip([1, 2, 3], [4, 5, 6]) = [(1, 4), (2, 5), (3, 6)].

12 2. Preliminaries

We define the n-fold self-composition of a transition system S = 〈S, s0, τ, l〉 as
Sn = 〈Sn, ~s′0, τn, ln〉, where ~s′0 := (s0, . . . , s0) ∈ Sn, τn(~s, ~υ) := τ ◦ zip(~s, ~υ),
and ln(~s) := l ◦ ~s for every ~s ∈ Sn and ~υ ∈ Υn. The set of traces of the
n-fold self composition of S is then the set traces(Sn) that is defined as
{zip(ρ1, . . . , ρn) | ρ1, . . . , ρn ∈ traces(S)}. Intuitively, a trace through the
self-composed system Sn is a tuple of n traces through S, one trace through
every system copy.

The self-composed system is used to model check alternation-free formu-
las. The following theorem justifies this application of the self-composition
for alternation-free HyperLTL formulas. The notation zip(ϕ, π1, π2, . . . , πn)

for some HyperLTL formula ϕ is used to combine all the trace variables
π1, π2, . . . , πn (occurring free in ϕ) into a fresh trace variable π∗.

Theorem 2.1 (Self-composition for alternation-free formulas [23])
Let Q = ∀ for the universal fragment and Q = ∃ for the existential frag-
ment. For a transition system S and a HyperLTL formula of the form
Qπ1.Qπ2. . . .Qπn. ϕ it holds that S � Qπ1.Qπ2. . . .Qπn. ϕ if, and only if,
Sn � Qπ∗. zip(ϕ, π1, π2, . . . , πn).

For HyperLTL formulas with quantifier alternation, the self-composition can-
not be used in the same way: The system copies corresponding to a ∀ quan-
tifier would have to be treated differently from the ones corresponding to
an ∃ quantifier. Therefore, the model checker MCHyper is limited to the
alternation-free fragment of HyperLTL.

Model checking HyperLTL formulas with quantifier alternation was, so far,
only possible using the theoretical automata-based algorithm [23]. This al-
gorithm involves the complementation of a non-deterministic Büchi automa-
ton, once per quantifier alternation in the formula. Complementing such an
automaton is exponential in the size of the automaton [36].

Interesting HyperLTL formulas like symmetry or robust cleanness involve
a quantifier alternation. Nevertheless, we would like to model check these
hyperproperties automatically. This can be done by fixing the existential
choice and strengthening the formula to the universal fragment [17, 23].
This strengthened formula can then be model checked automatically using
MCHyper. However, it is not guaranteed that the strengthened formula
is correct, i.e., that it implies the original formula. The correctness has
to be shown manually since the problem of checking implications becomes
undecidable [19].

In this thesis, we present a proof technique for model checking HyperLTL for-
mulas with quantifier alternation that circumvents this complexity problem
while still giving strong correctness guarantees. We implement this technique

2.6. Strategies 13

as an extension of MCHyper that can handle HyperLTL formulas with up
to one quantifier alternation. Our technique uses strategies to determine the
choice for the existentially quantified traces.

2.6 Strategies

Strategies are used in game theory to determine the moves of the individual
players [47]. We use strategies to fix the choices for the existentially quanti-
fied traces when considering the model checking problem for HyperLTL as a
game between the ∀-player and the ∃-player. For a ∀π. ∃π′. ϕ HyperLTL for-
mula, the strategy for the ∃-player observes the choices of the ∀-player for the
universally quantified traces and determines the corresponding existentially
quantified traces.

A strategy σ : Υ∗ → Υ maps finite histories over Υ to a value in Υ. We use
transition systems to represent strategies. A transition system S = 〈S, s0, τ, l〉
computes a strategy σ if σ(~υ) = l(τ∗(~υ)) for every ~υ ∈ Υ∗. If there exists
such a transition system computing σ, we say that strategy σ is finite-state.

We use finite-state strategies to determine the inputs of transition systems
that represent existentially quantified system copies. Let S = 〈S, s0, τ, l〉
be such a transition system over input alphabet Υ and output alphabet Γ.
Further, let Sσ = 〈S′, s′0, τ ′, l′〉 be the transition system computing the finite-
state strategy σ : (Υ′)∗ → Υ. We define the transition system S || σ = S || Sσ
as 〈S × S′, (s0, s′0), τ ||, l||〉, where τ || : (S × S′)×Υ′ → (S × S′) is the tran-
sition function and defined as τ ||((s, s′), υ′) = (τ(s, l′(s′)), τ ′(s′, υ′)), and the
state-labeling function l|| : (S × S′)→ Γ is defined as l||(s, s′) = l(s) for every
s ∈ S, s′ ∈ S′, and υ′ ∈ Υ′.

We now show how to use strategies to model check HyperLTL formulas with
quantifier alternation while avoiding the increase in complexity inherent to
the automata-based algorithm.

Chapter 3

Model Checking HyperLTL
with Quantifier Alternations

In this chapter, we present our approach to model checking HyperLTL for-
mulas with quantifier alternation. Our main idea is a shift in perspective to
a game-theoretic view where we consider the model checking problem as a
game between the ∀-player and the ∃-player. To simplify the presentation,
we consider formulas of the form ∀∗∃∗ϕ and ∃∗∀∗ϕ, where ϕ is quantifier-free.
In our approach, we use strategies to determine the choices of the ∃-player.
Thus, we are substituting strategic choice for existential choice.

3.1 Using Strategies

The strategies we use to determine the choices of the ∃-player may depend
on the choices made by the ∀-player. This reflects the dependencies between
the quantifiers that are introduced by a quantifier alternation in the formula.
In the case of a ∀∗∃∗ HyperLTL formula, the correct choice of the ∃-player
for the existentially quantified traces depends on the system traces chosen
by the ∀-player for the universally quantified trace variables.

For an ∃∗∀∗ HyperLTL formula, the choice of the ∃-player for the existentially
quantified traces does not depend on the choices of the ∀-player. Instead,
one choice for the existentially quantified traces has to work for all possible
choices for the universally quantified traces. Therefore, the strategy does
not depend on the choices of the ∀-player. The strategy instead encodes the
correct witnesses for the existentially quantified traces.

We say that the strategy for the ∃-player is winning if it picks the correct
witnesses for the existential traces for every possible behavior of the ∀-player.

16 3. Model Checking HyperLTL with Quantifier Alternations

If the ∃-player has a winning strategy, then the considered HyperLTL formula
holds on the system because the strategy determines the required witnesses
for the existential trace quantifiers.

We can use a given strategy for the ∃-player to reduce the model checking
problem with quantifier alternation to model checking of an alternation-free
formula. The following theorem shows how the strategy is used to eliminate
the ∃ quantifiers.

Theorem 3.1 (Substituting Strategic for Existential Choice)
Let S be a transition system over input alphabet Υ.
It holds that S � ∀π1. ∀π2 . . . ∀πn. ∃π′1. ∃π′2 . . . ∃π′m. ϕ if there is a strategy
σ : (Υn)∗ → Υm that determines the existentially quantified traces such that
Sn × (Sm || σ) � ∀π∗. zip(ϕ, π1, π2, . . . πn, π

′
1, π
′
2, . . . , π

′
m).

It holds that S � ∃π1. ∃π2 . . . ∃πm. ∀π′1. ∀π′2 . . . ∀π′n. ϕ if there is a strategy
σ : (Υ0)∗ → Υm that determines the existentially quantified traces such that
(Sm || σ)× Sn � ∀π∗. zip(ϕ, π1, π2, . . . πm, π

′
1, π
′
2, . . . , π

′
n).

The proof of this theorem essentially uses the traces chosen by the strategy
as witnesses for the existentially quantified traces.

Proof Let σ be a strategy that determines the existentially quantified traces,
then we define a witness for the existential trace quantifiers ∃π′1. ∃π′2 . . . ∃π′m
as the sequence of inputs υ = υ0υ1 . . . ∈ (Υm)ω such that, for every i ≥ 0

and every υ′i ∈ Υn, υi = σ(υ′0υ
′
1 . . . υ

′
i−1); analogously, we define a witness

for the existential trace quantifiers ∃π1. ∃π2 . . . ∃πm as the sequence of in-
puts υ = υ0υ1 . . . ∈ (Υm)ω such that υi = σ(υ′0υ

′
1 . . . υ

′
i−1) for every i ≥ 0 and

every υ′i ∈ Υ0. �

Using the given strategy to determine the choices of the ∃-player reduces
the model checking problem to checking an alternation-free formula. As
discussed in Section 2.5, this model checking problem is exponentially simpler
than the one with a quantifier alternation. This gain in efficiency is especially
significant if the given strategy is sufficiently small.

Corollary 3.2 (Model Checking with Given Strategies)
The model-checking problem for HyperLTL formulas with one quantifier
alternation and a given strategy for the existential quantifiers is in PSPACE
in the size of the formula and NLOGSPACE in the size of the product of the
strategy and the system.

This technique is similar to Skolemization [54] where functions replace ex-
istentially quantified variables in first-order logic. These functions depend
on the variables that were quantified in the formula before. Similar to the
way Skolemization works for arbitrary quantifier structures, our approach
can also be extended to more than one quantifier alternation. One strategy

3.2. Using Prophecy Variables 17

is needed for every block of existential quantifiers, and these strategies may
only observe the traces that were previously quantified in the formula. To
simplify the presentation, this thesis focusses on formulas with one quantifier
alternation.

If we can find a winning strategy for the ∃-player, we can use this to show
that the original HyperLTL property holds on the system by using Theo-
rem 3.1. However, such a strategy does not always exist. Some systems
satisfy a HyperLTL formula with quantifier alternation, but there is no win-
ning strategy for the ∃-player. This is because strategies only observe the
finite prefix of the universally quantified traces chosen by the ∀-player and
have no knowledge about the infinite future of these traces.

Consider, for example, a system with arbitrary sequences of a and ¬a and
the following HyperLTL formula:

∀π. ∃π′. aπ ↔ aπ′ (3.1)

This formula asks the ∃-player to predict the move of the ∀-player in the
second step. Even though this system satisfies the HyperLTL formula, there
is no winning strategy for the ∃-player. Every possible strategy picks some
value for a on π′ in the first step. Seeing this value for aπ′ , the ∀-player
can choose to set aπ to the opposite truth value in the second step, thereby
falsifying the formula.

The problem here is that the ∃-player needs information about the future
behavior of the ∀-player to make the correct decision. In the following, we
show how this problem can be overcome by making the necessary information
about the future accessible to the strategy of the ∃-player.

3.2 Using Prophecy Variables

The information about the future that is needed in the strategy to make the
right choice can be made accessible by using prophecy variables [1]. These
are variables that are used to predict the future behavior of the ∀-player.

We assume that the prophecy variables always predict the future correctly.
In this case, the strategy can use the values of the prophecy variables to
make its decisions. We only require our original hyperproperty to hold if
the prophecy variables indeed predicted the future correctly. If the prophecy
variables predict do not predict the future correctly, we do not require the
original hyperproperty to hold. To reflect this interpretation, we modify the
hyperproperty that we want to model check by adding the correctness of the
predictions of the prophecy variables as a premise.

18 3. Model Checking HyperLTL with Quantifier Alternations

Consider again the example from above where we have a system producing
arbitrary sequences of a and ¬a and Formula 3.1. In this case, the value of a
on π′ in the first step depends on the value of a on π in the second step. To
pick the correct value for aπ′ in the first step, the strategy, therefore, needs
information about the value of aπ in the second step.

We introduce a prophecy variable p that predicts the value of aπ in the
second step, i.e., p ↔ aπ. The strategy can then use the value of p to
make its decision for the value of aπ′ in the first step. The winning strategy
for the ∃-player sets aπ′ in the first step to the same value as the prophecy
variable p, i.e., aπ′ ↔ p.

If the prediction of the prophecy variable p was correct, then the strategy
ensures that indeed aπ ↔ aπ′ and the HyperLTL formula is satisfied. To
reflect this assumption on the correctness of the prophecy variable’s predic-
tion, we modify the HyperLTL formula that we want to check, resulting in
the following formula:

∀π. ∃π′. (pπ ↔ aπ) → (aπ ↔ aπ′). (3.2)

The prophecy variables are added as inputs to the system that are con-
trolled by the environment and don’t affect the system’s behavior. For-
mally, we add a set P of prophecy variables to a Γ-labeled Υ-transition
system S = 〈S, s0, τ, l〉 by defining the Γ-labeled (Υ ∪ P)-transition system
SP = 〈S, s0, τP , l〉 including the inputs P where τP : S × (Υ ∪ P) → S.
For all s ∈ S and υP ∈ Υ ∪ P , τP (s, υP) = τ(s, υ) for υ ∈ Υ obtained by
removing the variables in P from υP , i.e., υP =\P υ.

