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Abstract

HyperLTL is a temporal logic defined as an extension of the well known

Linear-time temporal logic (LTL).

In LTL it is possible to express properties of single execution traces of a

system. This is the reason why LTL is commonly used as the specifica-

tion language for verification and synthesis tools. Synthesis describes the

problem of finding a system that guarantees to satisfy the specification pro-

vided as an LTL formula whereas in verification it is checked whether every

possible execution trace of a given system fulfills the specification. Both

techniques aim to prove systems correct which is highly desirable especially

in security relevant scenarios.

Although LTL formulas do implicitly reference all paths of a system it is

not possible to specify relations between multiple paths explicitly. However,

there are some interesting properties like noninterference and observational

determinism that are only expressible if several paths can be referenced

independently. Properties requiring this additional power are also called

hyperproperties. Many interesting information flow security policies belong

for instance to the set of hyperproperties.

HyperLTL is obtained from LTL by adding explicit path quantifiers. This

already allows the expression of many interesting hyperproperties.

In this thesis we will develop a deductive proof system for the ∀∗, the ∃∗ and
the ∀∗∃∗ fragments of HyperLTL based on the proof systems of CTL∗ and

ATL. This will make it possible to prove HyperLTL properties of general

infinite-state systems, which are beyond the scope of current model checking

techniques. Moreover, we will prove that the proof system is sound and for

finite-state systems we will achieve relative completeness.
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Chapter 1

Introduction

In computer science studying logics is a very old and central field. As com-

puters today become more and more important in our daily lives, computer

science evolves very fast and new fields emerge. For example, in human

computer interaction ubiquitous computing is a big topic. This term was

coined by Mark Weiser who predicted in the 1990s that in the 21st century

everybody will have several computers that will be perfectly integrated into

our everyday lives and thus be nearly invisible to humans [28].

With computers being ubiquitous, used effortlessly and partly unconsciously

on a daily basis, questions of security and privacy naturally occur. A lack of

security might have severe effects, especially for computers used in security-

relevant settings like cars or airplanes. In order to prevent computer-caused

accidents, proving the correctness of the software used is a desirable compe-

tence.

In a first step, it is necessary to formalize what the system is supposed to do.

This is called the specification the system should fulfill and it is traditionally

expressed as a logical formula.

Additionally the system itself has to be modeled. Mostly we consider reac-

tive systems, i.e. systems that continually interact with their environment.

These systems rarely terminate but are supposed to run infinitely long. A

typical example of a reactive system is a vending machine which runs forever

and is required to properly react to the orders of the people in its environ-

ment. Usually transition systems are used as a model for this kind of system.

Such a transition system represents the different states, the reactive system

can be in and the transitions between these states. The states of the transi-

tion system are labeled. When running, the behavior of the reactive system

defines an infinite sequence of states (called path) through the transition
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system. This path defines an infinite sequence of labels (called trace) when

considering the labels of every state in the path.

A transition system can be verified against a specification by using model

checking, a verification technique introduced by E. M. Clarke and E. A.

Emerson in 1981 [8]. This technique checks if every path through the system

model satisfies the specification. If this is the case the system guarantees to

show the desired behavior.

Another even older approach to the design of correct systems was intro-

duced by Church in 1963 and is called synthesis [7]. Here a system model is

generated automatically by the synthesis tool according to the input speci-

fication. The resulting system is guaranteed to be correct in the sense that

it fulfills the specification. If no such system exists the synthesis tool does

not output any system model.

Both approaches have in common that the specification describing the de-

sired system behavior has to be formulated mathematically precise. Since

1977 temporal logics provide a suitable formalism to do so. In that year Amir

Pnueli introduced Linear-time Temporal Logic (LTL) [19]. Today LTL and

its related logics Computational Tree Logic (CTL) [8] and CTL* [12] are

widely used as specification languages for verification and synthesis tools.

They already suffice to express a wide range of desired system properties

and thus allow the formal verification using these specifications as inputs.

However, especially in the area of privacy and security requirements there are

many properties that cannot be expressed using these logics. Observational

determinism is one of these properties [9]. It requires a system containing

high and low security components to behave as a deterministic function from

the low security inputs to the low security outputs from every low security

user’s point of view. This ensures that no information contained in the high

security components is leaked to a low security user. Whenever sensitive

information should be kept secret in a system, although many users have

access to it, this requirement is crucial. Consider for example a financial

institution. None of the customers wants their account balance to be leaked

to any unauthorized person.

Observational determinism cannot be expressed in LTL because it requires

to establish a relation between two different system paths at a time. Neither

LTL nor CTL* are expressive enough to specify relations between multiple

explicitly referenced paths. The formulas of both logics can only reason

about one path at a time. Hence, verification of secrecy constraints is limited

when using these logics as specification languages. In order to enable the

verification of properties describing relations between multiple paths we need
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to use another specification language that allows the formalization of these

properties.

By extending LTL and CTL* with explicit path quantifiers we gain the

temporal logics HyperLTL and HyperCTL* respectively [9]. In formulas of

these logics it is possible to directly address the different quantified paths and

thus to express desired relations between them. The following HyperLTL

formula expresses observational determinism [14]:

∀π.∀π′. (
!
a∈L

aπ ↔ aπ′) → (
!
a∈O

aπ ↔ aπ′)

where L ⊆ AP contains all low security input variables and O ⊆ AP is

defined to be the set of all low security output variables. The formula

requires that every pair of traces in a system with the same values for the low

security input variables also has to have the same low security outputs along

the whole traces. This means that the system behaves like a deterministic

function in the view of a low security user.

Desired system behavior like observational determinism needs the explicit

quantification over paths to be formally expressed in order to define relations

between these different paths. Every specification that compares and reasons

about more than one path defines a so called hyperproperty [14]. Trace

properties in contrast only describe the observable characteristics of a single

path and are therefore less powerful. However, every trace property can

also be expressed as a hyperproperty by simply using only one quantified

path. Using a logic for hyperproperties like HyperLTL or HyperCTL* as the

specification language for verification and synthesis tools would thus enable

the verification of a wider range of desired system performances including

many privacy and security requirements.

A deductive proof system for a logic allows to derive new theorems from the

axioms of the logic. It offers the possibility to find sound deductive proofs for

new theorems by applying the inference rules of this proof system. Having

a proof system for a logic is therefore very beneficial and allows to examine

the logic more closely. In this thesis we will develop such a deductive proof

system for HyperLTL. The logic and the proof system presented are related

to other temporal logics and their proof systems. Both will be reviewed

briefly in the following section.

Related Work

Finkbeiner and Rabe classified the logics for hyperproperties into the field of

temporal logics in [14]. They examine the logics LTL, CTL*, HyperLTL and

HyperCTL* regarding their ability to express hyperproperties and linear- or

branching-time properties.
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LTL operates, as its name already suggests, on the linear-time side. It

was introduced in 1977 by Amir Pnueli [19] and can express linear-time

trace properties that specify the behavior of a single trace. In 1986 the

logic CTL* that subsumes LTL was defined by Emerson and Halpern [12].

This temporal logic can express every branching-time trace property. CTL

is another sublogic of CTL* introduced by Clarke et al. in 1982 [8]. Like

CTL*, it expresses branching-time properties but it is not expressive enough

to define every trace property.

Nevertheless, none of the above logics is expressive enough to formalize

any hyperproperty. This holds even for CTL* which subsumes both LTL

and CTL. Although CTL* offers special path quantifiers, its formulas can

only reason about one implicitly referenced path at a time. Therefore, it is

impossible to specify any explicit relations between multiple paths because

these different paths cannot be addressed.

In order to be able to express hyperproperties, it is essential to be able

to reference different paths in the formula. This is achieved by Clarkson,

Finkbeiner et al. [9] by introducing explicit path quantifiers that bind path

variables. Hence, HyperLTL and HyperCTL* are obtained as extensions of

LTL and CTL* respectively. Both logics can express hyperproperties be-

cause explicitly quantified paths can be referenced within the formula. The

desired relation between these quantified paths can then be formalized using

the path variables. According to their origin, HyperLTL and HyperCTL*

integrate similarly to LTL and CTL* into the linear- vs. branching-time

range. HyperLTL can formalize linear-time hyperproperties and Hyper-

CTL* is able to express all hyperproperties, the linear-time as well as the

branching-time ones.

Alternating-time Temporal Logic (ATL) was introduced by Alur et al. in

2002 [3]. Its system model is a game structure with different players. Like

CTL*, ATL* offers quantification over all computation paths through the

model. However it uses the selective quantifier 〈〈A′〉〉 where A′ is a subset

of the set of all players A. The formula 〈〈A′〉〉ϕ states that the players in

A′ have a set of strategies to ensure the satisfaction of ϕ regardless of the

behavior of the players in A \ A′. By using 〈〈∅〉〉 and 〈〈A〉〉 the universal and

existential quantification can be expressed respectively by using the selective

quantifier. This shows that ATL* is a generalization of CTL*.

The playful aspect of the ATL* semantic can also be found in HyperLTL.

Consider a formula of the following form:

∀π1.∃π2.ϕ
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This formula requires that path π2 can always be chosen adaptively to the

choice of π1 such that ϕ is fulfilled. The actual selection of π2 can be seen

as applying a strategy that chooses a path π2 when given a choice for π1. If

the formula ∀π1.∃π2.ϕ is satisfied then the strategy can always give a correct

path choice for π2.

Because of these semantical similarities we can benefit from a proof system

for ATL* while constructing the proof system for HyperLTL. In 2006 Slanina

presented the ATL* proof system on which the HyperLTL proof system will

be based [23]. This proof system uses automata-theoretic results to reduce

the proofs of arbitrary ATL* properties to proofs in the underlying assertion

language [23].

For LTL and CTL* proof systems have been developed earlier. In 2002

a relatively complete deductive proof system for CTL* was presented by

Kesten and Pnueli [20]. A sound and relatively complete proof system for

LTL was proposed about 10 years earlier in 1991 by Manna and Pnueli [17].

It was the first that completely reduced temporal reasoning to assertional

reasoning [17].

Contribution

To contribute to the field of formal verification we will develop a sound proof

system for the ∀∗∃∗ fragment of the temporal logic HyperLTL within this

thesis. For finite state systems and safety formulas, the proof system will

achieve completeness relative to the underlying assertion language.

HyperLTL can formalize more than trace properties because the explicit

trace quantification allows to express all linear-time hyperproperties. Using

HyperLTL as the specification language of verification and synthesis tools

thus allows to formally prove every specification expressible in HyperLTL.

There are many interesting privacy and security requirements that can be

formalized as a hyperproperty using the logic HyperLTL. For proving that

these properties hold on a given system the presented proof system can be

used. For example, it is possible to formally verify that a given system

does not leak any sensitive data. This is a highly desirable requirement

every application in any security-relevant setting should fulfill. Being able

to formally prove that a system meets this specification will influence how

much users trust this application. Hence, the presented proof system is very

beneficial when it comes to model checking security requirements and to

verify information-flow security policies like the absence of data leakage.

The proof system presented in this thesis provides valuable insights into the

formal verification of hyperproperties. These insights will help finding new
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verification methods and algorithms for proving hyperproperties in general

and information security requirements in particular.

Overview

The remaining part of this thesis is structured as follows. In chapter 2 we

will give an introduction to the basic concepts used throughout this work.

We will present different computational models and temporal logics before

introducing Büchi automata and some standard properties of proof systems.

In chapter 3 we will develop the proof system for HyperLTL and show that

it is sound but not complete. In order to achieve relative completeness of the

proof system we introduce an additional proof rule in chapter 4 and show

that with this rule the proof system is complete for finite-state systems and

safety properties. Chapter 5 will give a summary of this thesis present an

outlook on future work.



Chapter 2

Preliminaries

In the following we will introduce the basic concepts needed to understand

this thesis. We will start by presenting the computational models on which

we can evaluate logical formulas. Afterwards, we formally introduce the

temporal logics we will work with using the corresponding computational

models. Then a brief introduction to Büchi automata will be given before

we will discuss properties of proof systems in general.

2.1 The Computational Model

Kripke Structures with Transition Identifiers

Kripke structures are commonly used to model closed systems [3]. Closed

systems are systems whose behavior only depends on the system but not

on for example its environment. The formulas of LTL and HyperLTL are

defined over the traces of a Kripke structure.