For a single prophecy variable p, the following theorem shows the proof
technique for model checking with prophecy variables:

Theorem 3.3 (Model checking with Prophecy Variables)
For a transition system S and a HyperLTL formula of the form ∀∗∃∗ϕ, let p
be a fresh atomic proposition and let ψ be a quantifier-free HyperLTL for-
mula over the universally quantified trace variables π1, π2 . . . πn that cap-
tures the information about the future that p should predict. It holds that
S � ∀π1. ∀π2 . . . ∀πn. ∃π′1. ∃π′2 . . . ∃π′m. ϕ if, and only if, for system S{p} with
new input p, S{p} � ∀π1. ∀π2 . . . ∀πn. ∃π′1. ∃π′2 . . . ∃π′m. (pπ1 ↔ ψ)→ ϕ.

The proof of this theorem exploits that the prophecy variable is a fresh
atomic proposition.

Proof It is easy to see that the original specification implies the modified
specification, since the ϕ is the conclusion of the implication.

Assume that the modified specification holds. Since the prophecy variable p
is a fresh atomic proposition, and ψ does not refer to the existentially quan-

3.2. Using Prophecy Variables 19

tified trace variables, we can, for every choice of the universally quantified
traces, always choose the values of p such that it predicts the future cor-
rectly, i.e., that p is true whenever ψ holds. In this case, the conclusion ϕ
and therefore the original formula must hold. �

It is important that the prophecy variables only predict the future of the
universally quantified traces. The prophecy formula ψ should not refer to any
existentially quantified trace variables. If this was allowed, the ∃-player could
falsify the assumption, i.e., break the premise of the implication, instead of
trying to satisfy the original property.

To see this, consider again our example from above. If p would depend on aπ′
(ψ = aπ′), then we would obtain the following modified formula:

∀π. ∃π′. (pπ ↔ aπ′) → (aπ ↔ aπ′).

By assigning aπ′ to the opposite truth value of pπ, the strategy can satisfy
this formula by simply falsifying the assumption that the prediction of the
prophecy variable was correct.

We are only interested in strategies that try to satisfy the original formula.
We do not want to allow the strategy to influence the truth value of the
premise. Doing this would lead to a proof method that was not sound. To
ensure that this is not possible, the prophecy variables may only refer to
universally quantified trace variables.

In the case of an ∃∗∀∗ HyperLTL formula, no prophecy variables are needed
since the existentially quantified traces do not depend on the choice for the
universally quantified traces.

Even though prophecy variables help us overcome the problem with future
dependencies, they are not enough to obtain a complete proof technique.
There are still cases where, even though the system satisfies the HyperLTL
formula, we cannot prove this with the presented technique. This is because
we cannot always find appropriate prophecy variables that allow us to define
a winning strategy. To see this, consider a system with arbitrary sequences
of a and b together with the following specification:

∀π. ∃π′. bπ′ ∧ (bπ′ ↔ ¬bπ′)
∧ (aπ′ → (aπ W (bπ′ ∧ ¬aπ)))

∧ (¬aπ′ → (aπ W (¬bπ′ ∧ ¬aπ)))

This formula requires the existentially quantified trace to alternate between b
and ¬b, thereby marking even and odd positions in the trace. Moreover,
trace π′ intuitively has to predict whether π will switch from a to ¬a for the
first time at an even or at an odd position. To obtain a winning strategy that

20 3. Model Checking HyperLTL with Quantifier Alternations

proves that our system satisfies this HyperLTL formula, we need a prophecy
variable that predicts precisely this.

Since the even and odd positions are captured by bπ′ , we would like to use
this atomic proposition in the prophecy formula ψ. This, however, is not
possible since the trace variable π′ is existentially quantified. As explained
above, the ∃-player could use this to violate the premise of the formula on
purpose, so she does not have to fulfill the original property.

If we had ψ = aπW (bπ′ ∧¬aπ) in our example, the ∃-player can violate the
premise pπ ↔ (aπW (bπ′ ∧¬aπ)) by violating her specification that b and ¬b
have to alternate. This is, for example, the case in the following scenario.
The ∀-player picks the trace {a}{a}{}ω for π and the prophecy pπ predicts
that at the first position where ¬aπ holds, bπ′ will hold as well. Assume
the ∃-player behaves according to her specification, i.e., considering only the
atomic proposition b, the trace ({b}{})ω is picked for π′. In this case, the
prediction of the prophecy variable p is correct, i.e., in the first position
where we have ¬aπ we also have bπ′ .

Assume now that the ∃-player violates her specification and instead picks, for
example, the trace {b}{}ω where only {} is repeated infinitely often. Then
the prediction of the prophecy variable p suddenly is incorrect since now at
the first position where ¬aπ holds, bπ′ is not true anymore.

The incorrect prediction of the prophecy variable means that the premise of
the modified formula is violated. Therefore, the violation of the ∃-player’s
specification does not lead to the hyperproperty being violated. Instead, this
violation is the reason for the hyperproperty to be true since the premise is
violated. Nevertheless, we cannot conclude that the original hyperprop-
erty holds. This shows again that this proof method is unsound when the
prophecy formula refers to existentially quantified trace variables.

We, thus, cannot use any formula for ψ that includes existentially quantified
trace variables. At the same time, no other atomic proposition in our formula
or system marks even and odd positions such that we could use it instead
of bπ′ . Without such an atomic proposition, we are not able to express
counting properties in HyperLTL since, just like LTL, HyperLTL can only
express non-counting properties [43]. Due to this inherent restriction, our
proof method cannot be complete for HyperLTL. In the following, we will
explore how we need to extend HyperLTL to obtain a complete proof method.

3.3. Towards Completeness 21

3.3 Towards Completeness

As stated above, HyperLTL, as well as LTL, cannot express counting prop-
erties. When LTL is extended with quantification over fresh atomic propo-
sitions (∃q. ϕ), the logic QPTL [53] with the following grammar is obtained:

ψ ::= a | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ | ∃q. ψ.

For the propositional quantification, the semantics is defined as follows:

t, i � ∃q. ψ iff ∃t′ ∈ 2AP∪{q}. t′ =\{q} t and t′, i � ψ

There has to be some valuation of the fresh atomic proposition q on trace t
resulting in trace t′ that satisfies ψ.

QPTL can express counting properties [52] by quantifying over new atomic
propositions that mark, for example, the even and the odd positions on the
trace.

We use a similar extension for HyperLTL to obtain a logic that can express
counting properties:

ψ ::= ∀π. ψ | ∃π. ψ | ϕ, and
ϕ ::= aπ | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ | ∃q. ϕ.

Note that this logic is not HyperQPTL [14, 49] as the propositional quan-
tifiers are not necessarily in the quantifier prefix. It is, however, possible
to transform formulas from this logic into HyperQPTL formulas by pulling
the propositional quantifiers to the front, just like QPTL formulas can be
brought into the prenex normal form [52, 53]. Formulas of the extended logic
can be verified with the standard model checking algorithm for temporal hy-
perlogics [13, 49].

Quantification over additional atomic propositions allows us to express arbi-
trary ω-regular languages. This increase in expressiveness makes it possible
to find prophecy formulas ψ that encode counting properties.

In the following, we show that our proof technique using strategies and
prophecy variables is complete for this extended logic. In this setting, com-
pleteness means that if a formula holds on a system, it is possible to prove
this Theorems 3.3 and 3.1.

Our completeness result is restricted to formulas of the form ∀∗∃∗ϕ, where ϕ
is a quantifier-free formula describing a safety property. Note that this does
not mean that the formulas represent hypersafety properties. For exam-
ple, the hyperliveness properties discussed in the introduction, generalized
noninterference and robust cleanness, both belong to this fragment.

22 3. Model Checking HyperLTL with Quantifier Alternations

Theorem 3.4 (Completeness Result)
For a finite-state transition system S and a quantifier-free formula ϕ de-
scribing a safety property, if S � ∀π1. ∀π2 . . . ∀πn. ∃π′1. ∃π′2 . . . ∃π′m. ϕ, then
there exists a set P of atomic propositions used as prophecy variables, y fresh
atomic propositions q1 . . . qy, and a set {ψp | p ∈ P} of quantifier-free formu-
las over the universally quantified trace variables π1, π2 . . . πn and the propo-
sitions q1 . . . qy, such that, for system SP with additional input variables P ,
SP � ∀π1. ∀π2 . . . ∀πn. ∃π′1. ∃π′2 . . . ∃π′m. ∃q1 . . . qy. (

∧
p∈P pπ1 ↔ ψp)→ ϕ

can be proven with the technique from Theorem 3.1.

The proof gives a construction to find the required prophecy formulas ψp.

Proof (Sketch) The main idea of the proof is to build non-deterministic
safety automata that accept the universally quantified traces whenever there
are corresponding existentially quantified traces such that all traces together
satisfy the safety property ϕ. We then introduce prophecy variables p that
predict whether the future behavior of the universally quantified traces is
in the languages of these automata. The strategy uses the values of the
prophecy variables to decide whether taking a particular action is safe. By
always taking safe actions, the strategy ensures that the safety property ϕ
is satisfied. �

The full proof of Theorem 3.4 can be found in Appendix A. The extension
of this result to the case where the underlying LTL formula ϕ is a liveness
property is left for future work.

Consider the model-checking problem of LTL again. In our model-checking
technique, the user has to find the strategy and the appropriate prophecy
formulas. This manual effort is, in many cases, easy for the user to perform
since she already has a good understanding of the system and why it satisfies
the hyperproperty.

In our practical experiments, the incompleteness of our technique for model
checking HyperLTL was never a problem. In many cases, it is not even
necessary to add prophecy variables because the considered hyperproperties
do not involve future dependencies. The presented proof technique is, thus,
practically useful despite the incompleteness result.

Chapter 4

Implementation and
Experimental Evaluation

We have integrated the model checking technique with a manually provided
strategy into the HyperLTL hardware model checker MCHyper. In the
following, we describe this implementation and report on our experimental
results. All experiments reported in this chapter ran on a machine with
dual-core Core i7, 3.3 GHz, and 16 GB memory.

4.1 Implementation of MCHyper

The model checker MCHyper [23] is a hardware model checker for the
alternation-free fragment of HyperLTL. We have extended this tool to han-
dle formulas with up to one quantifier alternation. Before describing our
extension of MCHyper, we describe how the original version of the tool
works.

The core of MCHyper is implemented in the functional programming lan-
guage Haskell. A frontend written in Python handles the file management
and the interface to the backend tool abc [9].

MCHyper is a hardware model checker that takes as inputs the system
circuit C that should be model checked and the alternation-free HyperLTL
formula ∀π1 . . . ∀πn. ϕ (or ∃π1 . . . ∃πn. ϕ) that should hold on this system.
The hardware circuit C representing the system has boolean variables and
can perform arbitrary boolean operations on these variables. The time ad-
vances synchronously whenever the clock of the circuit ticks and it can keep
and update its system state that is stored in its so-called latches.

24 4. Implementation and Experimental Evaluation

1 aag 3 2 0 1 1

2 2

3 4

4 7

5 6 3 5

6 i0 in1

7 i1 in2

8 o0 out

9 c

10 or-gate

Figure 4.1: Description of an Or-gate in the Aiger format.

Hardware circuits can be represented as And-Inverter-Graphs encoded in the
Aiger format [7] which MCHyper uses as its input format for the system.
And-Inverter-Graphs only contain and-gates and negations. Nevertheless,
they can perform any boolean operation since conjunction and negation to-
gether form an operator base and all other operators can be expressed by
using only conjunction and negation. For example, disjunction can be de-
fined as ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ).

The Aiger format encodes an And-Inverter-Graph by assigning a variable
index i to every boolean variable used in the graph. When a variable with
the variable index i is used in the Aiger circuit, it appears as 2i, when the
negation of this variable is used then 2i + 1 is used in the Aiger represen-
tation. Note that the first variable has variable index 1, so it occurs as 2, or
in the negated version as 3 in the Aiger circuit, and 0 and 1 are reserved
for false and true, respectively.