A Kripke structure with transition identifiers K = (Q, q0, d, δ, AP, l) consists

of the following components:

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• d : Q → N∗ gives the number of outgoing transitions for every state

q ∈ Q. The transitions starting in state q are identified by the numbers

1, . . . , d(q).

Every state in Q has to have at least one outgoing transition, i.e.

∀q ∈ Q. d(q) ≥ 1 to ensure that every path can be extended to infinite

length.
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q0 q1

1
2

1

2

with l(q0) = {a} and l(q1) = {b}.

Figure 2.1: Kripke structure K

• δ : Q× N∗ → Q is the transition function yielding a unique successor

state when given a state and the identifier of a particular transition.

δ(q, i) is defined for all outgoing transitions i of every state q ∈ Q:

∀q ∈ Q. ∀ 1 ≤ i ≤ d(q). ∃s ∈ Q. δ(q, i) = s where s denotes the

successor state of q when taking the transition identified by i.

• AP is the set of atomic propositions.

• l : Q → 2AP is the labeling function assigning a set of atomic propo-

sitions to every state in Q.

The transition identifiers are introduced to the Kripke structures in order

to allow a straightforward transition from Kripke structures to concurrent

game structures which will be defined subsequently. In the following we will

only consider Kripke structure with transition identifiers and simply refer

to them as Kripke structures.

Example 2.1 (Kripke Structure)

Kripke structures are usually presented graphically as in Figure 2.1 instead

of using the tuple notation directly.

The states are labeled with their names from the set Q and the labeling

function is written underneath the Kripke structure. The initial state is

marked with an incoming edge without any predecessor. The transitions

are represented via edges connecting every state with its successor state.

For every state q d(q) is exactly the out-degree of state q. We identify the

outgoing transitions of a state q by the numbers 1, . . . , d(q) in clockwise

direction starting at the top as illustrated above. □

When working with Kripke structures we often argue about the paths or

traces of these structures. In the following these terms are defined.

A path p = s0s1s2s3 . . . of a Kripke structure is an infinite sequence of states

where the first state has to be the initial state, i.e. s0 = q0 and ∀i ∈ N. ∃ 1 ≤
j ≤ d(si). δ(si, j) = si+1. In the example above p = q0q0q1q0(q1)

ω is a path

of this Kripke structure. The set of all paths of a Kripke structureK starting

in state s is denoted by Paths(K, s). Paths∗(K, s) also contains all suffixes
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of these paths. This means that for every path p in Paths(K, s) and every

natural number i there is a path p′ in the set Paths∗(K, s) which is equal

to p with the first i states deleted.

A trace t ∈ (2AP )ω of a Kripke structure is an infinite sequence of atomic

propositions generated by a path, i.e. ∀i ∈ N. ti = l(si) for a path p =

s0s1s2s3 . . . through the Kripke structure. The trace t of path p for our

example is {a}{a}{b}{a}({b})ω. The set Tr(K, s) represents the set of all

traces of paths in Paths(K, s) and Tr∗(K, s) denotes all their suffixes.

Now we will introduce some important operations on traces and paths.

Given a trace (or path) t and a natural number i, we write t[i] to denote

the i-th element of t. In the special case where i = 0, t[0] yields the set of

atomic propositions that hold in the first state of the corresponding path.

When we are only interested in a certain part of a trace, we write t[i, j] for

natural numbers i and j to access the partial trace titi+1 . . . tj−1tj . t[0, i]

thus gives the finite prefix of t ending with element i and t[i,∞] represents

the infinite suffix of t starting with element i.

Concurrent Game Structures

Concurrent game structures are suitable to model compositions of open sys-

tems. Open systems are systems whose behavior is dependent on the en-

vironment and the system itself [3]. The semantic of ATL* is defined over

concurrent game structures.

A concurrent game structure S = (A,Q,AP, l, d, δ) is defined by the follow-

ing components:

• A is a set of players (or agents).

• Q is a finite set of game states.

• AP is a set of atomic propositions.

• l : Q → 2AP is a labeling function assigning a set of atomic propositions

to every state.

• dpl : Q → N∗ gives for every state q ∈ Q and every player pl ∈ A

with 1 ≤ l ≤ |A| the number of possible moves. To ensure the infinite

continuation of every path, it is required that in every state every

player has at least one possible move. The different moves of pl in q

are identified by the numbers 1, . . . , dpl(q).

If we consider a state q with exactly one move jpl per player pl we

obtain a move vector (jp1 , . . . , jp|A|), where ∀1 ≤ l ≤ |A|. 1 ≤ jpl ≤
dpl(q) holds. D(q) = {1, . . . , dp1(q)}× . . .× {1, . . . , dp|A|(q)} is the set

of all move vectors for state q and D is called move function.
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• δ is the transition function that takes a state q ∈ Q and a move

vector from the set D(q) and yields the successor state s ∈ Q that

is reached from q if all players choose their moves according to the

given move vector. Formally ∀q ∈ Q. ∀(jp1 , . . . , jp|A|) ∈ D(q). ∃s ∈
Q. δ(q, (jp1 , . . . , jp|A|)) = s.

Note that Kripke structures are a special case of concurrent game structures

where A is a singleton containing only the system player [3].

A computation λ = q0 q1 q2 . . . of a concurrent game structure is, like a path

of a Kripke structure, an infinite sequence of states where ∀i ∈ N. ∃v ∈
D(qi). δ(qi, v) = qi+1. Given two natural numbers i and j we use λ[i] to

access the i-th element of the computation λ and λ[i, j] to denote the partial

computation qiqi+1 . . . qj−1qj . These operations are defined analogously to

the trace manipulation operations.

The different players of a concurrent game structure may have different

objectives. Depending on the choices of all other players one player may

have to decide in different ways in order to achieve her goal. These different

decisions are compromised in so called strategies.

A strategy σpl : Q+ → N∗ for a player pl ∈ A maps every finite prefix of

a computation q0 . . . qn to a natural number i = σpl(q0 . . . qn) with 1 ≤ i ≤
dpl(qn) and 1 ≤ l ≤ |A|. Thus the strategy σpl determines a move i for

player pl on the current state depending on its history. If the strategy does

not need the information given by the history but only works on a single

state qn, the strategy σpl : Q → N∗ is called memoryless.

Let A′ ⊆ A be a set of players. We consider the set FA′ = {σpl | 0 ≤ l ≤ |A′|}
of strategies containing exactly one strategy per player pl ∈ A′. Using this

notation we can define out(q, FA′) as the set of computations starting with

the state q where all players in A′ choose their moves according to their

strategies in FA′ . The choices of the players in A \ A′ are arbitrary. The

players in A′ together with their strategies in F ′
A can enforce the computa-

tions of the set out(q, FA′).

2.2 Temporal Logics

In computer science logic plays a central role in a wide range of applica-

tions. One of them is formal system verification. As already discussed in

the introduction, logical formulas are used to formally specify the desired

behavior of a given system. It is especially important that these formulas

cover all relevant aspects of this behavior with respect to the real world. If

it is for example required for a system to answer a request in a given time
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span, this demand can only be expressed formally if the logic used to specify

the desired properties is able to reason about timing constraints. It is only

possible to gain a valid result that can be transfered to a real world applica-

tion if every aspect of a real world requirement can be correctly formalized

as a logical formula.

Propositional logic for instance is not able to express a progress in time which

is why it is not usable for the verification of temporal properties. Hence

we consider appropriate logics that are also able to express time progress.

With these logics we can express requirements demanding for example that

a certain event will occur infinitely often.

We will start by formally defining Linear-time temporal logic [19] and Quan-

tified Propositional Time Logic [22]. Then Alternating-time temporal logic

will be introduced [3] before we finally consider HyperLTL [9].

2.2.1 Linear-time Temporal Logic

Linear-time Temporal Logic (LTL) was first introduced by Amir Pnueli in

1977. With LTL he proposed “a unified approach to program verification”

[19]. It enables the formal specification of system properties that have con-

straints regarding the temporal sequence of actions. We will now formally

introduce the syntax and semantics of LTL.

Syntax

The core idea of LTL is the introduction of temporal operators. With these

it is possible to argue about events in the future and how they are related

to each other. Every LTL formula is generated by the following grammar

where a is an atomic proposition that is either true or false:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ

Besides the atomic propositions, LTL also has several operators. There

are the Boolean connectives negation (¬) and conjunction (∧) as well as

the usual derived operators disjunction ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), implication

ϕ → ψ ≡ ¬ϕ∨ψ and equivalence ϕ ↔ ψ ≡ (ϕ → ψ)∧(ψ → ϕ). Additionally

LTL has the temporal operators next ( ) and until (U). Two more temporal

operators can be derived as follows: ϕ ≡ true U ϕ and ϕ ≡ ¬ ¬ϕ.
Intuitively eventually ( ) means that a formula will become true at some

point of time in the future and globally ( ) requires that a formula is satisfied

at every state in the future.
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aq0:

aq1: aq2:

aq3: aq4: aq5:

Figure 2.2: Kripke structure K ′

Semantics

We will now define the semantics of LTL formally. A formula ϕ is interpreted

over a trace t. The relation |= states if a trace satisfies an LTL formula and

is defined as follows:

t |= a iff a ∈ t[0]

t |= ¬ϕ iff t ∕|= ϕ

t |= ϕ1 ∧ ϕ2 iff t |= ϕ1 and t |= ϕ2

t |= ϕ iff t[1,∞] |= ϕ

t |= ϕ1 U ϕ2 iff ∃ i ≥ 0 : t[i,∞] |= ϕ2 and

∀ 0 ≤ j < i : t[j,∞] |= ϕ1

An LTL formula ϕ holds on a given Kripke structure K = (Q, q0, d, δ, AP, l)

if and only if ∀t ∈ Tr(K, q0). t |= ϕ holds. It is important to note that

ϕ is always evaluated on a single trace t. LTL formulas can thus only

express properties of one trace or in terms of Kripke structures they express

properties holding on every trace of this Kripke structure.

Example 2.2 (LTL)

Consider the Kripke structure K ′ from Figure 2.2 where the states are la-

beled according to the labeling function l and a is written for {a}. The

names of the states can be found on the left of every state.

The formula ϕ1 = a requires a trace to have infinitely many a’s. For

the Kripke structure K ′ ϕ1 is satisfied because every trace of K ′ fulfills the

formula, i.e. ∀t ∈ Tr(K ′, q0). t |= ϕ1.

In contrast to that the formula ϕ2 = a is not true for K ′. ϕ2 claims

that there has to be a point in the future from which on a holds at every

state. Now consider the path q0(q2q5)
ω of K ′. The corresponding trace t

is ∅({a}∅)ω. For this trace ϕ2 is not true because elements containing a

alternate with elements that do not contain a. So a will never hold globally

and t ∕|= a. □
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2.2.2 Quantified Propositional Temporal Logic

The Quantified Propositional Time Logic (QPTL) was introduced in 1983

by Sistla in his Doctoral Dissertation [22]. It extends LTL with proposi-

tional quantification, i.e. in QPTL it is possible to quantify over atomic

propositions.

Syntax

The syntax of QPTL is defined by the following grammar where a is an

atomic proposition:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ | ∃a.ϕ

QPTL formulas can contain the same operators as LTL formulas and in ad-

dition the propositional quantifier ∃a is introduced. This quantifier requires

that there is an additional atomic proposition that can be chosen in a way

such that ϕ is fulfilled.

Semantics

The semantic of QPTL is the same as the one of LTL for all operators the

both logics share. Additionally the semantics for the propositional quantifi-

cation is defined for QPTL:

t |= ∃a.ϕ iff ∃ t′ ∈ (2AP )ω. (t =AP\{a} t
′) ∧ (t′ |= ϕ)

where t =AP\{a} t′ states that t and t′ are equal at every point in time but

without regarding the atomic proposition a. This intuitively means that

whenever a new proposition is introduced by a propositional quantifier, the

trace considered is extended by a new atomic proposition a and the truth

values of a can be chosen freely.