An example of the description of an And-Inverter-Graph in the Aiger format
is shown in 4.1. It starts with a header (line 1) giving the highest used
variable index, the number of inputs, the number of latches, the number of
outputs, and the number of and-gates. This is followed by the lists of input
variables (lines 2 and 3), latches, and output variables (line 4) which are
specified before the and-gates are defined (line 5). Then, a symbol table
(lines 6 to 8) can assign names to inputs, latches, and outputs. For example,
i0 in1 in line 6 assigns the name in1 to the first input in the input list
(identified by i0). An optional comment (following a line only containing
the letter c) may describe the circuit behavior (lines 9 and 10).

The Aiger circuit in Figure 4.1 defines an Or-gate. The header (line 1)
states that it uses 3 variables (indexes 1, 2 and 3), has 2 inputs, 0 latches,
1 output, and 1 and-gate. Variables 1 and 2 are defined as inputs in lines 2

and 3 by giving the corresponding circuit representation of these variables
(2i for the variable with index i). The and-gate in line 5 computes the con-

4.1. Implementation of MCHyper 25

1 module or (input in1 , input in2 , output out)

2 assign out = !(!in1 && !in2)

3 endmodule

Figure 4.2: Description of an Or-gate in Verilog.

junction of the two negated inputs (3 for the negation of variable 1 and 5 for
the negation of variable 2) and stores the result in variable 3 (represented
as 6). In line 4, the negation of variable 3 is defined as the output of the
circuit. This precisely reflects the definition of the disjunction above.

When the system is specified in a hardware description language like Verilog,
it is possible to translate this representation into the Aiger format using
tools like Yosys [58]. Verilog is a powerful hardware description language
that is used in industry. It allows specifying so-called modules, making the
code more modular and reusable. An individual module has inputs and
outputs, and its description defines the values assigned to the outputs based
on the inputs. These definitions can use arbitrary boolean operations or
define and use functions. Using a clock input, it is also possible to specify
the system behavior over time. The synthesizable part of Verilog can then be
automatically translated into the register transfer level (RTL) representation
and from there into a netlist of gates representing the actual hardware.

Figure 4.2 shows a Verilog module that defines an Or-gate. This can be
translated into an And-Inverter-Graph represented in the Aiger format us-
ing the tool Yosys. In fact, Yosys generates the Aiger circuit shown in
Figure 4.1.

With the system and the HyperLTL formula as inputs, MCHyper builds
a new Aiger circuit that can be given to the backend tool abc to check
whether the hyperproperty holds. The idea behind this new circuit is that it
contains the system and the formula, and has outputs that reflect whether
the system violates the formula or not.

Figure 4.3 shows how MCHyper works for HyperLTL formulas without
quantifier alternation. Given the input system C and an alternation-free
formula with n quantifiers, the created circuit contains n copies of the sys-
tem C, one for every quantifier in the formula. As a result, one trace through
the resulting circuit Cn is a tuple of n traces through the system C. This
technique is called self-composition [5] and it is a standard technique to re-
duce the verification of hyperproperties to the verification of a trace property
over the appropriate self-composition of the system [6, 55].

Moreover, the new Aiger circuit contains a circuit Cϕ that encodes the
Büchi automaton for the body ϕ of the input formula. The construction

26 4. Implementation and Experimental Evaluation

C

in

out

Qπ1 . . .Qπn. ϕ

Cn

inn

outn

|| Cϕ

safe live⇒

abc

Yes / No + Cex

Figure 4.3: Model checking HyperLTL formulas from the alternation-free
fragment (where Q ∈ {∀,∃}) with MCHyper using self-composition.

used to build this automaton follows the standard translation from LTL to
alternating automata [45, 57]. An equivalent non-deterministic automaton
can be constructed using the standard algorithm by Miyano and Hayashi [44].
The resulting automaton accepts a pair of traces whenever these two traces
together satisfy the alternation-free HyperLTL formula. To check whether
the system satisfies the input formula, the automaton circuit Cϕ is composed
with the self-composed system Cn so that the automaton can observe the
chosen system traces and either accept or reject them.

Since every hyperproperty is an intersection of a safety and liveness part [12],
we consider these two parts of our input formula separately. The circuit that
MCHyper builds has two outputs, one stating that the safety part of the
hyperproperty is violated and one stating that the liveness part is violated.
The safety check monitors the traces for a bad prefix that violates the safety
part. The liveness check is performed via a reduction to a safety check
using lassos to represent infinite traces [8]. A lasso describes a finite prefix
that leads to some system state that is stored. The rest of the lasso then
describes a path through the system starting and ending in this stored state.
This describes a loop that can be taken infinitely often and on which the
liveness condition has to be satisfied. Lassos are a standard representation
for infinite traces through finite-state systems. The output corresponding to
a liveness violation, therefore, states that a lasso in the system was found
that did not satisfy the liveness requirements of the input formula.

4.2. Extension of MCHyper 27

C

in

out

Cσ

inn

inm

∀π1 . . . ∀πn. ∃π′1 . . . ∃π′m. ϕ

Cn

inn

outn

Cm

inm

outm

Cσ || Cϕ

safe live⇒

abc

Yes / No + Cex

Figure 4.4: Model checking ∀n∃mHyperLTL with MCHyper using self-
composition and a given strategy.

The resulting Aiger circuit exposes the inputs of all system copies and the
outputs indicating a safety or a liveness violation This circuit is then given
to the backend tool abc, which is used as a reachability checker. abc tries
to find inputs to the system copies that lead to a safety or a liveness vio-
lation and thereby show that the desired hyperproperty does not hold. If
abc does not manage to do so, then the hyperproperty holds on the sys-
tem and MCHyper reports this result to the user. If, on the other hand,
abc finds such an input sequence, the corresponding values are stored, and
this counterexample is given to the user.

4.2 Extension of MCHyper

We have extended MCHyper to work with HyperLTL formulas of up to
one quantifier alternation. The main difference to the previous version is
that there now is a new input Cσ, a circuit encoding a strategy that fixes
the choice for the existential traces. This is used in the self-composition to
combine the universal with the existential system copies.

Figure 4.4 shows the extended version of MCHyper for ∀n∃mHyperLTL,
Figure 4.5 shows it for ∃n∀mHyperLTL. In both cases, the strategy is en-
coded as an Aiger circuit. Its inputs are the inputs to the universal system

28 4. Implementation and Experimental Evaluation

C

in

out

Cσ

inn

∃π1 . . . ∃πn. ∀π′1 . . . ∀π′m. ϕ

Cn

inn

outn

Cm

inm

outm

Cσ || Cϕ

safe live⇒

abc

Yes / No + Cex

Figure 4.5: Model checking ∃n∀mHyperLTL with MCHyper using self-
composition and a given strategy.

copies corresponding to the universal quantifiers preceding the existential
quantifiers in the formula.

For ∀n∃mHyperLTL (Figure 4.4), the inputs to the strategy are n times
the inputs to the system C. For ∃n∀mHyperLTL (Figure 4.5), there are
no universal quantifiers before the existential ones, so the strategy has no
inputs and, instead, encodes the n existential traces that are the witnesses.
This ensures that the strategy has all the information about the universal
system copies on which it is allowed to depend. Based on this information,
the strategy determines the inputs to the existential system copies, thereby
choosing the existential traces. The inputs to the existential system copies
are the outputs of the strategy. For a system with a single input in and
a HyperLTL formula of the form ∀π1. ∀π2. ∃π3. ϕ, let a winning strategy
be one that copies the trace π2 into π3. This strategy can be encoded as
an Aiger circuit with 2 inputs (inputs in_1 and in_2 as the inputs for
the first and the second universal system copies, respectively) and 1 output
(output in_3 as the input for the existential system copy). Figure 4.6 shows
the corresponding strategy.

By using the strategy in the self-composition to determine the inputs to the
existential system copies, these inputs are not exposed to the outside. This
means that abc cannot pick the inputs for the existential system copies; it
can only decide the inputs for the universal ones.

4.2. Extension of MCHyper 29

1 aag 2 2 0 1 0

2 2

3 4

4 4

5 i0 in_1

6 i1 in_2

7 o0 in_3

8 c

9 copy in_2 into in_3

Figure 4.6: Strategy for a system with one input in and a HyperLTL formula
of the form ∀π1. ∀π2. ∃π3. ϕ that copies trace π2 into trace π3.

Using this modified self-composition with the given strategy, MCHyper
then builds a new circuit in the same way as in its previous version. In the
resulting circuit, only the inputs of the universal system copies are exposed.
The outputs are, as described above, two signals indicating a safety or a
liveness violation, respectively. This circuit is then given to the backend
tool abc that tries to find an input sequence that reveals a safety or a
liveness violation. If successful, this counterexample is given to the user.

Note that with our proof technique we cannot directly show that a ∀∃ Hy-
perLTL formula does not hold on some system. This is because a negative
model checking result, i.e., if the model checker returns a counterexample,
can either mean that the hyperproperty does not hold on the system or that
we have given the wrong strategy for the existential quantifier. We can,
however, prove that the negation of the formula holds to show that the orig-
inal formula is violated. For this, we have to model check an ∃∀ formula
and provide the corresponding strategy for the existential quantifier. If we
succeed in doing this, then we know that the original ∀∃ formula was vio-
lated on the system, and there was no winning strategy for the existential
player. The analogous argumentation applies if we want to know whether
an ∃∀ HyperLTL formula is violated.

We have evaluated our extension of MCHyper and submitted the corre-
sponding artifact to the CAV artifact evaluation committee. The committee
checked our artifact, its documentation and reran our experiments. Our im-
plementation passed this evaluation so that the conference paper now uses
the artifact evaluation committee seal, indicating the successful evaluation.

The incompleteness of the proof technique discussed in Chapter 3 did not
cause any problems in our experiments. In fact, we did not even need to use
prophecy variables as the hyperproperties we considered did not have any
future dependencies. To show that verification using prophecy variables is

30 4. Implementation and Experimental Evaluation

1 aag 1 1 0 1 0

2 2

3 2

4 i0 in

5 o0 a

6 c

7 use the input in to decide

8 the current value of the output a

Figure 4.7: System circuit that outputs arbitrary sequences of a and ¬a.

1 aag 2 2 0 1 0

2 2

3 4

4 2

5 i0 in

6 i1 p

7 o0 a

8 c

9 prophecy variable p is an additional input

Figure 4.8: Modified system with prophecy variable p as additional input.
The system behavior is not affected by this additional input.

also possible, we start with a toy example illustrating this before we present
our experimental evaluation.

4.2.1 Using Prophecy Variables

Consider again the example from Chapter 3 where the ∃-player needs to
predict the next move of the ∀-player. The system we consider can produce
arbitrary sequences of a and ¬a. An Aiger representation of this system is
shown in Figure 4.7. Recall the HyperLTL formula we want to check on this
system (Formula 3.1):

∀π. ∃π′. aπ ↔ aπ′

As discussed in Chapter 3, there is no winning strategy for the ∃-player. The
problem is the future dependency within the formula, i.e., that the ∃-player
needs to know what the ∀-player will do in the second step. To make this
information accessible to the ∃-player, we introduce a prophecy variable into
the system. The prophecy variable p is added as an input to the system and
does not affect the system’s behavior. Figure 4.8 shows the modified system
with the additional input p.

4.3. Experimental Evaluation 31

1 aag 2 2 0 2 0

2 2

3 4

4 4

5 0

6 i0 in_0

7 i1 p_0

8 o0 in_1

9 o1 p_1

10 c

11 copy value of prophecy variable p into

12 the input in for the existential system copy

Figure 4.9: Strategy using the value of the prophecy variable p to make the
correct choice for the input in of the existential system copy. The input
value of the prophecy variable p on the existential system copy is arbitrarily
fixed to be constantly false.

The prophecy variable p can then be used by the strategy for the ∃-player. To
ensure that the prophecy variable predicts the future correctly, we add this
as an assumption to the formula we want to check, resulting in HyperLTL
Formula 3.2:

∀π. ∃π′. (pπ ↔ aπ) → (aπ ↔ aπ′).

The strategy can then assume that the prophecy variable correctly predicts
the value of a on π in the second step. A winning strategy then uses the
value of p to set the correct value of aπ′ . Figure 4.9 shows such a winning
strategy that copies the value of p into the input of the existential system
copy and, thereby, into the value of a on π′.

MCHyper successfully verifies in under a second that the HyperLTL For-
mula 3.2 holds on the system from Figure 4.8 using the strategy from Fig-
ure 4.9.

4.3 Experimental Evaluation

We have tested our extension of MCHyper on two different sets of exam-
ples. Our case studies use the tool to prove symmetry in mutual exclusion
protocols as well as to check whether the emission control software of a car
behaves as intended.