With this modification it is possible to formally express more languages than

in LTL. Intuitively this is the case because the quantified propositions can be

used as markers such that a hidden structure can be described to define the

requirements of a complex language. We see this in the following example:

Example 2.3 (QPTL)

Consider the QPTL formula ∃a. (a ↔ ¬a) ∧ (a ↔ b). This formula

describes the traces that alternate between elements in which b holds and

elements in which b does not hold. This is done by marking every second

state with the hidden atomic proposition a. The atomic proposition a is

said to be hidden because it does not occur in the traces described by the

formula. □
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2.2.3 Alternating-time Temporal Logic

We can express linear-time trace properties with LTL. Unfortunately linear

properties are not always expressive enough. For example we cannot re-

quire the existence of a trace in a Kripke structure satisfying some property

with any LTL formula because in LTL we have implicit universal quan-

tification and can only reason about all traces of the Kripke structure as

a whole. Linear-time logics are moreover unable to distinguish between

Kripke structures that have the same set of traces but different branching

structures. This is because their formulas are interpreted over traces which

have no information about the actual path and the branching behavior of

the system. To express properties with existential quantification or rea-

son about the branching structure of a system we have to argue about so

called branching-time properties. These properties allow to universally or

existentially quantify over all paths of the model rather than just the traces.

The logic CTL* is a temporal logic that is able to express branching-time

properties. It was presented by Emerson and Halpern in 1986 [12] and

introduces the two path quantifiers A and E for the universal and existential

quantification, respectively. Its formulas are either state or path formulas

evaluated on a state or a trace of the system. Because CTL* subsumes

LTL it is also possible to express the linear-time properties in CTL* by

preceding the LTL formula with a universal quantifier. The LTL formula

a is expressed in CTL* by the formula A a. Both formulas require that

on every trace of the Kripke structure there will eventually occur the atomic

proposition a. In contrast to that the CTL* formula E a requires only

the existence of one such path. This cannot be expressed in LTL because of

the existential quantification.

Another sublogic of CTL* is the computation tree logic CTL [8]. It has the

syntactic restriction that every temporal operator has to have exactly one

quantifier directly preceding it. Although LTL and CTL are both subsets of

CTL* the two logics are not directly comparable. There are properties that

are expressible in LTL but not in CTL and vice versa. The CTL* formula

A a for example requires that every trace of a system contains infinitely

many a’s. This can be translated to LTL yielding the formula a but

it is not expressible in CTL because every temporal operator needs to be

quantified on its own. On the other hand the formula E a cannot be

expressed in LTL as mentioned above but it is contained in CTL.

On systems with more than one party, for example concurrent game struc-

tures with multiple players, we still can use universal and existential quan-

tification. Those quantifiers range over the choices of all players taken at

the same time. But we might also like to use a more specific kind of quan-
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tification that only ranges over a subset of all players and their respective

choices. In that way it is possible to demand that a subset of players has a

strategy to achieve a certain goal regardless of what every other player does.

This kind of quantification is called selective and is used in the alternating-

time temporal logics ATL and ATL* introduced by Alur et al. in 1997 [3].

Both logics work on concurrent game structures and the selective quantifi-

cation is realized by the new quantifier 〈〈A′〉〉 where A′ is a subset of the

set of all players A and selection is done over the set of players. ATL and

ATL* are generalizations of CTL and CTL* from the branching-time to the

alternating-time setting. In ATL* arbitrary nesting of quantifiers and tem-

poral operators is allowed while in ATL every temporal operator has to be

directly quantified. We will formally introduce the syntax and semantics of

ATL* (and thus implicitly for ATL).

Syntax

ATL* formulas can either be state or path formulas. In the following defi-

nition let a be an atomic proposition and A′ be an arbitrary set of players.

Then state formulas are of the following form:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | 〈〈A′〉〉 ψ

where ψ is a path formula defined by the following grammar:

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ψ | ψ U ψ

where ϕ is a state formula.

For both, state and path formulas we can derive the Boolean operators

conjunction (∧), implication (→) and equivalence (↔) with the use of the

negation (¬) and disjunction (∨) in the same way as for LTL. Analogously to

LTL the temporal operators globally ( ) and eventually ( ) can be defined

for path formulas using next ( ) and until (U).

The operator 〈〈A′〉〉 denotes the selective path quantifier. It requires that the

players in A′ together have a set of strategies, one for each player in A′, to

ensure that the quantified formula is satisfied. Note that the players in A′

have to choose their moves before the players in A\A′ such that the current

choice of the unquantified players is unknown to the players in A′ in every

step.

We define the dual selective path quantifier !A′"ϕ := ¬〈〈A′〉〉¬ϕ intuitively

meaning that there is no set of strategies for the players in A′ that guarantees

that the formula ϕ will not be fulfilled. The usual existential and universal

quantification can be expressed using these path quantifiers with A being

the set of all players: ∃ = 〈〈A〉〉 and ∀ = !A".
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We will often write 〈〈a1, . . . , an〉〉 and !a1, . . . , an" instead of 〈〈{a1, . . . , an}〉〉
and !{a1, . . . , an}". An ATL* formula is in negation normal form if all

negations (¬) in that formula occur directly in front of an atomic proposition.

As mentioned above, ATL is the fragment of ATL* where no arbitrary nest-

ing of quantifiers is allowed, but every temporal operator has to be preceded

by exactly one quantifier.

Semantics

The semantics of ATL* is defined over concurrent game structures. ATL*

state formulas are evaluated in a single state of the concurrent game struc-

ture whereas path formulas reason about a path of this system. Let S =

(A,Q,AP, l, d, δ) be a concurrent game structure with q ∈ Q.

S, q |= a iff a ∈ l(q)

S, q |= ¬ϕ iff S, q ! ϕ

S, q |= ϕ1 ∨ ϕ2 iff S, q |= ϕ1 or S, q |= ϕ2

S, q |= 〈〈A〉〉ψ iff ∃FA.∀λ ∈ out(q, FA).λ |= ψ

S,λ |= ϕ iff S,λ[0] |= ϕ for a state formula ϕ

S,λ |= ¬ψ iff S,λ ∕|= ψ

S,λ |= ψ1 ∨ ψ2 iff S,λ |= ψ1 or S,λ |= ψ2

S,λ |= ψ iff S,λ[1,∞] |= ψ

S,λ |= ψ1 U ψ2 iff ∃i ≥ 0. S,λ[i,∞] |= ψ2 ∧ ∀0 ≤ j < i. S,λ[j,∞] |= ψ1

A set of strategies FA is called winning from state q for the players in A if

every computation in out(q, FA) models the formula ψ.

ATL* can describe properties of systems in which several players compete

and try to achieve opposing goals. Moreover, it is possible to express proper-

ties of the set of computations that a single player or a subset of players can

enforce. This allows to quantify much more gradually than simple univer-

sal and existential quantification would do and thus enables the expression

of more specialized requirements. We will illustrate this in the following

example.

Example 2.4 (ATL* [4])

Consider the concurrent game structure S from Figure 2.3. The two players

π and π′ both choose a move in a state and the two decisions together define

the actual transition. Let the first number annotated at the edges be the

move chosen by player π and the second number represents the choice of

player π′. If both players have chosen their moves, the respective transition

is taken.
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abq0: ab :q1

abq2: ab :q3

1, 1

2, 1

1, 2
2, 2

1, 1

1, 2

1, 1

2, 1

1, 1

Figure 2.3: The concurrent game structure S with two players π and π′

Player π controls the atomic proposition a and π′ controls b as follows. In

case an atomic proposition is false there are two moves available for the

respective player. One that changes the value to true and the other leaving

the value unchanged. If the atomic proposition is already true then there is

only one move available that does not change the truth value.

The ATL formula 〈〈π〉〉 ¬a requires that player π has a strategy to ensure

that a will never become true whatever move player π′ chooses. On the

concurrent game structure S this formula is true, i.e. S |= 〈〈π〉〉 ¬a holds

because the value of a is controlled by π and it can always choose move

number 1 that does not change the value of a. This requirement is neither

expressible in LTL nor in CTL*.

In LTL we can only reason about all traces of a system without the possibility

to only consider a subset of traces. The LTL formula ¬a does not hold on

this concurrent game structure if interpreted as a Kripke structure, because

there are traces where a is true at some position. One of these traces is

∅({a})ω.

In CTL we can at least require the existence of a path on which a never

holds. This can be expressed by the formula E ¬a that is indeed true

because there is for instance the path qω0 whose trace ∅ω satisfies ¬a. In

order to satisfy this CTL formula it is sufficient to find one appropriate path.

But in CTL* it is not possible to argue about a certain subset of paths and

to require some specified behavior for all paths from this subset.

This can be done in ATL* as the above formula shows. We can reason about

the sets of computations enforceable by every subset of players allowing us

to formalize more precise demands like the one above saying that player π

alone can ensure that a will never hold.
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The formula !π" b is equivalent to ¬〈〈π〉〉 ¬b and states that player π

cannot avoid that eventually the atomic proposition b will be set. This

holds on the concurrent game structure S and is due to the fact that player

π′ controls the truth value of b and π cannot influence this decisions. □

2.2.4 HyperLTL

So far we considered the properties expressible in ATL* or LTL. We saw that

ATL* formulas formalize alternating-time properties and LTL formulas can

express linear-time trace properties. To see what exactly the term trace

property means consider a Kripke structure K and an LTL formula ϕ. This

formula can be evaluated on a single trace of the Kripke structure at a time

and for every trace we can decide if this trace satisfies the formula or not.

The set of all traces of K that satisfy the given LTL formula ϕ is clearly

a subset of all traces Tr(K, q0) defined by that LTL formula and is called

trace property.

Definition 2.5 (Trace Property, [10])

For a given Kripke structure K with initial state q0 and the set of all traces

in K denoted by Tr(K, q0), we call every subset of this set of traces a trace

property TK of K: TK ⊆ Tr(K, q0). □

With these trace properties many interesting requirements can already be

formalized. Nevertheless, there are requirements like observational deter-

minism mentioned in the introduction that cannot be expressed as a trace

property (i.e. as a set of traces) by giving a corresponding LTL formula for

example. This is because in this specification it is necessary to examine two

traces simultaneously in order to compare their behavior. Trace properties

as well as LTL and even CTL* formulas can only argue about a single trace

at a time and are thus not expressive enough.

To overcome this limitation and to allow the expression of more general

requirements, HyperLTL was recently introduced by Clarkson, Finkbeiner

et al. [9]. As the name suggests, it is an extension of LTL. Explicit trace

quantifiers are added to LTL in order to be able to describe desired relations

between different traces of a system. Before we take a closer look on the ex-

pressiveness gained by this extension, we will first formally define HyperLTL

by giving its syntax and semantic.

Syntax

The syntax of HyperLTL [9] introduces the explicit trace quantifiers ∀π and

∃π. HyperLTL formulas consist of a quantifier prefix which is followed by

an LTL formula. Formulas of that form are in prenex normal form. In the

following grammar defining the syntax, let a be an atomic proposition from
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the set AP . Every atomic proposition is annotated with a trace variable

π ∈ V indicating on which trace the formula requires a to hold.

ψ ::= ∃π.ψ | ∀π.ψ | ϕ
ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕU ϕ

HyperLTL formulas can use the same operators as LTL formulas. We can

thus use the boolean operators negation (¬), disjunction (∨), conjunction
(∧), implication (→) and equivalence (↔) as well as the temporal operators

next ( ), until (U), eventually ( ) and globally ( ).

Moreover, there are the two trace quantifiers that introduce new trace vari-

ables from the set of trace variables V. We only consider closed HyperLTL

formulas meaning that every trace variable π used as an index of an atomic

proposition aπ has to be bounded by either the universal trace quantifier

(∀) or by the existential trace quantifier (∃). To indicate that the only path

variables that are used in a formula ϕ are for example the variables π and

π′ from V we write ϕ(π,π′).

Semantics

The semantics of HyperLTL is defined over a Kripke structure K together

with a trace assignment Π : V 2→ Tr∗(K, q0) that maps a trace variable π

to a traces t of the Kripke structure K. The operation Π[π 2→ t] adds the

assignment of π to t to the trace assignment Π. If π was already assigned to

some trace t′ in Π this assignment is overwritten by the assignment of π to

t. Π(π) returns the trace that is assigned to the variable π in Π. The known

trace operations are applicable to these traces so that for example Π(π)[0]

returns the first element of the trace assigned to π and Π(π)[i,∞] gives

the suffix of that path starting with element i. Π[i,∞] modifies the trace

assignment Π by replacing every trace t with t[i,∞] such that Π returns the

corresponding suffix of the trace assigned to π.