These experiments stem from previous work [17, 23]. The checked hyperprop-
erties require a quantifier alternation when expressed in HyperLTL. Since

32 4. Implementation and Experimental Evaluation

the previous version of MCHyper could not handle quantifier alternation,
the HyperLTL formulas were manually strengthened to obtain formulas in
the alternation-free fragment. In this strengthening, the existential choice
is fixed and used to restrict the universal quantifiers. This process is error-
prone and requires deep insights into how the system works and why it satis-
fies the hyperproperty. The strengthened formula approximates the original
formula as it is supposed to imply the original formula. This, however, needs
to be proven manually as well since checking implications becomes undecid-
able [19].

With our extension of MCHyper, we are now able to model check the
original formulas of interest directly without the need to strengthen them
manually. Moreover, with our approach, there is no need to additionally
prove that the strengthened formula implies the original formula of interest.

On the other hand, we need to provide an appropriate strategy as an addi-
tional input. However, the user performing the verification is familiar with
the system and the hyperproperty used and most likely already has good
intuition on why the hyperproperty holds on the system. Therefore, finding
an appropriate strategy can be done manually. This task is not unique to our
approach. In the manual strengthening of the hyperproperties in the exper-
iments, we consider the strategy is used to restrict the universal quantifiers
in the strengthened formula. So the same expertise and effort from the user
are needed, whereas in our approach this manual work is nicely separated
from the formula by encoding it in the strategy circuit and no additional
proof of correctness for the manually strengthened formula is necessary.

4.3.1 Symmetry in Mutual Exclusion Protocols

We consider an implementation of the Bakery protocol [37], a protocol for
mutual exclusion where the different processes want to access a shared crit-
ical section (e.g., a shared data structure) but only one process at a time
should have access to it to avoid conflicts. The processes draw a ticket when
they request to enter the critical section (r1 means that process 1 requests
access to the critical section). The process with the smallest ticket number is
allowed to enter the critical section next (g1 means that process 1 is granted
access to the critical section).

Two processes may obtain the same number if they request their tickets at
the same time. In this case, a mechanism for breaking the tie is needed. This
mechanism might grant access to the critical section to the process with the
smaller identification number (ID).

4.3. Experimental Evaluation 33

We want to check whether the protocol is symmetric. That means that
when two processes swap their actions, they should also be granted access
to the critical section in the opposite order. If a mutual exclusion algorithm
is not symmetric, then some clients have an unfair advantage over other
clients. It is, however, well known that perfect symmetry is not possible
in mutual exclusion protocols [41]. This is because in the case of a tie
also the symmetric execution has a tie and in both cases, the tie-breaking
mechanism gives priority to the process with the smaller ID instead of picking
the symmetric processes.

To achieve perfect symmetry, the tie-breaking mechanism has to be replaced
by an additional input that decides, in the case of a tie, which process gets
access to the critical section first. If this input gives priority to the symmetric
process in the symmetric execution, perfect symmetry is achieved.

The version of the Bakery protocol for which we prove symmetry has this
additional symmetry breaking input sym_break . Symmetry then means that
for every protocol execution, the symmetric execution is also possible in the
protocol. This is a hyperproperty as it relates the two symmetric executions.
In HyperLTL, symmetry for the mutual exclusion protocol can be formalized
as:

∀π. ∃π′. ((r1 π ↔ r2 π′) ∧ (r2 π ↔ r1 π′)

∧ (g1 π ↔ g2 π′) ∧ (g2 π ↔ g1 π′)). (4.1)

The manually strengthened version of this property used in the previous case
study [23] was:

∀π. ∀π′. ((r1 π ↔ r2 π′) ∧ (r2 π ↔ r1 π′)

∧ (sym_breakπ 6↔ sym_breakπ′))

→ ((g1 π ↔ g2 π′) ∧ (g2 π ↔ g1 π′)).

This version states that all pairs of executions with symmetric requests to
enter the critical section should grant access to this section symmetrically if
also the symmetry breaking input is symmetrical. Even though this formula
is universally quantified, it does not consider all arbitrary pairs of traces but
only those where the requests are symmetric. In the previous case study [23]
it was already shown that this hyperproperty holds for the Bakery protocol
with the additional symmetry breaking input. This result implies that the
original symmetry requirement holds for the Bakery protocol. This implica-
tion, however, has to be shown in an additional proof. Otherwise, it is not
guaranteed that the proof of the manually strengthened formula allows any
conclusions about the original formula.

34 4. Implementation and Experimental Evaluation

1 aag 3 3 0 3 0

2 2

3 4

4 6

5 4

6 2

7 7

8 i0 r1_0

9 i1 r2_0

10 i2 sym_break_0

11 o0 r1_1

12 o1 r2_1

13 o2 sym_break_1

14 c

15 give symmetric requests and symmetry breaking input

Figure 4.10: Strategy observing the requests on the universally quantified
trace and setting the inputs on the existentially quantified trace to the sym-
metric values.

From this strengthened formula, we can extract the strategy. In fact, the
premise that restricts the accepted choices for the trace π′ represents the
strategy. The strategy here is always to make sure that the requests to
enter the critical section are given symmetrically and the protocol execution
makes sure that the grants are given out symmetrically as well. The strategy
circuit shown in Figure 4.10 swaps the requests of the two processes and
picks the opposite value for the symmetry breaking input on the existentially
quantified trace.

In addition to finding the strategy and encoding it in the manually strength-
ened formula, with the old version of MCHyper, it is also necessary to prove
the correctness of the intended implication. With the extended version of
MCHyper we now can model check the symmetry formula with the quanti-
fier alternation directly. The symmetry breaking input sym_break does not
even occur in the formula explicitly. The additional input to MCHyper is
the strategy we extracted from the manually strengthened formula shown in
Figure 4.10.

We have checked symmetry in the Bakery protocol with the extended version
of MCHyper. Table 4.1 shows our verification results. We have checked a
smaller variant of the Bakery protocol supporting three clients and a bigger
version supporting five clients. Naturally, the bigger version of the protocol
needs more latches to represent the larger state space. On these systems,

4.3. Experimental Evaluation 35

#Processes #Latches Hyperproperty Time [s]

3 47
Symmetry 50.6
Symmetry’ 27.5

5 90
Symmetry 461.3
Symmetry’ 472.3

Table 4.1: Experimental results for MCHyper on the mutual exclusion
benchmarks. All experiments used the IC3 option for abc.

we have checked the HyperLTL Formula 4.1 (Symmetry) and a version of
symmetry using the weak until operator (Symmetry’):

∀π. ∃π′. ((g1 π ↔ g2 π′) ∧ (g2 π ↔ g1 π′))

W ((r1 π 6↔ r2 π′) ∨ (r2 π 6↔ r1 π′)).

This formula states that the grants have to be given symmetrically unless
the requests were not made symmetrically at some point. In the case where
the requests are always symmetric, this formula is equivalent to Formula 4.1.

To prove these hyperproperties, we have extracted the corresponding strate-
gies from the manually strengthened versions. The used strategies ensure
that the requests are made symmetrically and that the symmetry break-
ing input is symmetric on both traces, similar to the strategy shown in
Figure 4.10. For both hyperproperties, Symmetry and Symmetry’, on one
version of the Bakery protocol, the same strategy can be used as the system’s
inputs, and outputs are the same.

We were able to show within a few minutes that the Bakery protocol with
the symmetry breaking input to break ties is indeed symmetric. The times
needed for the verification of the Bakery protocol are comparable to the ones
obtained in the previous case study [23]. This is not surprising since we are
solving the same problem and only move the strategy from the strengthened
formula into a dedicated strategy input. However, we now have directly
checked the formula of interest and do not need any additional proofs to
guarantee correctness.

4.3.2 Software Doping

The second set of experiments [17] is inspired by the emission scandal in
the automotive industry from 2015. This scandal coined the term “software
doping” as it revealed that the diesel emission regulations were violated on
purpose by some car manufacturers. In their cars, the exhaust emission

36 4. Implementation and Experimental Evaluation

control module in the electronic control unit of the car is “doped”, i.e., it
behaves differently when being tested and when being driven on the road.
In the test scenario, the car meets the diesel emission regulations; thus, it
passes the test. When being driven on the road, however, the car emits much
more exhaust gasses. The exhaust emission control module can regulate the
emission of the nitrogen oxides (NOx) by injecting diesel exhaust fluid (DEF)
into the exhaust pipeline that reacts with the nitrogen oxides. This reaction
is called selective catalytic reduction (SCR), and it uses the DEF, an aqueous
urea solution, to initiate a chemical reaction with the nitrogen oxides that
results in water and harmless nitrogen as end products that can then be
released into the environment.

Intuitively, when checking whether a system is doped, we are looking for two
different sequences of inputs that are ‘close’ but lead to two very different
sequences of outputs. In clean software, we expect that similar inputs yield
to similar outputs even though one input sequence might be a test scenario
while another input sequence corresponds to driving on the road.

To decide whether two sequences are similar (or close), we need to have
a notion of distance. We capture this by a distance function d̂ that takes
two values and computes their distance. Different distance functions might
be appropriate, depending on the scenario. The distance function can be
applied to the inputs and the outputs or two different distance functions can
be used. In our scenario, we use the same distance function for inputs and
outputs and, given two values, the function returns their difference. This
distance can then be compared to a threshold κ, for example, d̂(o, o′) ≤ κ.

In this set of experiments, we consider a clean and a doped version of an
exhaust emission control module. We model the modules as reactive systems
that constantly read the throttle value and calculate the amount of DEF that
is added to the exhaust pipeline. This determines the amount of nitrogen
oxide that will be emitted, although this process is not perfect. To account
for this variability, we use non-determinism in the system to model the final
amount of nitrogen oxide that is emitted. A more detailed description of the
systems can be found in the previous case study [17].

The hyperproperty we want to check is called robust cleanness. It captures
the intuition described above by requiring that the distance between the
outputs always is within some threshold κo unless at some point the distance
in the inputs is bigger than some threshold κi on the allowed input distance.
The following HyperLTL formula formalizes robust cleanness:

∀π. ∀π′. ∃π′′.
(
iπ′ = iπ′′

)
∧
(
d̂(oπ, oπ′′) ≤ κo W d̂(iπ, iπ′′) > κi

)
. (4.2)

4.3. Experimental Evaluation 37

1 aag 0 0 0 2 0

2 0

3 1

4 o0 in1

5 o1 in2

6 c

7 always set in1 to false and in2 to true

Figure 4.11: Strategy that encodes a constant trace where inputs in1 and in2

are always set to false and true, respectively.

We would like to compare the inputs and outputs of the two universally
quantified traces. Due to the non-determinism in the models, we cannot
guarantee that every pair of traces satisfies our hyperproperty. To account
for that, we ask for a third, existentially quantified trace that has to agree
with π′ on the inputs and for which our hyperproperty holds.

Since the distance function is not necessarily symmetric, we also need to con-
sider the symmetric formula where the existentially quantified trace agrees
with π on the inputs:

∀π. ∀π′. ∃π′′.
(
iπ = iπ′′

)
∧
(
d̂(oπ′′ , oπ′) ≤ κo W d̂(iπ′′ , iπ′) > κi

)
. (4.3)

When we refer to robust cleanness in the following, we mean the conjunction
of Formulas 4.2 and 4.3.

This case study has been explored before [17], and the previous version
of MCHyper has been used to automatically check whether the emission
control software is robustly clean. Again, because the previous version of
MCHyper could not handle quantifier alternation, the hyperproperty had
to be manually strengthened into the alternation-free fragment. To prove
that the clean exhaust emission control module is indeed robustly clean the
following formula was checked:

∀π. ∀π′.
(
d̂(oπ, oπ′) ≤ κo W d̂(iπ, iπ′) > κi

)
.

This is a stronger hyperproperty as it does not allow for violations of the
specification that result only from non-determinism in the system.

To prove that the doped exhaust emission control module violates robust
cleanness, we have to show that it satisfies the negation of this hyperproperty
as we have explained in Section 4.2. The negations of Formulas 4.2 and 4.3
both are of the form ∃π. ∃π′. ∀π′′. ϕ. They are strengthened into universal
formulas by adding a premise ψ that assumes the input values for the first two
quantified traces are set so some determined values. The strategy picking

38 4. Implementation and Experimental Evaluation

System Precision #Latches Hyperproperty Time [s]

clean
medium 17

Robust Cleanness
1.8

high 23 53.4

doped
medium 19 ¬ Robust Cleanness

2.8
high 25 160.1

Table 4.2: Experimental results for MCHyper on the software doping
benchmarks. All experiments used the IC3 option for abc.

the witnesses for the existential traces is again encoded into the formula.
Additionally, it has to be proven that these two fixed traces indeed exist in
our system. Thus, a third alternation-free formula of the form ∃π. ∃π′. ψ
has to be checked to show that the strengthening is correct.

Using the extended version of MCHyper, we can now directly model check
robust cleanness and its negation on the two systems. To do so, we extract
the strategies that were encoded in the manual strengthening of the formulas.

We model check two different versions of the exhaust emission control mod-
ules. The difference is the precision with which they capture the throttle
input and the NOx output. Higher precision in the system means that more
bits are needed to represent a single value and, therefore, the state space,
i.e., the number of latches increases.

Consider the clean version of the exhaust emission control module first. The
strategy we extracted from the manual strengthening of the robust cleanness
requirement copies one of the universally quantified traces into the existen-
tially quantified trace. Figure 4.6 shows a strategy that does this for a system
with only one input.

For the doped version of the exhaust emission control module, the negation
of robust cleanness has to be checked. Here, the strategies extracted from the
manual strengthening encode a fixed traces for the two existential quantifiers.
Figure 4.11 shows an example of a strategy that encodes a fixed trace.

Table 4.2 displays our verification results. Also for this case study, the times
needed to verify the systems with the extended version of MCHyper are
comparable to the times needed to verify the systems with the previous
version against the manually strengthened formulas. However, we again
gain the additional correctness guarantee without the need to verify that
our strengthening was correct as it had to be done previously.

Acknowledgements. We thank Sebastian Biewer for providing the data
from the previous software doping case study.

4.4. Tutorial and Online Interface 39

4.4 Tutorial and Online Interface

The extended version of MCHyper is available via its online interface1. On
this website, everyone can try the tool in their browser. We provide some
examples as well as an editor that allows the user to submit their inputs to
the tool. The instance is then solved on our servers at the Reactive Systems
Group at Saarland University, and the verification results are reported back
to the user.

We also provide a detailed tutorial explaining how to use MCHyper. In this
tutorial, we explain the online tool interface, the different input formats for
MCHyper, and how the tool works. The tutorial also covers the extension
of MCHyper to formulas with quantifier alternation.

Acknowledgements. The online tool interface was developed, under our
supervision, by our student assistants Jens Kreber (backend development)
and Benedict Strube (frontend development and tutorial).

1https://www.react.uni-saarland.de/tools/online/MCHyper/

https://www.react.uni-saarland.de/tools/online/MCHyper/

Chapter 5

Conclusions

In this thesis, we have explored the model checking problem of HyperLTL. In
particular, we have presented a practical model checking technique for Hyper-
LTL formulas with one quantifier alternation. These formulas specify hyper-
liveness properties that previously could not be model checked automatically.
The model checking tool MCHyper was restricted to the alternation-free
fragment of HyperLTL. This fragment cannot express hyperliveness proper-
ties that require a quantifier alternation in the HyperLTL formula. Hyper-
properties like generalized noninterference, symmetry or robust cleanness,
however, fall into this fragment.

We have extended the tool MCHyper to be able to handle formulas with
up to one quantifier alternation. This extended version of MCHyper is
the first practical method for the verification of these HyperLTL formulas.
The main idea behind our extension is a shift in perspective to a game-
theoretic view. We use a strategy to determine the choices of the ∃-player,
thereby substituting strategic choice for existential choice. The strategy for
the ∃-player observes the choices for the preceding universally quantified
traces and, depending on these, chooses the moves for the ∃-player.

If an appropriate strategy exists with which the verification succeeds, we
can conclude that the hyperproperty holds on the system. This approach,
however, is not complete. That means that there are systems that satisfy
a hyperproperty but for which no appropriate strategy exists. This might
happen if the correct existential choices depend on the future behavior of
the ∀-player. We have explored this issue in more detail by discussing how
prophecy variables can be used to resolve future dependencies.

Prophecy variables can be used to resolve these dependencies. Nevertheless,
using prophecy variables still does not suffice to obtain a complete proof
method. The core problem leading to the incompleteness result for our

42 5. Conclusions

model checking approach for HyperLTL is that HyperLTL, just like LTL,
cannot express counting properties. Thus, hyperproperties that require to
distinguish, for example, between even and odd positions cannot be proven
using our technique.

We have studied an extension of HyperLTL that can express counting prop-
erties and for which we obtained a completeness result for our model checking
approach.

Despite this incompleteness result for HyperLTL, the presented model check-
ing technique is useful in practice. We have shown this in our experimental
evaluation where we have checked symmetry in mutual exclusion algorithms
and robust cleanness for emission control software in cars. In our exper-
iments, the incompleteness was never a problem. We did not even have
to use prophecy variables since the hyperproperties do not have any future
dependencies.

The key advantage of our approach is that it avoids the complementation
of the Büchi automaton that is built in the automata-based model checking
algorithm for HyperLTL. Complementing a Büchi automaton is exponential
and, in the automata-based algorithm, it has to be done once for every
quantifier alternation in the formula. With our approach, the user instead
has to provide an appropriate strategy for the existential player. Providing
a sufficiently small strategy leads to a significant gain in performance.

It is also possible to automatically synthesize a winning strategy [15] for a
given system and hyperproperty. Instead of giving the system, this can also
be synthesized together with the strategy. In both cases, the separation of
system, strategy and HyperLTL formula is exploited.

In theory, our model checking technique using strategic choice can be ex-
tended to an arbitrary number of quantifier alternations. This has, how-
ever, not yet been implemented and most hyperproperties of interest used in
the literature only require at most one quantifier alternation. Searching for
practically relevant hyperproperties with more than one quantifier alterna-
tion and extending the implementation of MCHyper even further to handle
these hyperproperties is left as interesting future work.

Moreover, it would be interesting to learn about real-world problems where
future dependencies occur or where the incompleteness of our approach is
an issue. Studying the lack of completeness of our proof technique, as well
as the completeness for the extended version of HyperLTL, in more detail is
also left as future work.

Bibliography

[1] Martín Abadi and Leslie Lamport. The Existence of Refinement Map-
pings. Theor. Comput. Sci., 82(2):253–284, 1991. doi:10.1016/0304-
3975(91)90224-P.

[2] Mack W. Alford, Jean-Pierre Ansart, Günter Hommel, Leslie Lamport,
Barbara Liskov, Geoff P. Mullery, and Fred B. Schneider, editors. Dis-
tributed Systems: Methods and Tools for Specification, An Advanced
Course, April 3-12, 1984 and April 16-25, 1985, Munich, Germany,
volume 190 of Lecture Notes in Computer Science, 1985. Springer. ISBN
3-540-15216-4. doi:10.1007/3-540-15216-4.

[3] Bowen Alpern and Fred B. Schneider. Defining Liveness. Technical
report, Ithaca, NY, USA, 1984.

[4] Bowen Alpern and Fred B. Schneider. Recognizing Safety and Live-
ness. Distributed Computing, 2(3):117–126, Sep 1987. ISSN 1432-0452.
doi:10.1007/BF01782772.

[5] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure Informa-
tion Flow by Self-Composition. In Proceedings of CSFW, pages 100–114.
IEEE Computer Society, 2004.

[6] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Beyond 2-Safety:
Asymmetric Product Programs for Relational Program Verification. In
Proceedings of LFCS, volume 7734 of LNCS, pages 29–43. Springer,
2013. doi:10.1007/978-3-642-35722-0_3.

[7] Armin Biere. Specification of the AIGER Format. http://fmv.jku.at/
aiger/FORMAT. Online; accessed: 2019-09-18.

[8] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness Checking
as Safety Checking. Electr. Notes Theor. Comput. Sci., 66(2):160–177,
2002. doi:10.1016/S1571-0661(04)80410-9.

[9] Robert K. Brayton and Alan Mishchenko. ABC: An Academic
Industrial-Strength Verification Tool. In Proceedings of CAV, volume

http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1007/3-540-15216-4
http://dx.doi.org/10.1007/BF01782772
http://dx.doi.org/10.1007/978-3-642-35722-0_3
http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/aiger/FORMAT
http://dx.doi.org/10.1016/S1571-0661(04)80410-9

44 5. BIBLIOGRAPHY

6174 of LNCS, pages 24–40. Springer, 2010. doi:10.1007/978-3-642-
14295-6_5.

[10] Julius Richard Büchi. On a Decision Method in Restricted Second Order
Arithmetic. Internat. Congress on Logic, Methodology and Philosophy
of Science, 1960.

[11] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic. In Logic
of Programs, Workshop, pages 52–71, Berlin, Heidelberg, 1982. Springer-
Verlag. ISBN 3-540-11212-X. URL http://dl.acm.org/citation.cfm?

id=648063.747438.

[12] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of
Computer Security, 18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.

[13] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, and César Sánchez. Temporal Logics for
Hyperproperties. In Proceedings of POST, volume 8414 of LNCS, pages
265–284. Springer, 2014. doi:10.1007/978-3-642-54792-8_15.

[14] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hof-
mann. The Hierarchy of Hyperlogics. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. ISBN 978-1-7281-
3608-0. doi:10.1109/LICS.2019.8785713.

[15] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Ten-
trup. Verifying Hyperliveness. In Isil Dillig and Serdar Tasiran, editors,
Computer Aided Verification, pages 121–139, Cham, 2019. Springer In-
ternational Publishing. ISBN 978-3-030-25540-4. doi:10.1007/978-3-
030-25540-4_7.

[16] Byron Cook, Heidy Khlaaf, and Nir Piterman. On Automation of CTL*
Verification for Infinite-State Systems. In Proceedings of CAV, volume
9206 of LNCS, pages 13–29. Springer, 2015. doi:10.1007/978-3-319-
21690-4_2.

[17] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner,
and Holger Hermanns. Is Your Software on Dope? - Formal Analysis of
Surreptitiously "enhanced" Programs. In Proceedings of ESOP, volume
10201 of LNCS, pages 83–110. Springer, 2017. doi:10.1007/978-3-662-
54434-1_4.

[18] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never”
Revisited: On Branching Versus Linear Time Temporal Logic. J. ACM,
33(1):151–178, January 1986. ISSN 0004-5411. doi:10.1145/4904.4999.

http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dl.acm.org/citation.cfm?id=648063.747438
http://dl.acm.org/citation.cfm?id=648063.747438
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1109/LICS.2019.8785713
http://dx.doi.org/10.1007/978-3-030-25540-4_7
http://dx.doi.org/10.1007/978-3-030-25540-4_7
http://dx.doi.org/10.1007/978-3-319-21690-4_2
http://dx.doi.org/10.1007/978-3-319-21690-4_2
http://dx.doi.org/10.1007/978-3-662-54434-1_4
http://dx.doi.org/10.1007/978-3-662-54434-1_4
http://dx.doi.org/10.1145/4904.4999

Bibliography 45

[19] Bernd Finkbeiner and Christopher Hahn. Deciding Hyperproper-
ties. In Proceedings of CONCUR, volume 59 of LIPIcs, pages
13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.CONCUR.2016.13.

[20] Bernd Finkbeiner and Markus N. Rabe. The linear-hyper-branching
spectrum of temporal logics. it - Information Technology, 56:273–279,
November 2014.

[21] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. STTT, 15(5-6):
519–539, 2013. doi:10.1007/s10009-012-0228-z.

[22] Bernd Finkbeiner and Martin Zimmermann. The First-Order Logic of
Hyperproperties. In Heribert Vollmer and Brigitte Vallée, editors, 34th
Symposium on Theoretical Aspects of Computer Science (STACS 2017),
volume 66 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 30:1–30:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-028-6. URL http://drops.

dagstuhl.de/opus/volltexte/2017/7003.

[23] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for
Model Checking HyperLTL and HyperCTL*. In Proceedings of CAV,
volume 9206 of LNCS, pages 30–48. Springer, 2015. doi:10.1007/978-3-
319-21690-4_3.

[24] Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. EAHyper:
Satisfiability, Implication, and Equivalence Checking of Hyperproper-
ties. In Proceedings of CAV, volume 10427 of LNCS, pages 564–570.
Springer, 2017. doi:10.1007/978-3-319-63390-9_29.

[25] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander
Tentrup. Monitoring Hyperproperties. In Proceedings of RV, volume
10548 of LNCS, pages 190–207. Springer, 2017. doi:10.1007/978-3-319-
67531-2_12.

[26] Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. MGHyper:
Checking Satisfiability of HyperLTL Formulas Beyond the ∃∗∀∗ Frag-
ment. In Proceedings of ATVA, volume 11138 of LNCS, pages 521–527.
Springer, 2018. doi:10.1007/978-3-030-01090-4_31.