Π |=K ∃π.ψ iff ∃ t ∈ Tr(K, q0) : Π[π 2→ t] |=K ψ

Π |=K ∀π.ψ iff ∀ t ∈ Tr(K, q0) : Π[π 2→ t] |=K ψ

Π |=K aπ iff a ∈ Π(π)[0]

Π |=K ¬ϕ iff Π ∕|=K ϕ

Π |=K ϕ1 ∨ ϕ2 iff Π |=K ϕ1 or Π |=K ϕ2

Π |=K ϕ iff Π[1,∞] |=K ϕ

Π |=K ϕ1 U ϕ2 iff ∃ i ≥ 0 : Π[i,∞] |=K ϕ2 and

∀ 0 ≤ j < i : Π[j,∞] |=K ϕ1
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We will often write K |= ϕ when we mean Π |=K ϕ for a HyperLTL formula

ϕ where Π is the empty trace assignment {}.

With HyperLTL we can reference multiple different traces in one formula

allowing to define relations between these traces. We are able to formalize

the observational determinism example from the introduction for a Kripke

structure K with AP as the set of atomic propositions. Let L ⊆ AP be

the set of all low security input variables and O ⊆ AP be the set of all low

output variables.

∀π.∀π′. (
!
a∈L

aπ ↔ aπ′) → (
!
a∈O

aπ ↔ aπ′)

The formula requires intuitively that the system K behaves from a low

security user’s point of view as a deterministic function from the low security

inputs to the low security outputs. More precisely it requires every pair of

traces that have at every point in time the same low security input values to

also have the same low security output values throughout the whole traces

expressed by the globally-operator ( ).

In HyperLTL it is possible to formally express requirements beyond trace

properties. The quantification over different traces allows to reason about

the behavior of a set of traces. Thus every HyperLTL formula determines

a set of sets of traces that fulfill this formula. Because sets of traces are

exactly defined to be trace properties, HyperLTL formulas actually describe

a set of trace properties. These sets of trace properties are also called hy-

perproperties.

Definition 2.6 (Hyperproperty, [10])

For a given Kripke structure K with initial state q0 and the set of all traces

in K denoted by Tr(K, q0), we call every set of sets of traces from Tr(K, q0)

a hyperproperty HK of K: HK ⊆ 2Tr(K,q0). □

In the following example some hyperproperties are examined with respect

to a concrete Kripke structure.

Example 2.7 (HyperLTL)

Consider again the Kripke structure K from Figure 2.1.

With HyperLTL we can require that for every trace in the system there has

to be a corresponding trace that behaves exactly the same but is always

one step ahead. The formula ∀π.∃π′. ( aπ ↔ aπ′) expresses exactly this

requirement in HyperLTL. The Kripke structure K is no model for that

formula because we cannot find a corresponding trace for every trace. To

see this consider the trace t = {a}{b}{b}({a})ω. The HyperLTL formula

requires to find a trace t′ = {b}{b}({a})ω in K which is not possible because
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the initial state of K is fixed for every path and in that state b does not hold

so no trace of K can start with the atomic proposition b being true.

As soon as we ignore the first element of the traces, we can find a corre-

sponding partner for every trace. The trace t′′ = {a}{b}({a})ω is then the

matching one to the trace t. This modified requirement can be expressed

by adding a operator to skip the first state resulting in the HyperLTL

formula ∀π.∃π′. ( aπ ↔ aπ′). This holds on Kripke structure K, i.e.

K |= ∀π.∃π′. ( aπ ↔ aπ′).

Instead of ignoring the first state, it is also possible to require the second

trace to be exactly the same at every point. The formula ∀π.∃π′. (aπ ↔ aπ′)

expresses this formally and is trivially true on every system because as soon

as π′ selects the same trace as π does, the equivalence holds immediately

and K |= ∀π.∃π′. (aπ ↔ aπ′). □

Similar to how we extended the linear-time logic LTL to HyperLTL in order

to express hyperproperties, we can also gain the temporal logic HyperCTL*

from CTL* by adding explicit path quantifiers [14]. HyperCTL* is, as well

as CTL*, a branching-time logic which means that it is possible to express

hyperproperties that can distinguish systems with different branching struc-

tures but the same set of traces. This is due to the fact that the quantifiers

in HyperCTL* bind paths instead of traces such that the information about

the branching behavior of the system is still accessible. Moreover, the po-

sition of the path quantifiers is not limited to the beginning of the formula

such that HyperCTL* formulas are not necessarily in prenex normal form.

An example of a hyperproperty that is expressible in HyperCTL* but not

in HyperLTL can be found in [14]. This shows that HyperCTL* is more

expressive that HyperLTL.

2.3 Büchi Automata

Automata in general are used to represent the behavior of a system by rep-

resenting the different system states and the possible transitions between

them. Every transition is labeled with certain letters from the alphabet.

If these letters match the input, then the corresponding transition may be

taken. A sequence of these letters is called a word and defines in the de-

terministic case a unique sequence of states through the system which is

called a run. If we consider automata for infinite words, then we are left

with infinite runs. A run is accepting if it fulfills the requirements specified

by the acceptance condition of the automaton. We only consider automata

with the Büchi acceptance condition which requires a run to visit states from

the set of accepting states infinitely often in order to be accepted. If in an



22 2. Preliminaries

q0 q1

a, b

a

a, b

a

Figure 2.4: Nondeterministic Büchi Automaton A

automaton A the run generated by a word α is accepting then we say that

this word is in the language of that automaton: α ∈ L (A).

In the following we will formally define nondeterministic and alternating

Büchi automata. These automata are named after Julius Richard Büchi who

first used this concept in 1960 [6] in order to answer Tarski’s problem whether

the Monadic Second-Order Logic of One Successor (S1S) is decidable. This

problem was discussed in [21] by Robinson.

Nondeterministic Büchi Automata

A nondeterministic Büchi automaton A = (Q, q0,Σ, δ, F ) consists of the

following components:

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• Σ is a finite alphabet.

• δ : Q×Σ → 2Q is the transition relation, which gives for a state q ∈ Q

and a letter a ∈ Σ a set of possible successor states Q′ ⊆ Q.

• F ⊆ Q is a set of accepting states.

This automaton is called nondeterministic because there may be more than

one possible successor state q′ when reading a letter a in state q. The

actual successor state is then chosen nondeterministically from this set. In

contrast to that a deterministic Büchi automaton has a transition function

δ′ : Q × Σ → Q that outputs a unique successor state on every input from

the set Σ in a state q.

In a nondeterministic automaton A a word α is in the language L (A) of the

automaton if there exists an accepting run of A on α, i.e. the nondetermin-

istic choices can be resolved in a way that an accepting run is generated. In

the case of the Büchi acceptance condition this means that there is a run of

A on α that visits accepting states infinitely often.
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Example 2.8 (Nondeterministic Büchi Automaton)

Consider the nondeterministic Büchi automaton A = (Q, q0,Σ, δ, F ) in Fig-

ure 2.4. This is an automaton over the alphabet Σ = {a, b}. The states from
Q are depicted as circles. The initial state q0 is indicated by an incoming

arrow and the accepting state q1 ∈ F is marked with double circles. The

transitions are given by arrows leading from a state to its successor states.

The transitions are labeled with the letters from Σ that have to be present

in the input word in order to enable this transition.

The infinite word a(b)ω is in L (A) because the run q0(q1)
ω generated by

this word is accepting since q1 is an accepting state that is visited infinitely

often. The word a(b)ω also generates the run (q0)
ω which is not accepting

but nevertheless, a(b)ω ∈ L (A) because it is enough if one accepting run

exists.

The infinite word bω is not in L (A) because we cannot find an accepting

run of A on that word. The only run generated by this word is (q0)
ω which

is not accepting. □

Nondeterministic Büchi automata are in the following extended to alternat-

ing Büchi automata.

Alternating Büchi Automata

Alternating Büchi automata do not only allow nondeterministic transitions

to a successor state but also universal transitions that lead to several states

at the same time. It is then required that the runs through all these states

are accepting.

Formally an alternating Büchi automaton A = (Q, q0,Σ, δ, F ) consists of the

following components:

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• Σ is a finite alphabet.

• δ : Q× Σ → B+(Q) is the transition function.

B+(Q) denotes the set of positive Boolean formulas over the set of

states. These formulas are generated by the following grammar for

q ∈ Q:

φ ::= true | false | q | φ ∧ φ | φ ∨ φ

The conjunction (∧) of states represents a universal choice whereas

the disjunction (∨) of states represents a nondeterministic choice.

• F ⊆ Q is a set of accepting states.
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q0
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q2
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a, b
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q1 q2

q1 q2

Figure 2.5: Alternating Büchi Automaton B (left) and run of B on word

bb(a)ω ∈ L (B) (right)

Note that a run through an alternating Büchi automaton is an infinite Q-

labeled tree because one state may have several successor states when taking

a universal transition. Such a run tree is accepting if every infinite branch of

the tree is accepting. We will not go more into detail but give an intuition

for this in the following example.

Example 2.9 (Alternating Büchi Automaton)

Consider the alternating Büchi automaton given in Figure 2.5 on the left

side. The universal transitions are represented with dotted edges. For ex-

ample, δ(q0, b) returns the positive boolean formula q1 ∧ q2 requiring that

both states accept the rest of the input word.

The run of B on the word bb(a)ω is given on the right side of Figure 2.5.

The run starts in the initial state of B. Because the first input letter is b,

the universal transition is taken to q1 and q2. In q1 the remaining input

b(a)ω produces the run qω1 . In state q2 the next letter b of the input word

leads again to q1 and q2 but now by taking the universal transition starting

in state q2. The input of a does not cause any state transitions.

The word bb(a)ω is in L (B) because every branch in the run of B on that

word visits an accepting state infinitely often. □

For every LTL formula ϕ there is an equivalent alternating Büchi automaton

Aϕ as presented in [27]. This automaton is constructed by introducing a

state for every subformula of ϕ and its negation. The transition function

then explicitly represents the temporal requirements of these LTL formulas.

The successor of a state corresponding to ϕ′ is, for example, the state ϕ′.

With a similar construction presented in [15] it is possible to give an equiv-

alent alternating Büchi automaton for every HyperLTL formula ϕH . For
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the LTL formula in ϕH this construction differs in the alphabet. In [15] the

automaton works on tuples of states of a corresponding Kripke structure

whereas in [27] it reasons about sets of atomic propositions. After comput-

ing the automaton for the LTL subformula, the quantifier prefix is handled

by the construction presented in [15].

Although alternating Büchi automata are more concise than nondeterminis-

tic Büchi automata, both are equally expressive. This was shown by Miyano

and Hayashi in 1984 [18] by giving a construction that translates every al-

ternating Büchi automaton into a nondeterministic Büchi automaton. This

construction basically gives a nondeterministic Büchi automaton that ac-

cepts all accepting runs (infinite Q-labeled trees) of the alternating Büchi

automaton.

It directly follows that for every HyperLTL formula there exists a nondeter-

ministic Büchi automaton that formalizes the same language. The opposite

direction holds as well. For every nondeterministic Büchi automaton an

equivalent HyperLTL formula can be given:

Construction 2.10 (HyperLTL formula ϕA)

Let A = (Q, q0, 2
AP , δ, F ) be a nondeterministic Büchi automaton.

In a first step a QPTL formula φA is calculated from the given Büchi au-

tomaton as follows ([13], [26]):

φA := ∃ atq0 . . . . ∃ atqn . atq0 (2.1)

∧ (
"

(q,A,q′)∈δ
atq ∧ atq′ ∧ (

#

p∈A
p) ∧ (

#

p∈AP\A
¬p) (2.2)

∧ (

n#

i=1

#

j ∕=i

¬(atqi ∧ atqj )) (2.3)

∧
"

q∈F
atq (2.4)

For every state qi ∈ Q a fresh atomic proposition atqi is introduced by a new

propositional quantifier ∃atqi . The behavior of the automaton A is encoded

in the QPTL formula φA as it simulates the runs through the automaton

using the quantified propositions atqi .

• Every run starts in the initial state q0. (2.1)

• The next state of the run is reached via a transition of the automaton

on the currently present atomic propositions. (2.2)

• The automaton is always in only one distinct state. (2.3)
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• A run is accepting if it infinitely often visits an accepting state. (2.4)

Thus the QPTL formula ϕA accepts every trace that is in the language of

the automaton A, i.e. L (φA) = L (A). Every accepting run of A then

uniquely defines the truth values of the atomic propositions qi.

In [9] it is stated that QPTL is subsumed by HyperLTL. So we know that

there is a HyperLTL formula ϕA that is equivalent to φA and thus has the

same language L (A).

The HyperLTL formula ϕA is obtained by applying the following three steps

to the QPTL formula φA:

1. Rename every proposition atqi that is bounded by a propositional

quantifier with a fresh name q′i.

2. Replace the propositional quantifiers ∃ q′i by the trace quantifiers ∃πq′i
for all variables q′i introduced in the step before.

3. Replace the atomic propositions q′i by (q′i)πq′
i
in the body of the for-

mula.

The resulting formula is the HyperLTL formula ϕA with L (ϕA) = L (A).□

The following example shows how this construction is applied to a given

automaton.

Example 2.11 (Application of Construction 2.10)

Consider the nondeterministic Büchi automaton A in Figure 2.4.

An equivalent QPTL formula φA is given below:

φA = ∃ atq0 . ∃ atq1 . atq0 (2.5)

∧ (
"

(q,a,q′)∈δ
atq ∧ a ∧ atq′ ∧ (

#

b∈AP\{a}
¬b)) (2.6)

∧ (¬(atq0 ∧ atq1) (2.7)

∧ atq1 (2.8)

(2.5) requires that the run through A starts in the initial state. (2.6) encodes

all transitions of the Büchi automaton A by encoding the relation from

the states and the present atomic propositions to their successor states.

(2.7) formalizes that the automaton is only in a single state at a time and

(2.8) requires that the accepting state is visited infinitely often. The QPTL

formula φA therefore perfectly simulates the automaton A.

Given this QPTL formula φA, an equivalent HyperLTL formula ϕA is com-

puted following the three steps in Construction 2.10:
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ϕA = ∃πq′0 . ∃πq′1 . (q
′
0)πq′0

(2.9)

∧ (
"

(q,a,q′)∈δ
qπq ∧ a ∧ q′πq′

∧ (
#

b∈AP\{a}
¬b)) (2.10)

∧ (¬( (q′0)πq′0
∧ (q′1)πq′1

)) (2.11)

∧ (q′1)πq′1
(2.12)

Theorem 1 in [9] immediately gives us that L (ϕA) = L (A).

The quantified traces in ϕA each represent one automaton state and together

they can be interpreted as a run through the automaton A. □

In that way we can give an equivalent HyperLTL formula ϕA for every

nondeterministic Büchi automaton A.

2.4 Properties of Proof Systems

In the following we will introduce some standard properties of proof systems.

A proof system in general is a set of proof (or inference) rules where every

rule is of the following general form:

System’ ⊨ Specification’

System” ⊨ Specification”

System ⊨ Specification

$
Premises

%
Conclusion

The rule then allows to conclude that, given all premises hold, the conclusion

of the rule holds as well.

A single proof rule is called sound if this implication holds. Assuming the

premises to be valid it is possible to prove that the conclusion holds as well

without using the proof rule that is to be proven sound. A proof system is

sound when every of its proof rules is sound. Using a sound proof system,

any statement that can be derived using these rules is indeed valid.

On the other hand, a proof system is called complete if every valid statement

can be derived using the rules of the system. This means that for every valid

statement a sequence of rule applications, called derivation, can be found

that yield exactly this statement.

Ideally every proof system should be sound and complete. The soundness

guarantees that no wrong statement can be proven by using this proof sys-

tem and the completeness assures that every valid statement can be shown.
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However, this is not possible in practice. Gödel’s incompleteness theorems

from 1931 [16] state that there can be no proof system where all valid asser-

tions are theorems when considering a sufficiently complex language. This

implies that achieving completeness is not possible because there will always

be a statement that cannot be proven with a given proof system. In 1978

Cook introduced the idea of relative completeness [11]. The idea of relative

completeness is to assume a very powerful but unrealistic oracle that de-

cides whether these unprovable statements are valid. By using this oracle it

is then possible for the proof system to achieve completeness relative to the

set of statements that have to be decided by the oracle.

Within the scope of this thesis we will develop a proof system for the linear-

time logic HyperLTL. This proof system will make use of the sound ATL*

proof system [23] that can prove ATL* properties over infinite state systems

[23]. Considering the completeness [23] states:

Completeness of the proof system is relative to validities in the

first-order logic, with fixpoints and cpre, of the underlying theory

- the same as required for relative completeness for LTL [17] [...].

So the best we can achieve for the proof system for HyperLTL is the same

relative completeness.

When saying that a proof system is relative complete to another proof sys-

tem we mean that the completeness constraints are the same in both proof

systems.



Chapter 3

The Proof System for

HyperLTL

In this chapter we will show how to transform a HyperLTL formula into an

ATL* formula and lift the corresponding Kripke structure into a concurrent

game structure. With these modifications we can apply the ATL* proof

system [23] in order to prove that a HyperLTL formulas holds on a given

Kripke structure. The ATL* proof system was introduced by Slanina et al.

in 2006. This proof system reduces the task of proving an ATL* formula on

a concurrent game structure to the problem of proving several statements

in the underlying assertion language by making use of automata-theoretic

results.

Given a concurrent game structure S and an ATL* formula of the form p →
Qϕ where p is an assertion, Q ∈ {〈〈A′〉〉, !A′"} is a selective path quantifier

for some subset A′ of the set of all players and ϕ is an ATL* path formula

in negation normal form, the proof system decides whether S |= p → Qϕ.

In doing so the proof system performs four main steps.

• In the first step a rule called “basic state rule” is applied to obtain

statements containing only one selective ATL* quantifier followed by

an LTL formula. This is done by introducing assertions for every

subformula containing a quantifier and then proving that the resulting

formula holds on the system as well as that this assertion implies the

replaced subformula.

• On the resulting statements of the form S |= p → Qϕ the “basic path

rule” is applied. This rule converts the LTL formula ϕ into an assertion

and synchronously composes the system S with the automation Aϕ for

ϕ.
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• In the next step history variables are introduced in order to ensure

that a set of memoryless winning strategies exists for the players in

A′. These variables capture information about events that happened

in the past so that this knowledge is always accessible in the current

state and the previous states in the history have not to be considered.

The “history rule” introduces these variables formally into the system.

• We know that there are memoryless winning strategies for the formulas

resulting from the previous step. These formulas are of the form p →
Qq where p and q are assertions. To these formulas the “assertion

rules” are applied that transform this ATL* formula into assertional

validities.

The proof rules of the ATL* proof system as well as an example of how they

are used can be found in [23]. In [24] the formal proofs for soundness and

completeness of this proof system are given. In the following we will show

how a Kripke structure K and a HyperLTL formula ϕ for which we want

to prove that K |= ϕ have to be modified in order make use of the proof

system for ATL*.

3.1 Rule Self-Composition

In order to be able to use the proof system for ATL* for proving that a

HyperLTL formula holds on a Kripke structure we have to convert the Hy-

perLTL formula into an ATL* formula and the Kripke structure into a cor-

responding concurrent game structure. The transformation of the system

will be achieved by the idea of self-composition [5], a principle that combines

several copies of the same system together into a new system. In that way

it is possible to observe and compare several executions of the underlying

system at the same time.

Depending on how many executions we want to compare at the same time

we have to take that many copies of the system into the self composition. We

consider every possible combination of states in the single copies to obtain

the set of states of the self-composed system. The transitions between these

states are combined by the single transitions that are made in the underlying

components independently of each other. This technique was used in [25]

to reduce safety properties that reason about two traces through a system

to safety properties that reason about only one trace in the self-composed

system as this system represents two traces at the same time.

When converting a Kripke structure K into a concurrent game structure S′

we have to simulate the quantification over traces with the different players
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in S′. A state in S′ is a tuple of h states of the Kripke structure K where h

is the number of quantified traces in the corresponding HyperLTL formula.

Every player in S′ controls one of these tuple components and thus generates

a path through K encoded in a path through S′ when considering only the

respective component. Thus every player represents one of the quantified

traces and together they generate a path that defines a trace assignment.

The following construction shows how to formally construct a concurrent

game structure S′ from a given Kripke structure K for a HyperLTL formula

ϕ with h quantified traces. The idea is to self-compose h copies of the Kripke

structure K and to introduce h players where every player represents one of

the quantified traces as described above.

Construction 3.1 (Self-Composition)

LetK = (QK , q0, dK , δK , APK , lK) be a Kripke structure andQπ1. . . .Qπh.ψ

be a HyperLTL formula with h quantified traces where Q ∈ {∀, ∃}. We

construct the concurrent game structure S′ = (A,Q,AP, l, d, δ) as follows:

• A = {pπg | 1 ≤ g ≤ h}

• Q = (QK)h

where Mh is defined for a set M inductively as follows: M1 = M and

Mh = M ×Mh−1 for h > 1.

• AP = {aπg |a ∈ APK , 1 ≤ g ≤ h}

• l: ∀q ∈ Q. l(q) = l((qπ1 , . . . , qπh)) = (lK(qπ1))π1 ∪ . . . ∪ (lK(qπh))πh

where for a set M Mπ is defined as {mπ|m ∈ M}. In order to uniquely

identify the states components we added a superscript πg to every

q ∈ QK indicating the trace quantifier the current state component

belongs to.

• d: ∀q ∈ Q.∀1 ≤ g ≤ h. dpπg (q) = dpπg ((q
π1 , . . . , qπh)) = dK(qπg)

• δ: ∀q ∈ Q.∀(i1, . . . , ih) ∈ D(q). δ(q, (i1, . . . , ih))

= δ((qπ1 , . . . , qπh), (i1, . . . , ih))

= (δK(qπ1 , i1), . . . , δK(qπh , ih))

This system operates on states that are tuples of Kripke structure states.

Every component of one such tuple corresponds to one trace quantifier. Let

q = (qπ1 , . . . , qπh) be a state in S′ and qπg ∈ QK for 1 ≤ g ≤ h. The

successor state q′ is computed by allowing every player to choose the next

move in his copy of the Kripke structure K, i.e. every move in the move

vector corresponds to one component in the state tuple (qπ1 , . . . , qπh). Then

the respective successor states are computed independently by applying the

transition function δK to the respective state and the corresponding move.
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After computing these successor states in K the successor state q′ is fully

determined. □

When S′ is used as a model for an ATL* formula then the moves in the

move vectors are chosen by the strategies of the players. As we will see the

players corresponding to an existential trace quantifier have to choose their

moves first. This means that the successor states for these components are

already fixed when the universal players have to choose their moves and thus

the universal players may adapt their choices depending on the moves the

existential players chose. As soon as all moves are fixed, a unique successor

state is identified.

Every path u = q0 q1 q2 . . . through the concurrent game structure S′ defines

a unique trace assignment Πu. In order to see this we first have to define

the projection:

Definition 3.2 (Projection prg)

Let q = (q1, . . . , qh) be in Qh, i.e. q is a tuple containing h elements from

the set Q as its components. Then prg : Qh → Q is the g-th projection

returning the component of q at position g:

∀ 1 ≤ g ≤ h. prg(q) = qg □

Using the g-th projection on every state qt of a path u = q0 q1 q2 . . . through

S′ we obtain the path ug = prg(u[0]) prg(u[1]) prg(u[2]) . . . through the

Kripke structure K that is encoded in u at the g-th component. To get the

trace generated by the path ug the labeling function lK has to be applied

to every state of the path. Like that we can access the trace corresponding

to every player. We thus can compute a unique trace assignment Πu from

a path u through S′ by using the projections pr1 to prh and the labeling

function lK of the underlying Kripke structure:

Definition 3.3 (Trace assignment Πu)

Let u be a path through a concurrent game structure S′. S′ was gained by

applying Construction 3.1 to a Kripke structure K with a labeling function

lK for a formula with h trace quantifiers. The trace assignment Πu is defined

as follows:

∀ 1 ≤ g ≤ h. Πu(πg) = lK( prg( u[0] )) lK(prg(u[1])) lK(prg(u[2])) . . . □

Note that the labeling function l defined in Construction 3.1 does not simply

apply the labeling function of the Kripke structure lK to every component.

If this was the case l′ would return a tuple of sets of atomic propositions,

i.e. l′((qπ1 , . . . , qπh)) = (lK(qπ1), . . . , lK(qπh)). Instead the labeling function

l returns the union of all these sets where the elements in the sets are indexed

with a unique name indicating the tuple component they would occur in.