[27] Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger,
and Leander Tentrup. Synthesizing Reactive Systems from Hyperprop-
erties. In Proceedings of CAV, volume 10981 of LNCS, pages 289–306.
Springer, 2018. doi:10.1007/978-3-319-96145-3_16.

[28] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander
Tentrup. RVHyper: A Runtime Verification Tool for Temporal Hy-

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.13
http://dx.doi.org/10.1007/s10009-012-0228-z
http://drops.dagstuhl.de/opus/volltexte/2017/7003
http://drops.dagstuhl.de/opus/volltexte/2017/7003
http://dx.doi.org/10.1007/978-3-319-21690-4_3
http://dx.doi.org/10.1007/978-3-319-21690-4_3
http://dx.doi.org/10.1007/978-3-319-63390-9_29
http://dx.doi.org/10.1007/978-3-319-67531-2_12
http://dx.doi.org/10.1007/978-3-319-67531-2_12
http://dx.doi.org/10.1007/978-3-030-01090-4_31
http://dx.doi.org/10.1007/978-3-319-96145-3_16

46 5. BIBLIOGRAPHY

perproperties. In Proceedings of TACAS, volume 10806 of LNCS, pages
194–200. Springer, 2018. doi:10.1007/978-3-319-89963-3_11.

[29] Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. Model Check-
ing Quantitative Hyperproperties. In Proceedings of CAV, volume 10981
of LNCS, pages 144–163. Springer, 2018. doi:10.1007/978-3-319-96145-
3_8.

[30] Joseph A. Goguen and José Meseguer. Security Policies and Security
Models. In Proceedings of S&P, pages 11–20. IEEE Computer Society,
1982. doi:10.1109/SP.1982.10014.

[31] Christopher Hahn, Marvin Stenger, and Leander Tentrup. Constraint-
Based Monitoring of Hyperproperties. In Proceedings of TACAS, volume
11428 of LNCS, pages 115–131. Springer, 2019. doi:10.1007/978-3-030-
17465-1_7.

[32] Marieke Huisman, Pratik Worah, and Kim Sunesen. A Tem-
poral Logic Characterisation of Observational Determinism. In
Proceedings of CSFW, page 3. IEEE Computer Society, 2006.
doi:10.1109/CSFW.2006.6.

[33] Abdessamad Jarrar and Youssef Balouki. Formal modeling of a complex
adaptive air traffic control system. Complex Adaptive Systems Modeling,
6(1):6, Sep 2018. ISSN 2194-3206. doi:10.1186/s40294-018-0056-4.

[34] Felix Klein and Martin Zimmermann. How Much Lookahead is Needed
to Win Infinite Games? In Proceedings of ICALP, volume 9135 of
LNCS, pages 452–463. Springer, 2015. doi:10.1007/978-3-662-47666-
6_36.

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In 40th IEEE Symposium on Security
and Privacy (S&P’19), 2019.

[36] Orna Kupferman and Moshe Y. Vardi. Weak Alternating Automata
Are Not That Weak. ACM Trans. Comput. Logic, 2(3):408–429, July
2001. ISSN 1529-3785. doi:10.1145/377978.377993.

[37] Leslie Lamport. A New Solution of Dijkstra’s Concurrent
Programming Problem. Commun. ACM, 17(8):453–455, 1974.
doi:10.1145/361082.361093.

[38] Leslie Lamport. Proving the Correctness of Multiprocess Programs.
IEEE Transactions on Software Engineering, SE-3(2):125–143, March
1977. doi:10.1109/TSE.1977.229904.

http://dx.doi.org/10.1007/978-3-319-89963-3_11
http://dx.doi.org/10.1007/978-3-319-96145-3_8
http://dx.doi.org/10.1007/978-3-319-96145-3_8
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1007/978-3-030-17465-1_7
http://dx.doi.org/10.1007/978-3-030-17465-1_7
http://dx.doi.org/10.1109/CSFW.2006.6
http://dx.doi.org/10.1186/s40294-018-0056-4
http://dx.doi.org/10.1007/978-3-662-47666-6_36
http://dx.doi.org/10.1007/978-3-662-47666-6_36
http://dx.doi.org/10.1145/377978.377993
http://dx.doi.org/10.1145/361082.361093
http://dx.doi.org/10.1109/TSE.1977.229904

Bibliography 47

[39] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Ker-
nel Memory from User Space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[40] Nancy A. Lynch and Frits W. Vaandrager. Forward and Backward
Simulations: I. Untimed Systems. Inf. Comput., 121(2):214–233, 1995.
doi:10.1006/inco.1995.1134.

[41] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Sys-
tems - Safety. Springer, 1995. ISBN 978-0-387-94459-3.

[42] Daryl McCullough. Noninterference and the Composability of Security
Properties. In Proceedings of S&P, pages 177–186. IEEE Computer
Society, 1988. doi:10.1109/SECPRI.1988.8110.

[43] Robert McNaughton and Seymour A. Papert. Counter-Free Automata
(M.I.T. Research Monograph No. 65). The MIT Press, 1971. ISBN
0262130769.

[44] Satoru Miyano and Takeshi Hayashi. Alternating Finite Automata on
ω-Words. Theor. Comput. Sci., 32:321–330, 1984. doi:10.1016/0304-
3975(84)90049-5.

[45] D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata
give a simple explanation of why most temporal and dynamic logics
are decidable in exponential time. In [1988] Proceedings. Third Annual
Symposium on Logic in Computer Science, pages 422–427, July 1988.
doi:10.1109/LICS.1988.5139.

[46] Andew Myers. Meltdown, Spectre, and why hardware can be cor-
rect yet insecure. https://andrumyers.wordpress.com/2018/01/17/

meltdown-spectre-and-how-hardware-can-be-correct-but-insecure/.
Online; accessed: 2019-09-09.

[47] John von Neumann. Zur Theorie der Gesellschaftsspiele. Math-
ematische Annalen, 100(1):295–320, Dec 1928. ISSN 1432-1807.
doi:10.1007/BF01448847.

[48] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, SFCS
’77, pages 46–57, Washington, DC, USA, 1977. IEEE Computer Society.
doi:10.1109/SFCS.1977.32.

[49] Markus N. Rabe. A Temporal Logic Approach to Information-Flow Con-
trol. PhD thesis, Saarland University, 2016. URL http://scidok.sulb.

uni-saarland.de/volltexte/2016/6387/.

http://dx.doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1109/SECPRI.1988.8110
http://dx.doi.org/10.1016/0304-3975(84)90049-5
http://dx.doi.org/10.1016/0304-3975(84)90049-5
http://dx.doi.org/10.1109/LICS.1988.5139
https://andrumyers.wordpress.com/2018/01/17/meltdown-spectre-and-how-hardware-can-be-correct-but-insecure/
https://andrumyers.wordpress.com/2018/01/17/meltdown-spectre-and-how-hardware-can-be-correct-but-insecure/
http://dx.doi.org/10.1007/BF01448847
http://dx.doi.org/10.1109/SFCS.1977.32
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/

48 . BIBLIOGRAPHY

[50] Computing Research and Education Association of Australasia.
CORE18 Ranking for CAV’19. http://portal.core.edu.au/

conf-ranks/?search=CAV&by=all&source=CORE2018&sort=atitle&

page=1. Online; accessed: 2019-09-09.

[51] A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear
Temporal Logics. J. ACM, 32(3):733–749, July 1985. ISSN 0004-5411.
doi:10.1145/3828.3837.

[52] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The comple-
mentation problem for Büchi automata with applications to temporal
logic. Theoretical Computer Science, 49(2):217 – 237, 1987. ISSN
0304-3975. URL http://www.sciencedirect.com/science/article/

pii/0304397587900089.

[53] Aravinda Prasad Sistla. Theoretical Issues in the Design and Verifica-
tion of Distributed Systems. PhD thesis, Cambridge, MA, USA, 1983.
AAI8403047.

[54] Thoralf Skolem. Logisch-kombinatorische Untersuchungen über die Er-
füllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theo-
reme über dichte Mengen. Videnskapsselskapet Skrifter, I. Matematisk-
naturvidenskabelig Klasse 4 (1920).

[55] Tachio Terauchi and Alexander Aiken. Secure Information Flow as a
Safety Problem. In Proceedings of SAS, volume 3672 of LNCS, pages
352–367. Springer, 2005. doi:10.1007/11547662_24.

[56] Ron van der Meyden and Chenyi Zhang. Algorithmic Verification of
Noninterference Properties. Electr. Notes Theor. Comput. Sci., 168:
61–75, 2007. doi:10.1016/j.entcs.2006.11.002.

[57] Moshe Y. Vardi. Alternating Automata and Program Verification, pages
471–485. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995. ISBN
978-3-540-49435-5. doi:10.1007/BFb0015261.

[58] Clifford Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/
yosys/. Online; accessed: 2019-09-18.

[59] Yang Zhao and Kristin Yvonne Rozier. Formal specification and veri-
fication of a coordination protocol for an automated air traffic control
system. Science of Computer Programming, 96:337 – 353, 2014. ISSN
0167-6423. URL http://www.sciencedirect.com/science/article/

pii/S016764231400166X. Special Issue on Automated Verification of
Critical Systems (AVoCS 2012).

http://portal.core.edu.au/conf-ranks/?search=CAV&by=all&source=CORE2018&sort=atitle&page=1
http://portal.core.edu.au/conf-ranks/?search=CAV&by=all&source=CORE2018&sort=atitle&page=1
http://portal.core.edu.au/conf-ranks/?search=CAV&by=all&source=CORE2018&sort=atitle&page=1
http://dx.doi.org/10.1145/3828.3837
http://www.sciencedirect.com/science/article/pii/0304397587900089
http://www.sciencedirect.com/science/article/pii/0304397587900089
http://dx.doi.org/10.1007/11547662_24
http://dx.doi.org/10.1016/j.entcs.2006.11.002
http://dx.doi.org/10.1007/BFb0015261
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
http://www.sciencedirect.com/science/article/pii/S016764231400166X
http://www.sciencedirect.com/science/article/pii/S016764231400166X

Appendix A

Completeness Proof

We present the full proof of Theorem 3.4.

Proof Let a finite-state transition system S and a ∀n∃m safety HyperLTL
formula ψ := ∀π1 . . . ∀πn. ∃π′1 . . . ∃π′m. ϕ be given where ϕ is a safety LTL
formula. Assume that S � ψ. We show that there always exists a winning
strategy using prophecy variables with which the model checking succeeds
for the modified formula containing the prophecy variables. For that, we
first show how to obtain a finite set of prophecy variables that capture the
necessary information about the future. Then, we show how to include
this information into the formula that we want to model check. Lastly, we
describe a winning strategy that uses the captured information about the
future to make appropriate choices in each step.
Find prophecy variables. Build the non-deterministic safety automa-
ton [4] Aϕ = 〈Q, q0, δ, B〉 for the quantifier-free HyperLTL formula ϕ. This
automaton over Σ = (2I∪O)n+m takes tuples of trace positions as input.
Next, build the product construction of the self-composed system Sn+m and
the automatonAϕ yielding a non-deterministic safety automaton Sn+m ×Aϕ
defined as 〈Q×, q×0 , δ×, B×〉 over Σ× = Υn+m where Q× = Tn+m ×Q is the
finite set of states, q×0 = (~t′0, q0) is the initial state, (~t′, q′) ∈ δ×((~t, q), ~υ)

for all ~t′ = τn+m(~t, ~υ) and q′ ∈ δ(q, (l ◦ ~t)] ~υ) is the transition relation and
B× = {(~t, q)|q ∈ B} is the set of accepting states.
Apply the existential projection to the last m positions of the inputs of
Sn+m ×Aϕ resulting in a non-deterministic safety automaton over Σ∃ = Υn

A∃ = 〈Q×, q×0 , δ∃, B×〉, where δ∃ is the transition relation of this automaton
with (~t′, q′) ∈ δ∃((~t, q), ~υ) if there exists a ~u ∈ Υm such that ~t′ = τn+m(~t, ~υ · ~u)

and q′ ∈ δ(q, (l ◦ ~t)] (~υ · ~u)). This automaton accepts all input sequences de-
termining the n universally quantified traces for which there are adequate
choices for the existentially quantified traces such that the formula is sat-
isfied. Since we assume that the formula holds the language is actually

50 A. Completeness Proof

equal to (Υn)ω. For every state q ∈ Q∃ we calculate the language of the
automaton Aq∃ obtained by considering state q as the initial state of A∃.
The languages of all these automata Aq∃ are again subsets of (Υn)ω and cap-
ture the set of future universal choices for which the existential quantifiers
can make appropriate choices to ensure the satisfaction of the formula when
starting in q.
We add one prophecy variable pq for every state q ∈ Q∃ as auxiliary variables
to our system and let pq guess whether the suffix of the universal traces is
in L(Aq∃). When pq guesses correctly and it is true for some state q, this
guarantees that, given that all traces together reached state q, there is an
accepting run on Aq∃ for the future behavior of the universally quantified
traces. This, in turn, means that there is an adequate choice to extend the
existentially quantified traces such that they together with the universally
quantified traces satisfy ϕ. Note that, as required, no assumption about the
future behavior of the existentially quantified traces is made.
Modify formula. To include the prophecy variables into the HyperLTL
formula, we construct formulas ∃atq0 . . . ∃atqx . ϕq that have the same lan-
guage as Aq∃ where we quantify one fresh atomic proposition for every of the
x + 1 states in Q×. The formula ∃atq0 . . . ∃atqx . ϕq intuitively encodes all
accepting runs in the automaton Aq∃ and formally is defined as follows:

∃atq0 . . . ∃atqx . atq (A.1)

∧ (
∨

(s,~υ,s′)∈δ∃

ats ∧ ats′ ∧ (
n∧
i=1

~υ[k]πk)) (A.2)

∧ (
∧
s∈Q×

∧
s′∈Q×\{s}

¬(ats ∧ ats′)) (A.3)

∧
∨
s∈B×

ats (A.4)

(A.1) ensures that every run starts in the current initial state, (A.2) ensures
that the transition relation of Aq∃ is followed and that the inputs correspond
to the n universally quantified traces where πk is the k-th universally quan-
tified trace, (A.3) ensures that the run is always at exactly one state and
(A.4) ensures that the run is accepting, i.e., that infinitely many accepting
states are visited.
We want every prophecy variable pq to be equivalent to the generated formula
∃atq0 . . . ∃atqx . ϕq. We include these equivalences as the premise into the
formula as described resulting in the following formula:

∀π1 . . . ∀πn. ∃π′1 . . . ∃π′m. (
∧
q∈Q×

(pqπ1 ↔ ∃atq0 . . . ∃atqx . ϕq))→ ϕ.

51

This formula explicitly captures all necessary information about the future
behavior of the universally quantified traces by using the QPTL-like subfor-
mulas.

Construct winning strategy. We describe a strategy that uses the infor-
mation captured by the prophecy variables to decide the next inputs ~υ∃ ∈ Υm

for the existentially quantified traces given the current inputs ~υ∀ ∈ Υn for
the universally quantified traces. The strategy assumes that the prophecy
variables correctly predict the future. To obtain a deterministic strategy,
fix some order on Υm and Q×. Our strategy σ : (Υn)∗ → Υm is defined as
σ(~ε∀) = ~ε∃ and σ(~u∀ ~υ∀) = ~υ∃ where ~υ∃ is the first input in Υm that can make
a transition from the current state q = σ′(~u∀) to the goal state q′ = σ′(~u∀ ~υ∀),
i.e., (q, ~υ∀ · ~υ∃, q′) ∈ δ×. If no such input ~υ∃ exists, set σ(~u∀ ~υ∀) = ~ε∃. The
strategy σ uses the function σ′ : (Υn)∗ → Q× that updates the state in the
safety automaton Sn+m ×Aϕ. This function is defined as σ′(~ε∀) = q×0 and
σ′(~u∀ ~υ∀) = q′′ where we obtain q′′ as follows: Let q = σ′(~u∀) be the current
system state. In the given order, try all inputs ~υ∃ and check the set of possi-
ble successor states δ×(q, ~υ∀ · ~υ∃). In the given order, check for all states q′ in
that set whether pq′ is true (i.e., whether pq′ ∈ l(q)[1]). Pick the first state q′

for which this holds and let q′′ = q′. If no such state exists, set q′′ = q×0 .

We prove by contradiction that the strategy σ is winning. Assume the strat-
egy is not winning. That means, there is a sequence of universal inputs
~w∀ ∈ (Υn)ω for which the strategy σ yields, step by step, a sequence of exis-
tential inputs ~w∃ ∈ (Υm)ω such that the resulting trace ρ, obtained from ~w

where ~w[i] = ~w∀[i] · ~w∃[i] for all positions i, through the self-composed sys-
tem Sn+m does not satisfy the following formula:

∀π∗. zip((
∧
q∈Q×

(pqπ1 ↔ ∃atq0 . . . ∃atqx . ϕq))→ ϕ, π1, . . . , πn, π
′
1, . . . , π

′
m).

�

This means the values of the prophecy variables always predict the future
correctly, but there is no accepting run on ρ through the automaton Aϕ. We
show, however, that it is possible to construct such an accepting run for the
given trace, thus contradicting the assumption that the formula was violated.
In fact, the accepting run we are looking for is the one calculated on the fly
by the function σ′ which keeps track of the state in Sn+m ×MH (Aϕ). The
second component of these states is a state of Aϕ. Since whether a run is ac-
cepting in Sn+m ×Aϕ always depends on whether the run in the Aϕ compo-
nent is accepting, we will, in the following, reason about runs in Sn+m ×Aϕ.
The sequence of states generated by σ′ is a valid run through Sn+m ×Aϕ by
definition of σ′, and it is accepting. To see that it is an accepting run and
thus, our strategy is winning, recall that Sn+m ×Aϕ is the self-composition

52 A. Completeness Proof

of the system combined with the safety automaton for the quantifier-free Hy-
perLTL formula ϕ that is a safety property. Given the universally quantified
traces, we show by induction over the length l of the prefix that σ extends
the existentially quantified traces in a way that the run constructed by σ′

never leaves the set of safe states. Thus, there never is a bad prefix, so the
run is accepting and the safety property ϕ holds for these traces.

In the base case, we consider the prefix of ~w∀ with length l = 1, i.e., we have
some ~υ = ~q∀[0] ∈ Υn. Calculate σ(~υ) = σ(~ε∀ · ~υ). For that, σ′(~ε∀) = q×0 is
computed, as well as σ′(~υ). During the computation of the latter, inputs
~υ′ ∈ Υm to extend the existentially quantified traces and a corresponding
successor state q′ ∈ Q× for which pq′ holds are found. We know that these ~υ′

and q′ exist so that the default option of σ′ is not used, because we assume
that the hyperproperty holds and the prophecy variables always guess cor-
rectly. Knowing that the hyperproperty holds means that from the initial
state there is, for all possible universally quantified traces, a corresponding
choice of the existentially quantified traces that together generate an accept-
ing run through Sn+m ×Aϕ. Because such an accepting run must exist,
there has to be one reachable next state that lies on this run. For this suc-
cessor state the corresponding prophecy variable has to be true as we know
that this state lies on an accepting run and the prophecy variables always
guess correctly. Thus, at least this one prophecy variable has to be true (if
there is just one accepting run) and σ′ uses the found successor state for q′

and the existential inputs that lead to this state for ~υ′. This ~υ′ is also the
value that σ(~υ) returns for the first position of the existentially quantified
traces. We know that from the initial state in the non-deterministic safety
automaton Sn+m ×MH (Aϕ) we can reach state q′ with ~υ · ~υ′ (σ′ checked
this). Moreover, we know that q′ is part of an accepting run that has to ex-
ist because pq′ is true. Thus, ~υ · ~υ′ cannot be a bad prefix for the property ϕ
and we know that choosing ~υ′ does not violate the property.

The induction hypothesis now states that for prefixes of all lengths l the
choices of σ create a run that is safe up to the current state and the choices
did not lead to a bad prefix yet. Moreover, we know that the prophecy vari-
able from the previous step promised that there exists an accepting run from
the current state for the predicted future behavior of the universally quanti-
fied traces. In the induction step, we show that we can extend this one more
step to a prefix of length l + 1. Given the prefix of ~w∀ with length l + 1, i.e.,
we have some ~ul · ~υ = ~w∀[0] . . . ~w∀[l] with ~ul ∈ (Υn)l and ~υ ∈ Υn. Calculate
σ(~ul · ~υ). For that, σ′(~ul) = q is computed, as well as σ′(~ul · ~υ). During the
computation of the latter, inputs ~υ′ ∈ Υm to extend the existentially quan-
tified traces and a corresponding successor state q′ ∈ Q× for which pq′ holds
are found. We know that these ~υ′ and q′ exist so that the default option

53

of σ′ is not used, because the induction hypothesis and the correctness of the
prophecy variables’ previous guesses mean that there has to be at least one
choice for ~υ′ that leads to a successor state that lies on the existing accepting
run. The function σ′ returns one appropriate successor state because also in
the current step the prophecy variables guess correctly by assumption and,
thus, at least one pq′ has to be true. This prophecy variable points to a suc-
cessor state q′ that lies on an accepting run for the predicted future behavior
of the universally quantified traces. Thus, the corresponding input ~υ′ that σ
returns does not violate the formula because it does not cause a bad prefix.
This is known because there is an accepting run where q′ is a successor state.
Because σ avoids causing a bad prefix in every step, we can conclude that
nothing bad ever happens. Thus, ~w∀ together with ~w∃ defined by σ result in
a trace ρ that satisfies the formula and the run created by σ′ is an accepting
run in Sn+m ×MH (Aϕ). So, we can conclude that the strategy σ is winning.
�

Appendix B

Reviews

In this chapter, the reviews1 that we received are printed. First, the reviews
to the paper are given before the changes that we made for the camera-
ready version are described. Then, the reviews from the artifact evaluation
committee follow.

B.1 Reviews to the Paper

We received three reviews for the paper and a Metareview summarizing the
three main reviews. All of the reviewers were in favor of accepting the paper
to CAV’19. The overall evaluation of two of the reviews was ‘accept’ (total
score 2) and the third review voted for a ‘weak accept’ (total score 1).

• Review 1: Overall evaluation: 2 (accept)

The paper addresses the problem of verifying that a finite-state sys-
tem satisfies a HyperLTL property with a single quantifier alternation:
∀∗∃∗ or ∃∗∀∗. To verify such properties while avoiding the (known)
high complexity, the authors suggest an incomplete reduction to veri-
fication of universal HyperLTL properties. The reduction replaces the
existential path quantifiers with a strategy for computing the corre-
sponding paths. If the strategy is given, verification reduces to the
much simpler task of verifying universal properties. To improve the
applicability of the reduction (which is in general incomplete, i.e., a
system may satisfy the property even though no strategy exists), the
authors consider augmenting the system with prophecy variables.

1All reviews are printed without major changes. The only changes that were made
address the presentation of the reviews to increase the readability including formatting,
adding LATEX-math mode, correcting the capitalization and obvious typos, e.g., talsk to
talks. The content is, however, unchanged.

56 B. Reviews

To find strategies, the authors suggest a bounded synthesis approach
based on encoding the problem of finding a strategy via logical con-
straints.
Finally, the authors also consider synthesis of a system that satisfies
a given HyperLTL formula with one quantifier alternation. Synthesis
is also based on the concept of strategies and essentially decomposes
synthesis for properties with one quantifier alternation to synthesis of
a system for a quantifier-free property together with a strategy.
The verification approach has been implemented in MCHyper, where
the strategy is manually provided. The authors consider a few ex-
amples that were previously verified by manually approximating the
property, and show that their approach is comparable in terms of run-
ning time.
Synthesis was implemented in a separate tool. As expected due to the
high complexity, it manages to synthesize only tiny programs (up to 3
states).
The paper is well written and I enjoyed reading it. It brings together
several known ideas from other contexts to obtain a new approach for
tackling verification as well as bounded synthesis of hyperproperties
with quantifier alternations. It makes a significant theoretical contri-
bution in the area of verifying HyperLTL properties. The practical
contribution is less clear, since the approach doesn’t seem to scale very
well (the verification problems have at most 90 latches, and do not
even include the synthesis of the strategy, and the synthesis problems
have at most 3 states).
Small comments:
– The use of strategies instead of existential quantifiers (including

prophecy variables) resembles ideas used in verification of CTL∗,
e.g.:
Byron Cook, Heidy Khlaaf, Nir Piterman: On Automation of
CTL* Verification for Infinite-State Systems. CAV (1) 2015: 13-
29

– There are some clashes in the notations. For example, in page
5, τ first denotes the transition function of a transition system,
and later denotes a node in a tree. In page 5, def of transition
systems, it is worth noting that you assume AP = I ∪ O (as the
definition of HyperLTL talks about AP). In page 6, τ∗ denotes
the transition function of the composition of a transition system
with a strategy. This clashes with the extension of τ to sequences.