These indexes allow to reconstruct the sets generated by the single Kripke
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(q0, q0) (q0, q1)

(q1, q1) (q1, q0)

(1,1)

(1,2)

(2,2)

(2,1)

(1,1)

(2,1)
(2,2)

(1,1)

(1,2)

(1,1)

with A = {pπ1 , pπ2}.

Figure 3.1: Concurrent game structure S′ gained by Construction 3.1 from

Kripke structure K (Figure 2.1) for a HyperLTL formula with two trace

quantifiers

structure states by considering all atomic propositions in l(q) having the

desired index. (lK(qπg))πg = {aπg |aπg ∈ l(q)}

Construction 3.1 is applied to the Kripke structure K given in Figure 2.1 in

the following example.

Example 3.4 (Application of Construction 3.1)

Reconsider the Kripke structure K = (QK , q0, dK , δK , APK , lK) from Figure

2.1 and the HyperLTL formula ∀π1.∃π2. (aπ1 ↔ aπ2) from Example 2.7.

By applying Construction 3.1 we obtain the concurrent game structure S′ =

(A,Q,AP, l, d, δ) depicted in Figure 3.1.

(q0, q0) (q0, q1)

(q1, q1)

(1,2)

(2,2)

(q0, q0) (q0, q1)

(q1, q1)

2

1

2

Figure 3.2: Order of move selection in the concurrent game structure S′
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The states of S′ are pairs of states of K for every combination of two K-

states. To get the set of atomic propositions AP every atomic proposition

from APK is indexed with every trace variable πg and the result is then

interpreted as a fresh set of atomic propositions for S′. The labeling function

l returns for a state s = (qx, qy) for x, y ∈ {0, 1} calculates the labels of the

single states qx and qy in K and adds the index π1 to the elements in l(qx)

and the index π2 to l(qy). Then the union of the resulting sets is returned.

Because the HyperLTL formula contains two trace quantifiers, the concur-

rent game structure S′ will have two players: A = {pπ1 , pπ2}. The first player
represents the universally quantified component whereas the second player

generates the traces for the existentially quantified component. The number

of possible moves for player pπg with g ∈ {1, 2} in a state s = (qπ1 , qπ2) is

exactly the number of possible moves from state qπg in the Kripke structure

K. The single players thus follow the transition function δK within their

component independently of the state components the other player controls.

The transition function δ in a state q is defined on the move vectors D(q)

that contain one move per player. In the Figure 3.1 the moves chosen by

player pπ1 are given in blue, the moves of player pπ2 in green.

This concurrent game structure will be used as the model for an ATL*

formula so it is important to recall that the moves of the existential player

pπ2 have to be fixed before the universal player pπ1 chooses her moves. We

can thus think of the transitions to be divided into two steps as described

above. Intuitively the transitions on the left side of Figure 3.2 can be viewed

as illustrated in Figure 3.2 on the right side. □

We know how to obtain the corresponding concurrent game structure. It is

left to transform the HyperLTL formula into an ATL* formula. Assume we

have m universal and n existential quantifiers in the quantifier prefix of a

HyperLTL formula, i.e. the formula is of the form ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ

where ψ is a quantifier-free LTL formula. The universal quantified traces

πi can be viewed as chosen arbitrarily whereas the existential quantified

traces π′
i are chosen adaptively to the choice of the universal quantified

traces. Thus in S′ we require the players pπ′
i
to have a strategy to choose

the corresponding traces which means that these players will be the ones

selected by the ATL* quantifier resulting in 〈〈pπ′
1
, . . . , pπ′

n
〉〉ψ. In order to

meet the syntactical requirements of the ATL* proof system we wrap this

formula as the conclusion into an implication with true as the premise.

Putting all this together we obtain the inference rule displayed in Figure

3.3.

Theorem 3.5 (Soundness of Rule Self-Composition)

The inference rule Self-Composition in Figure 3.3 is sound. □
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S′ |= true → 〈〈pπ′
1
, . . . , pπ′

n
〉〉ψ

K |= ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n. ψ

where S′ is built from K by using Construction 3.1.

Figure 3.3: Rule Self-Composition

Proof We prove this claim by contradiction.

Assume S′ |= true → 〈〈pπ′
1
, . . . , pπ′

n
〉〉ψ andK ∕|= ∀π1. . . . ∀πm.∃π′

1. . . . ∃π′
n. ψ.

S′ |= true → 〈〈pπ′
1
, . . . , pπ′

n
〉〉ψ implies that S′ |= 〈〈pπ′

1
, . . . , pπ′

n
〉〉ψ holds

and thus the players pπ′
k
together have a set of strategies F{pπ′

1
,...,pπ′

n
}, one

strategy σpπ′
k

for every player pπ′
k
in S′ with 1 ≤ k ≤ n so that they together

always can ensure that the formula ψ is fulfilled.

Idea: We now use these strategies to construct paths on the Kripke structure

K such that the traces of these paths guarantee to fulfill ψ together with an

arbitrary choice of the universal quantified traces. This will then contradict

to the assumption that the formula ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n. ψ does not

hold on K.

Let every strategy σpπ′
k

in F{pπ′
1
,...,pπ′

n
} on a finite history q0q1 . . . qt with

every state qh = (sπ1
h , . . . , sπm

h , s
π′
1

h , . . . , s
π′
n

h ) for 0 ≤ h ≤ t be defined as

follows:

∀t ∈ N. σpπ′
k

(q0q1 . . . qt) = i giving a move 1 ≤ i ≤ dK(s
π′
k

t ) for player pπ′
k

that defines a unique successor state s
π′
k

t+1.

When all the players pπ′
k
apply their respective strategy σpπ′

k

from the set

F{pπ′
1
,...,pπ′

n
} in every step we get a path u = (sπ1

0 , . . . , sπm
0 , s

π′
1

0 , . . . , s
π′
n

0 )

(sπ1
1 , . . . , sπm

1 , s
π′
1

1 , . . . , s
π′
n

1 ) . . . in S′ fulfilling ψ regardless of which moves

were chosen by the players pπ1 , . . . , pπm .

Now consider the second assumption K ∕|= ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n. ψ. This

is equivalent to K |= ∃π1. . . . ∃πm.∀π′
1. . . . ∀π′

n. ¬ψ. Thus we can conclude

that in the Kripke structure K there have to be m paths u1 to um such that

for all possible choices of paths u′1 to u′n the formula ψ is not fulfilled on

the respective traces. Let ul = sl,0sl,1sl,2 . . . for 1 ≤ l ≤ m be exactly these

paths. We construct the paths u′k as follows:

The paths all start with the initial state q0 of the system K and all subse-

quent states are chosen according to the strategies in F{pπ′
1
,...,pπ′

n
}. Thus for

every path u′k = s′k,0s
′
k,1s

′
k,2 . . . the following holds: s′k,0 = q0 and s′k,t+1 =

δ(s′k,t, σpπ′
k

((s1,0, . . . , sm,0, s
′
1,0, . . . , s

′
n,0) . . . (s1,t, . . . , sm,t, s

′
1,t, . . . , s

′
n,t))) for
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t ∈ N and σpπ′
k

being the strategy from player pπ′
k
in the concurrent game

structure S′.

So we found a set of paths u′k that together with the given paths ul the

respective traces fulfill the formula ψ in the system K. This is a contradic-

tion to the assumption that K ∕|= ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n. ψ. Thus we can

conclude that the rule Self-Composition is sound. "

After the application of the rule Self-Composition (Figure 3.3) we use the

ATL* proof system presented at the beginning of the chapter to prove S′ |=
true → 〈〈pπ′

1
, . . . , pπ′

n
〉〉ψ. Because of the soundness of this rule we know that

if S′ |= true → 〈〈pπ′
1
, . . . , pπ′

n
〉〉ψ holds then K |= ∀π1. . . . ∀πm.∃π′

1. . . . ∃π′
n. ψ

holds too. Together with the soundness of the ATL* proof system we know

that the resulting proof system consisting of Rule 3.3 and the ATL* proof

rules is sound. That means every statement that can be proven is indeed

correct.

Note that the ATL* proof system will skip its first step (applying the “basic

state rule”) and directly start with step two. This is possible because the

ATL* formula gained by Rule Self-Composition in Figure 3.3 already meets

the requirements of the second step as it only consists of one ATL* quan-

tifier followed by an LTL formula. This is the case since we started from a

HyperLTL formula having a quantifier prefix followed by an LTL formula

that we did not change. The quantifier prefix was transformed into a single

selective quantifier by the self-composition rule.

3.2 Lack of Completeness

Another desirable property of proof systems in general is completeness. This

requires that every correct statement can be proven using the rules of the

proof system. Unfortunately this proof system is not yet complete. To see

this consider the following counterexample.

Example 3.6 (Completeness Counterexample)

Consider again the Kripke structure K from Figure 2.1 together with the

HyperLTL formula ϕ = ∀π1.∃π2. (aπ1 ↔ aπ2). We now want to prove that

ϕ holds on K which is the case as explained in Example 2.7. So we start

with the correct statement K |= ∀π1.∃π2. (aπ1 ↔ aπ2) and want to prove

it formally using our proof system.

Proof We start by applying the Rule Self-Composition in Figure 3.3. In

order to do so we construct the concurrent game structure S′ as defined in

Construction 3.1 (Figure 3.1). Then we obtain the statement S′ |= ture →
〈〈pπ2〉〉 (aπ1 ↔ aπ2) that is left to be proven.
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It has to be shown that player pπ2 has a strategy that ensures that she

always chooses to go to the same state as player pπ1 does. Recall that in

ATL* the players that occur in the quantifier have to choose their moves

first. That means that pπ2 has to decide for a move before pπ1 does so and

it is not possible for pπ2 to simply copy the move of pπ1 . Because of this

order there can be no winning strategy for player pπ2 .

To see this assume there was a strategy σ for pπ2 that guarantees to be

winning. Then for every finite history σ yields a unique move i that player

pπ2 will take so that pπ2 is then either in a state where a holds or not. In the

moment when player pπ1 has to choose her move the choice of pπ2 is already

made and observable for pπ1 . So pπ1 can simply choose the move that ends

up in exactly the other state ensuring that aπ1 and aπ2 have different truth

values and thus are not equivalent.

This is a contradiction to the assumption that the strategy σ is winning for

pπ2 and we can conclude that no such strategy can exist. "

Although the HyperLTL formula holds on K we are not able to give a

formal proof using this proof system. This means that our proof system is

not complete. □

The reason why the proof system is not complete is the finite knowledge

that is accessible by strategies on concurrent game structures. A strategy

works on the finite information provided through the history that it receives

as an argument. So no information about the future moves of any player

are known. On the contrary in HyperLTL the whole traces with all their

information are accessible when deciding if a formula holds on a given trace

assignment.

To obtain a complete proof system we thus need a method to prevent that

the information about the future needed to give a winning strategy in the

concurrent game structure is lost in the transition from HyperLTL to ATL*.

We want to provide all information needed to give the correct strategies if

the initial statement holds. In the following chapter we will do exactly this

by introducing so called prophecy variables [1].





Chapter 4

Completeness of the Proof

System

Only a complete proof system guarantees that every correct statement can

actually be proven using this system. The reason why the proof system

presented in this thesis is not complete yet is that the strategies used in the

ATL* semantics can only reason about the history of the path through the

system whereas the trace assignment of HyperLTL formulas allows to access

the entire traces. In the transition from a HyperLTL formula to an ATL*

formula important information is lost that is needed to decide whether the

statement that is to be proven holds.

Assume we want to reason about a HyperLTL formula Qπ1. . . .Qπn.ψ with

n quantified traces where ψ is a quantifier-free LTL formula and Q ∈ {∀, ∃}.
We will then first transform this formula into an equivalent HyperLTL for-

mula that formalizes the additional information about the future explicitly

before we then apply the self-composition in order to use the ATL* proof

system. This information is made explicit by introducing so called prophecy

variables [1] to the HyperLTL formula that guess if the universally quanti-

fied traces are going to behave in a certain way described by a HyperLTL

formula. The prophecy variable p represents the guess if this HyperLTL

formula ∃πϕ1 . . . . ∃πϕm .ϕ will hold for the universally quantified traces or

equivalently p guesses if the universally quantified trace will be in the lan-

guage of this HyperLTL formula. Assuming this guess to be correct it is then

possible to give an adequate strategy for the explicitly quantified players in

the concurrent game structure after the application of the self-composition

using this knowledge.

However, if the guess is wrong then this still does not affect the correctness

because the prophecy variable p is introduced as the premise of an implica-
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tion where the original formula ψ is the conclusion. Intuitively we gain a

HyperLTL formula of the form Qπ1. . . .Qπn.∃πϕ1 . . . . ∃πϕm . (p ↔ ϕ) → ψ.

If the truth values of the prophecy variable are guessed wrong then the

premise is false and we thus can conclude anything. But if the guess was

correct then the premise is true and using this information we can give a

strategy guaranteeing that the conclusion will hold too.

In the following we want to capture this idea more formal. While doing so

we will restrict our attention to finite state systems and safety properties

that are properties requiring that something bad never happens [2].

As a first step we have to identify the pieces of information that the prophecy

variables should guess. That means we have to find some formulas ϕ that

represent the information needed in order to give a set of winning strategies.

Then the prophecy variables guess whether these formulas will hold or not.

In general we want to gain information about how the universally quantified

traces will behave in the future so that the existentially quantified traces can

be chosen based on this knowledge and thus it is possible to give the strategy.

The formulas ϕ may therefore only talk about the future of the universally

quantified traces. We will construct these formulas in a way that they de-

scribe the language of allowed future moves for the players representing the

universally quantified moves in the self-composed system. After that the

prophecy variables may guess if the universally quantified traces will meet

these requirements. The languages are computed from the self-composed

system together with the Büchi automaton for the LTL formula ψ. This

automaton is built with the construction from [15] so that the alphabet of

the automaton is a tuple of states. From the system gained by considering

the self-composition together with this automaton these languages are then

computed and one formula ϕs and one prophecy variable ps for every state

s in this system is introduced.

Because we will consider this modified version of the self-composed system

obtained by the Rule Self-Composition (see Figure 3.3) where the automaton

for ψ is included we will present a modified rule for the self-composition

before we actually see how to introduce the required prophecy variables.

4.1 Modifying Rule Self-Composition

The idea is that we will build the product construction of the self-composed

system and the nondeterministic Büchi automaton for the formula ψ. This

construction combines the states of both system by applying the cross prod-
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uct to the two sets of states. Like that the current state of the automaton can

be observed without influencing the behavior of the self-composed system.

Construction 4.1 (Product of Self-Composition and Automaton)

LetK = (QK , q0, dK , δK , APK , lK) be a Kripke structure andQπ1. . . .Qπn.ϕ

be a HyperLTL formula with n quantified traces where Q ∈ {∀, ∃}. Con-

struct the concurrent game structure S′ = (AS′ , QS′ , APS′ , lS′ , dS′ , δS′) as

described in Construction 3.1. Every instance of the system K in S′ de-

scribes to one quantified trace in the given HyperLTL formula.

Then construct the alternating Büchi automaton A = (QA, qA,0,ΣA, δA, FA)

for the LTL formula ϕ by using the construction as described in [15]. This

construction uses tuples of states from QK as the alphabet, for every quan-

tified trace in the HyperLTL formula we have one element in the tuples:

ΣA = (QK)n. A run through the automaton A then is an element of (QK)n

and represents exactly n paths where e.g. the first path is recovered by

considering only the first component of every element in the run. If we

consider the corresponding traces to these paths and interpret the formula

ϕ on the trace assignment Π assigning the first trace variable to the trace

generated by the first path encoded in the run then we see that the run in

A is accepting whenever Π |=K ϕ.

Convert the alternating Büchi automaton A for ϕ into an equivalent non-

deterministic Büchi automaton A′ = (QA′ , qA′,0,ΣA, δA′ , FA′) with L (A) =

L (A′) by using the standard construction of Miyano and Hayashi [18].

We now construct the concurrent game structure S = (A,Q,AP, l, d, δ) that

captures the different paths through K and the corresponding state of the

automaton A′ for ϕ as follows:

• A = AS′

• Q = QS′ ×QA′

• AP = APS′

• l: ∀q ∈ Q.l(q) = l((qS′ , qA)) = lS′(qS′)

• d: ∀q ∈ Q.∀1 ≤ m ≤ n.dπm(q) = dπm((qS′ , qA)) = dS′(qS′)

• δ: ∀q ∈ Q.∀(i1, . . . , in) ∈ D(q). δ(q, (i1, . . . , in))

= δ((qS′ , qA′), (i1, . . . , in)) = δ(((qπ1 , . . . , qπn), qA′), (i1, . . . , in))

∈ {((δK(qπ1 , i1), . . . , δK(qπn , in)), q
′
A′) |

q′A′ ∈ δA′(qA′ , (δK(qπ1 , i1), . . . , δK(qπn , in)))}

Note that this concurrent game structure is nondeterministic because the

nondeterministic automaton A′ is added. The transition function δ has

become a transition relation and does not return a unique state but a set of
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states that differ only in their automaton component q′. Assume the system

S is in a state (s, q) where s is a state in S′ and q is a state in A′. The

successor state (s′, q′) is then computed intuitively as follows:

• The successor state s′ of state s in the self-composed system S′ is

computed. Recall that this is a concurrent game structure used as

a model for an ATL* formula and therefore the explicitly quantified

players have to choose their moves first.

– The players representing an existentially quantified trace choose

their moves.

– Then all other players choose their moves.

– Together all these moves form a complete move vector i ∈ DS′(s)

and the transition function then yields a unique successor state

s′ = δS′(s, i).

• Then the successor state q′ of state q in the automaton A′ is chosen

according to the state s′ computed in the previous step.

– Calculate the set of possible successor states δA′(q, s′)

– Choose a state q′ from this set nondeterministically.

• Combining these results we receive the successor state (s′, q′).

We call a path u through S accepting if the run r through A′ encoded in

the automaton component of this path is accepting. Using the projection

we can compute r = r0r1r2 . . . from u = u0u1u2 . . . where ri is a state in the

automaton A′ and ui = (si, qi) is a state in S for i ∈ N: ri = pr2(ui)

S can be interpreted directly as the nondeterministic Büchi automaton S =

(QS , qS,0,ΣS , δS , FS) where qS,0 = (qS′,0, qA′,0) is the start state with qS′,0 ∈
QS′ being the state that has the start state of the Kripke structure q0 ∈ QK

at every tuple component. The set of accepting states is determined by the

accepting states of A′: FS = {(qS′ , qA′)|qS′ ∈ QS′ , qA′ ∈ FA′}. The alphabet

of the automaton then is the set of all move vectors in S: ΣS = (N∗)n. The

transition relation is δS : QS × (N∗)n → 2QS and for every state q ∈ QS and

every move vector I ∈ [N∗]n δS(q, I) is only defined if I ∈ D(q).

By adding A′ to S′ the current automaton state is directly accessible in

the states of S and we can use this information in order to compute the

strategies required in the ATL* setting as we will see below. □

Example 4.2 (Application of Construction 4.1)

Again we consider the Kripke structure K in Figure 2.1 and the formula

∀π1.∃π2. (aπ1 ↔ aπ2) from Example 2.7.
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Figure 4.1: Büchi automaton A′
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Figure 4.2: System S gained by Construction 4.1 by combining S′ and A′
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S |= true → 〈〈pπ′
1
, . . . , pπ′

n
〉〉ϕ

K |= ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n. ϕ

where S is built from K by using Construction 4.1.

Figure 4.3: Modified Rule Self-Composition

Construction 4.1 calculates the concurrent game structure S′ (see Figure

3.1). Moreover, a nondeterministic Büchi automaton A′ for (aπ1 ↔ aπ2) is

built. The automaton in Figure 4.1 is even a deterministic Büchi automaton

that accepts all paths through S′ whose traces fulfill (aπ1 ↔ aπ2). The

alphabet Σ of this automaton consists of pairs of states in K because we

have two trace quantifiers in the HyperLTL formula.

The concurrent game structure S is then gained by combining S′ and A′

using Construction 4.1. The resulting system S is depicted in Figure 4.2.

The two states (q0, q1, r0) and (q1, q0, r0) are unreachable and therefore not

given in Figure 4.2.

The states of S are pairs of states of S′ and states of A′. Every state in

Q is labeled with the same atomic propositions that its S′ part is labeled

with. The transition function δ computes the transitions in S′ and in A′ and

updates both state components accordingly. In this example the resulting

concurrent game structure S is deterministic because the Büchi automaton

A′ is. The states containing an accepting state from A′ are marked with

double circles such that accepting paths through S can be identified.

The set of players A is the same as in S′ and the moves chosen by player

pπ1 are given in blue and the moves chosen by player pπ2 are green. □

We require that the system S used in rule Self-Composition is generated by

using this construction above such that we gain the modified rule for the

self-composition presented in Figure 4.3. This modification does not affect

the soundness of the rule Self-Composition at all.

Theorem 4.3 (Soundness of Modified Rule Self-Composition)

The modified inference rule Self-Composition in Figure 4.3 is sound. □

Proof The proof of this claim proceeds mostly analogous to the proof of

Theorem 3.5. The main difference is that the system S now is nondetermin-

istic because every state has the additional component representing a state

from the nondeterministic automaton.

Then from the assumption that S |= true → 〈〈pπ′
1
, . . . , pπ′

n
〉〉ϕ holds we can

conclude that there is a winning set of strategies F{pπ′
1
,...,pπ′

n
}. In the case

of a nondeterministic concurrent game structure a set of strategies is called
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winning if given an arbitrary set of strategies for the other players there is

always a path through S such that ϕ holds on that path. If all strategies

are fixed the paths that are generated when applying these strategies only

differ in the nondeterministic choice of the automaton A′. The component

that represents a path through S′ is the same in all these paths. The as-

sumption implies that this path is accepted by A′. This means that there

is an accepting run of A′ on this path. The path generated by the fixed set

of strategies that encodes exactly this run through A′ is then an accepting

path in S.

We use the strategies in F{pπ′
1
,...,pπ′

n
} to construct n paths u′k = s′k,0s

′
k,1s

′
k,2 . . .

with 1 ≤ k ≤ n in order to contradict to the assumption that K |=
∃π1. . . . ∃πm.∀π′

1. . . . ∀π′
n. ¬ϕ.

Let ul = sl,0sl,1sl,2 . . . for 1 ≤ l ≤ m be paths that generate the existen-

tially quantified traces. We construct the paths u′k in exactly the same way

as in the proof of Theorem 3.5 by using the strategies σpπ′
k

from the set

F{pπ′
1
,...,pπ′

n
} and the paths ul.

Together the paths ul and u′k define a path s = s0s1s2 . . . with every state

being of the form st = (s1,t, . . . , sm,t, s
′
1,t, . . . , s

′
n,t) for all t ∈ N. This se-

quence of states can be interpreted as input to the automaton A′ which

then generates one run r = q0q1q2 . . . that is chosen nondeterministically

from the set of all runs on this input. We then combine s and r and obtain

a path (s0, q0)(s1, q1)(s2, q2) . . . through the system S. By our assumption

we know that if r was chosen correctly, i.e. r is an accepting run in A′ then

the strategies in F{pπ′
1
,...,pπ′

n
} guarantee that ϕ will be fulfilled by the gener-

ated traces. Then it immediately follows that these traces wrapped in the

respective trace assignment Π fulfill ϕ on the Kripke structure K: Π |=K ϕ.

Even if a non-accepting run r was selected we can conclude that the traces

generated by the paths u′k satisfy ϕ because the choice of the automaton

run has no influence on the truth value of the formula ϕ under a given trace

assignment.

Because we always can find the adequate paths u′k for all paths ul such that

the generated traces satisfy ϕ we found a contradiction to the assumption

that K |= ∃π1. . . . ∃πm.∀π′
1. . . . ∀π′

n. ¬ϕ and we can conclude that K |=
∀π1. . . . ∀πm.∃π′

1. . . . ∃π′
n. ϕ and the modified Rule 4.3 is sound. "

By using this modified rule we then can reason about both, the states of

the self-composed system S′ and the states of the automaton A′. Therefore

we are able to access all information needed in the ATL* setting in order to

ensure that there is a winning set of strategies for the players representing
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the existentially quantified traces. This information has to be made explicit

in order to give the actual strategies of these players.