– Isn’t verification of ∃∗∀∗ properties easier than verification of ∀∗∃∗
properties? Some discussion seems in place.

B.1. Reviews to the Paper 57

– Thm 4: please say that σ is a finite-state strategy (or say earlier
that all strategies you consider are finite-state). Otherwise, the
composition with σ is not well defined.

– p9 "Towards Completeness": You say "Our completeness result is
restricted to finite-state systems..." – my understanding was that
the entire paper is formulated for finite state transition systems
(this is the definition in the preliminaries). If you had in mind a
more general setting, it is worth stating explicitly.

– Thm 6: Please state the extension of HyperLTL more formally.

– p10-p11 "Bounded Synthesis of Strategies" – You switch between
ϕ and ψ in an inconsistent manner.

– Thm 8: Please define the acceptance condition. I assume it is
inherited from the property automaton, and is therefore a co-
Büchi condition. In fact, where did you use a parity acceptance
condition in the paper?

– The definition before Lemma 1 could use some explanation. I
first read the definition of the initial vertices as requiring that for
every v, init(v)=t (for the same t). I suggest rephrasing to avoid
such confusion.

• Review 2: Overall evaluation: 1 (weak accept)

This paper introduces an algorithm for verifying HyperLTL formulas.
HyperLTL is an extension of LTL that allows quantifying over program
traces, which allows the expression of hyperproperties (standard LTL
does not allow reasoning across multiple program traces). Previous
work supports only HyperLTL formulas expressed without quantifier
alternation e.g. properties involving only forall-quantifiers, which cor-
respond to hypersafety properties. A transformation exists for reduc-
ing all properties to this subclass, but it is prohibitively expensive. A
game-theoretic solution is proposed for solving formulas with a single
quantifier alternation: Validity is implied by the existence of a strategy
for selecting existential witnesses given universal choices. This initial
solution is deliberately incomplete in order to remain tractable: specif-
ically, the existential player is only allowed to view past choices of the
universal player. This limitation is partially worked around by adding
prophecy variables to the input formulas, which allow bounded looka-
head. It is shown how to automatically synthesize a strategy and ap-
propriate prophecy variables (up to a user-given bound on lookahead)
by encoding the problem as an SMT instance. Finally, the algorithm
is extended to support arbitrary quantifier alternation.

58 B. Reviews

In summary, the paper addresses an important and well-motivated
problem and presents a nice solution that advances the state of the
art. But, there are problems with the presentation.
The title is misleading. The proposed solution does not work for just
hyperliveness properties, but for all hyperproperties. I recommend the
authors change the title to Quantified HyperLTL Verification, to better
reflect the core contribution of the paper in the title.
The paper is nicely structured and I believe I understand the general
idea (which I find clean and well-motivated). The introduction is the
worst written part of the paper. I had to look up 3 papers to fully
understand what was going on with the properties used as an example
in the introduction. A little more effort, and a mention of nondeter-
minism as the source of the problem would ease the reader into the
context much better.
More importantly, there are a few errors in the technical part of the
paper which hinder forming an in-depth understanding of the specifics
- particularly the encoding of the problem as an SMT instance. These
are:
1. The definition of] is given as (x] y)[i] = x[i] ∪ y[i], but x and

y are not defined to be vectors of sets.
2. The definition of trees given at the end of page 5 is unclear. Are

these trees finite or infinite? Condition (ii) is given for every node
τ and every positive integer n. Does this not imply that every
node has an infinite number of children? If so the introduction
of m is unnecessary, since m effectively ranges over every positive
integer as well.

3. There is a minor error in the definition of transition systems on
page 5: τ∗(ε) should be defined as t0, not q0.

Finally, the set of benchmarks is very small and does not instill con-
fidence that the solution performs well on more diverse examples. If
tractability is the main issue for this problem space, one cannot con-
clude that that problem has been sufficiently solved based on the ex-
perimental results presented in the paper.
Related to this last point, consider a property like linearizability. At
least on the surface, it looks like a ∀∃ type property (i.e. for all paths,
there exists an equivalent sequential path). Why not take a property
like this which is more familiar than the rest, and show that the algo-
rithm performs well?
If this paper were well-written, it would be a clear accept for me.
Under these conditions (problems with the writing and the extent of
experimentation), I am on the fence about it.

B.1. Reviews to the Paper 59

• Review 3: Overall evaluation: 2 (accept)
The paper considers model checking HyperLTL properties with one
quantifier alternation (either ∀∃ or ∃∀). The proposed technique uses
a strategy implemented by a transition system as a witness for the exis-
tential quantifiers, which reduces the problem to checking a universally
quantified formula (similar to Skolemization). Using a strategy raises
an issue of incompleteness, which the authors explore and address using
prophecy variables. The paper considers both user provided strategies
and automatically synthesizing strategies. The paper also considers
automatically synthesizing reactive systems based on HyperLTL spec-
ifications with quantifier alternations.
The paper considers a well-defined problem and seems to have a clear
contribution beyond the state-of-the-art. The suggestion to use a strat-
egy as a witness for existential quantifiers is appealing and natural, and
the nice issue of incompleteness that it raises is explored by the paper.
I also liked Theorem 6, which clearly explains what is needed for com-
pleteness. I found the paper clear and well-written. Below, I list a few
points that were less clear, and more minor presentation issues.
One point that was not clear enough for me was the restriction to one
quantifier alternation. It seems that some parts of the paper assume
one quantifier alternation, while others do not take this restriction.
My understanding is that the evaluation included only formulas with
one quantifier alternation. However, it seems that the proposed tech-
nique could in principle be applied to any quantifier structure, same
as Skolemization in first-order logic. Theorems 4 and 5 seem to easily
generalize to arbitrary quantifiers, and it is intriguing if Theorem 6 gen-
eralizes as well. Either way, the paper can be improved by addressing
this more clearly.
The evaluation section spends most of the discussion about model
checking with given strategies, while I think the more interesting part
is the one where the witness strategy is synthesized. If the strategy
is manually provided, the difference from model checking of universal
HyperLTL properties seems superficial.
A missing reference is:
Finkbeiner B., Hahn C., Hans T. (2018) MGHyper: Checking Satisfia-
bility of HyperLTL Formulas Beyond the ∃∗∀∗ Fragment. ATVA 2018.
(https://doi.org/10.1007/978-3-030-01090-4_31).
While this tool paper uses a different technique compared to the sub-
mission, it seems to solve the same problem: Model checking HyperLTL
with quantifier alternations. It would also be interesting to compare
to this tool in the evaluation.

https://doi.org/10.1007/978-3-030-01090-4_31

60 B. Reviews

Page 7, before Theorem 3: "... more difficult and, thus, intractable in
practice". I find it problematic to say that a problem is intractable in
practice because it is EXPSPACE-complete, while a PSPACE-complete
problem is regarded as tractable. The complexity classes are impor-
tant to understand, but they do not tell the full story of “tractable in
practice”.
Page 7, before Section 3: “we present a technique that solves the com-
plexity problem” – rephrase to be more accurate.

• Metareview: The reviewers found the paper to be well-motivated
and to make a significant contribution to the state of the art, despite
some concern about scalability and generality of the method. Though
there were some issues concerning clarity of the presentation, the re-
viewers feel that these can be addressed.

B.1.1 Changes Made for the Camera-Ready Version

This thesis is based on the model checking parts of the final version of the
paper “Verifying Hyperliveness” [15]. In this thesis, we have adapted the
presentation of the results and extended the description of the experiments
giving much more details about the experimental evaluation for MCHyper.
For the final version, we made some changes to the paper. Following the re-
viewers’ suggestions, we fixed the issues with the presentation for the camera-
ready version. In particular, we have improved the introduction giving more
intuition and context about the HyperLTL formulas used as examples and
we have fixed the inconsistencies and typos found by the reviewers.
Moreover, we omitted the paragraph “Towards Completeness”. Even though
Reviewer 3 liked our exploration of the incompleteness of our approach we
had to agree with Reviewer 1 that the presentation of the necessary extension
needed to be improved. While we removed this part for the final version of
the paper, we have included an improved version of it in this thesis.

B.2 Reviews to the Artifact

We submitted a virtual machine containing our experimental data to the
CAV artifact evaluation committee. This was not required for regular papers
but we were invited to submit our artifact for evaluation. If the evaluation is
successful, i.e., if the artifact evaluation committee can reproduce the results
of the experiments reported in the paper using the provided virtual machine
and the artifact was well documented, then the paper is allowed to use a seal
that shows the successful artifact evaluation.
We received three reviews to our artifact, all with a total score of 2 (accept).
The final version of our paper [15] therefore uses the artifact evaluation seal.

B.2. Reviews to the Artifact 61

In the following, we print the reviews to our artifact containing the extension
of MCHyper and the extension of the bounded synthesis tool BoSy.

• Review 1: Total score: 2 (accept)

Easy to reuse.

– The provided artifact has README.md for running benchmarks
and the virtual machine has all the running environment config-
ured.

– It would be helpful to provide an instruction of installing virtual
machine.

Consistent.

– The actual running time measured by running the artifact on
the provided virtual machine is smaller than the time reported
on paper, and this has been mentioned in the README of this
artifact. It is better to provide some explanations for this case.

– The reported time of running these benchmark has three different
time metrics (real, user, sys), it is better to give instruction on
choosing which time metrics to add/sum.

Complete.

– All the benchmark results of execution time match the expected
range declared by the author and consistently smaller than re-
ported results in the paper.

Well documented.

– The artifact is well documented with README to building and
running programs.

– I didn’t find the demonstration of applying the presented method
to new input.

• Review 2: Total score: 2 (accept)

Summary

This paper studies hyperliveness properties expressed as HyperLTL for-
mulas with quantifier alternation. I evaluated the two tools in the pro-
vided VM, namely an extension of MCHyper and a separate bounded
synthesis tool with z3. I’m running the evaluation in a VM with 8G
of RAM, i5 2.9GHz (host), 1 core (default setting of the VM).

Reusability

The artifact is easy to reuse. The provided readme files contain tool
building instructions and running instructions. I follow the running in-
structions and the two experiments run successfully within the given/ex-
pected time.

62 B. Reviews

Consistency and Completeness
I can reproduce most of the reported results from the paper consis-
tently and completely, but it seems that a few experiments from the
MCHyper take slightly more time than reported:
Line 5 in Table 1 (reported 50.6s)
Try 1: 55.058s

Try 2: 57.700s

Try 3: 49.709s

Line 6 in Table 1 (reported 27.5s)
Try 1: 37.204s

Try 2: 31.481s

Try 3: 34.089s

Line 8 in Table 1 (expected < 8min)
Try 1: 7m12.627s

Try 2: 8m8.870s

Try 3: 8m45.136s

The above are results collected from three separate runs. Specifically
for Line 6, the time costs from all the three separate runs are consis-
tently more than 27.5s in the paper.
The BoSy-cav experiment sets perform better than reported, as indi-
cated in the README files provided.
Documentation
The documentation is detailed and easy to follow. The artifact also
provides further options of the experiment.

• Review 3: Total score: 2 (accept)
The provided artifact is reasonably easy to reuse following the included
documentation and scripts. The provided scripts were very helpful in
reproducing the results in the tables, and I could reproduce all the
results in the tables. As mentioned in the MCHyper README, the
times reported on the VM for the MCHyper results were consistently
faster than the ones in the paper. How to apply the MCHyper tool
to new inputs is clearly documented in the corresponding README.
How to apply the BoSyHyper tool to new inputs is not as clearly
documented, though I believe examining the provided script for repro-
ducing the synthesis results would allow one to apply the tool to new
inputs.

	Preface
	Individual Contributions
	Statement and Declaration of Consent

	Abstract
	Introduction
	Related Work

	Preliminaries
	LTL
	HyperLTL
	Transition Systems
	Büchi Automata
	Model Checking HyperLTL
	Strategies

	Model Checking HyperLTL with Quantifier Alternations
	Using Strategies
	Using Prophecy Variables
	Towards Completeness

	Implementation and Experimental Evaluation
	Implementation of MCHyper
	Extension of MCHyper
	Using Prophecy Variables

	Experimental Evaluation
	Symmetry in Mutual Exclusion Protocols
	Software Doping

	Tutorial and Online Interface

	Conclusions
	Bibliography
	Completeness Proof
	Reviews
	Reviews to the Paper
	Changes Made for the Camera-Ready Version

	Reviews to the Artifact