4.2 Introducing Prophecy Variables

In order to show how to compute a winning set of strategies for the existen-

tial players we first have to ensure that the prophecy variables ps and the

pieces of information they guess are chosen adequately. As described above

this information is represented by HyperLTL formulas ϕs that describe the

allowed future behavior of the universally quantified traces starting from

every state s. We want to see how these formulas are constructed formally.

After that we will see how the prophecy variables are introduced into the

formula by the corresponding proof rule.

Construction 4.4 (Computation of ϕs)

Let a finite state Kripke structure K = (QK , q0, dK , δK , APK , lK) and a

HyperLTL formula of the form ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n. ψ be given.

Step 1: Calculate S

Construct the concurrent game structure S = (A,Q,AP, l, d, δ) from K and

the formula as described in Construction 4.1. The states of this system

are pairs of a tuple of m + n Kripke structure states and a state of the

nondeterministic Büchi automaton A′ for the LTL formula ψ. There is one

player for every quantified trace from the original HyperLTL formula in the

set A. We have m universal players pπl
for 1 ≤ l ≤ m and n existential

players pπ′
k
for 1 ≤ k ≤ n. The transitions are the combination of the single

moves in the K components such that S reasons about infinite sequences of

move vectors.

Step 2: Existential Projection to S∃
As mentioned above the formulas ϕs that we want to construct may only rea-

son about the universally quantified traces. However, the language of system

S captures both the moves of the players representing the universally and

the existentially quantified traces. This additional information is removed

by applying the existential projection to S resulting in a system S∃ which

projects away the moves for the existential players. The system S∃ then

accepts all move vector sequences for the universal players for which there

exist a corresponding move vector sequence for the existential players such

that the resulting path u through the system is accepting and equivalently

the trace assignment Πu is a model for the initial HyperLTL formula.

Formally the system S∃ = (AS∃ , Q,AP, l, d, δS∃) is gained by applying the

existential projection as follows:
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• AS∃ = {pπl
|1 ≤ l ≤ m}

• δS∃ = {(q, J, q′)|∃I ∈ (N∗)n.(q, J ◦ I, q′) ∈ δ, q, q′ ∈ Q, J ∈ (N∗)m}
where ◦ is defined on two tuples J = (j1, . . . , jm) and I = (i1, . . . , in)

as follows: J ◦ I = (j1, . . . , jm, i1, . . . , in)

J ◦ I ∈ (N∗)m+n is a move vector in S and the existential projection

transforms this into a move vector in S∃ by deleting the moves for the

existential players.

Step 3: HyperLTL formulas ∃π1
s . . . . ∃πx

s .ϕs

We can view every Ss
∃ as a nondeterministic Büchi automaton with L (Ss

∃) ⊆
((N∗)m)ω, i.e. the language contains infinite sequences of partial move vec-

tors containing the moves for the universal players that are accepted. We

now want to know for every state s in the system S∃ what behavior of the

universal players pπl
, 1 ≤ l ≤ m is allowed in the future if a run is in that

state. So we consider the system Ss
∃ for every state which is exactly the

same system as S∃ but with state s considered as the initial state.

Let x be the number of states in S∃ and thus the number of existential

quantifiers in every φs. For every of these Büchi automata we calculate the

HyperLTL formula ϕ′
s = ∃π1

s . . . . ∃πx
s .ϕs with the same language L (Ss

∃) =

L (ϕ′
s). The formula ϕ′

s can be constructed from the automaton Ss
∃ by

applying Construction 2.10.

L (ϕ′
s) describes which sequences of moves are allowed for the universal

players starting from every state s in order to preserve the possibility to

win for the existential players. Note that L (Ss
∃) is a language about move

vector sequences. We can interpret this language as a language of traces by

proceeding as follows:

Together with the states sπl defined in s = ((sπ1 , . . . , sπm , sπ
′
1 , . . . , sπ

′
n), q)

for 1 ≤ l ≤ m every sequence of move vectors in the language identifies m

paths trough the Kripke structure K, one for every universal player.

The language of ϕ′
s can therefore be interpreted as a language of path tuples

containing one path uπl
per universal player, where every path starts in the

respective start state sπl . For all path tuples in this language the existential

players can find corresponding paths such that the formula is fulfilled.

Because every path in K defines a unique trace (applying the labeling func-

tion lK to every state in uπl
yields the corresponding trace) we can view ϕ′

s

as a formula describing a language of trace tuples, i.e. L (ϕ′
s) ⊆ ((2AP )m)ω.

Note that although we now loose information about the exact paths we do

not loose any relevant information because HyperLTL formulas in general

only consider traces represented in the trace assignments Π and never reason

about the actual underlying path.
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Figure 4.4: System S∃ built during Construction 4.4

The formulas ϕ′
s cover exactly the information needed in order to compute

adequate strategies for the existential players. We will thus use prophecy

variables guessing the future value of these formulas in order to achieve

completeness for safety formulas on finite state systems. □

The following example illustrates the application of this construction.

Example 4.5 (Application of Construction 4.4)

Reconsider the problem whether the HyperLTL formula ∀π1.∃π2. (aπ1 ↔
aπ2) holds on the Kripke structure K given in Figure 2.1.

Step 1 requires to calculate the concurrent game structure S from K for

the HyperLTL formula. This was done in Example 4.2 and the resulting

concurrent game structure is given in Figure 4.2. Player pπ1 is the universal

player and pπ2 is the existential player.

In Step 2 the existential projection is applied to S and we obtain the

nondeterministic concurrent game structure S∃ as given in Figure 4.4 where

the moves chosen by the existential player are projected away.

Step 3: For every state s ∈ Q we consider the concurrent game structure

Ss
∃. This system then is interpreted as a nondeterministic Büchi automaton

with s being the initial state.

For every of these automata an equivalent HyperLTL formula ϕ′
s is calcu-

lated using Construction 2.10.

These formulas ϕ′
s describe the set of move sequences that is allowed for

the universal player in order to ensure that the existential player has the
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possibility to win starting in state s. Every move sequence in the language

of this HyperLTL formula identifies a unique path in the Kripke structure

K and every path generates a unique trace. Thus the HyperLTL formula ϕ′
s

gives the language of all traces that player pπ1 is allowed to generate starting

in the state s that is currently examined. □

We introduce prophecy variables ps to our formula and system as follows.

For every state s of the system S∃ we have computed the language ϕ′
s. A

prophecy variable ps is now introduced for every s to the set of atomic

propositions and we require ps to be equivalent to ϕ′
s at every point in time,

i.e. (ps ↔ ϕ′
s). ps intuitively means that the universally quantified traces

behave like it is required by the language of ϕ′
s. Note that in order to obtain

a HyperLTL formula we have to pull the quantifiers to the front which is

no problem here because the scope of the quantifiers does not change. Only

the subformula ϕs reasons about the traces quantified by ∃π1
s . . . . ∃πx

s .. The

rest of the formula accesses different traces.

If a trace fulfills the requirements of such a language we know that there is

a corresponding trace that allows us to satisfy the formula ψ. The ϕ′
s are

the HyperLTL formulas we were looking for in the application of our proof

rule. There are only finitely many formulas ϕ′
s namely one for every state

s ∈ (QK)n ×QA′ which is finite because QK and QA′ are.

The prophecy variables are introduced as atomic propositions to the Kripke

structure. For every possible truth value assignment of these variables one

state is created. We will do this implicitly and only display the systems

containing the original states. Nevertheless, we assume that for a given path

through the system on the original states a path exists for every possible

valuation of the prophecy variables considering the extended set of atomic

propositions.

Formally the prophecy variables are introduced by Rule Prophecy presented

in Figure 4.5. First we prove that this rule is sound and complete, i.e. the

two formulas in the premise and conclusion of this rule are equivalent. Then

we will have to show that in the resulting formula we have all information

needed to give a winning set of strategies for the existential players on the

self-composed system S in order to prove that the proof system is complete.

Theorem 4.6 (Soundness and Completeness of Rule Prophecy)

The inference rule Prophecy from Figure 4.5 is sound and complete. □
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K |= ∀s ∈ QS .∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.∃π1
s . . . . ∃πx

s .(
!

s∈QS

(ps ↔ ϕs)) → ψ

K |= ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ

where S is built as Construction 4.1 specifies, for all s ∈ QS ps is fresh to

AP and the formulas ∃π1
s . . . . ∃πx

s .ϕs are computed according to

Construction 4.4

Figure 4.5: Rule Prophecy

Proof We prove the claim by showing that the two formulas of the rule are

equivalent, i.e. we show the following:

(∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ) ↔

(∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.∃πϕ1 . . . . ∃πϕm .(
!

s∈QS′

(ps ↔ ϕs)) → ψ).

”→”:

Assume ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ holds. We have to prove that then also

the formula ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.∃πϕ1 . . . . ∃πϕm .(
!

s∈QS′

(ps ↔ ϕs)) → ψ

holds.

Following the equivalence (φ1 → φ2) ↔ (¬φ1 ∨ φ2) an implication holds

whenever its premise is false or its conclusion is true. Note that ψ in

both formulas only reasons about the first m + n quantified traces and

the additional existential quantifiers in the second formula do not affect

the truth value of ψ at all. So because by the assumption we know that

∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ holds we see that the conclusion of the implica-

tion in the second formula holds and thus followed directly from the as-

sumption ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.∃πϕ1 . . . . ∃πϕx .(
!

s∈QS′

(ps ↔ ϕs)) → ψ is

true.

”←”:

Assume that ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.∃πϕ1 . . . . ∃πϕx .(
!

s∈QS′

(ps ↔ ϕs)) →

ψ holds. We want to show that ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ holds too.

Let πl for 1 ≤ l ≤ m be arbitrary traces. Let π′
k for 1 ≤ k ≤ n and πϕy for

1 ≤ y ≤ x be the corresponding traces which have to exist by assumption.

• Whenever the premise
!

s∈QS′

(ps ↔ ϕs) holds we can immediately

conclude that ψ is true as well because we assume that the implication

holds.
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• In case
!

s∈QS′

(ps ↔ ϕs) does not hold this means that there has to

be at least one point in time where a prophecy variable ps guesses the

wrong value for ϕs. Recall that the only constraint on the choice of the

prophecy variables is that they have to be fresh to the set of atomic

propositions AP . We can choose fresh prophecy variables p′s that

always guess the right value of ϕs and that then fulfill
!

s∈QS′

(p′s ↔

ϕs). Again because the premise holds we know that the conclusion ψ

has to be true.

In both cases we can conclude that ψ has to be true and by reintroducing

the quantifiers we obtain ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ. So we can conclude

that our claim holds and the Rule Prophecy is sound and complete. "

Note that in the proof above we did not make any assumptions about the

kind of formula so that we can conclude that the rule Prophecy is sound

and complete not only for safety formulas.

4.3 Computing Strategies

After the application of the Prophecy Rule 4.5 the resulting equivalent for-

mula contains all needed information about the future explicitly. Then Rule

4.3 is applied to gain the concurrent game structure S and using the infor-

mation gained by the step before it is now possible to give the necessary

strategies in order to prove that the resulting statement holds and the proof

system is complete. We will now show how this set of strategies can be

computed.

Construction 4.7 (Calculate set of strategies)

Let a Kripke structure K = (QK , q0, dK , δK , APK , lK) and a safety Hyper-

LTL formula ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ be given. Then we apply the Rule

Prophecy 4.5 and afterwards the modified Rule Self-Composition 4.3. We

obtain the concurrent game structure S = (A,Q,AP, l, d, δ) and the ATL*

formula ∀s ∈ Q.〈〈pπ′
1
, . . . pπ′

n
, pπ1

s
, . . . pπx

s
〉〉(

!
s∈Q

(ps ↔ ϕs)) → ψ.

Now we want to compute a set of strategies F{pπ′
1
,...pπ′

n
,p

π1
s
,...pπx

s
|∀s∈Q} contain-

ing one strategy for every player in the set annotated. All these strategies

are memoryless because the whole information needed is encoded in the

states due to the prophecy variables ps.

We begin with computing the strategies σpπ′
k

for the existential players pπ′
k

with 1 ≤ k ≤ n. The main idea is that we choose in every state s a move i

for player pπ′
k
that preserves the possibility to win. Recall that we restricted



52 4. Completeness of the Proof System

our view to safety formulas which means that the set of strategies is winning

if it guarantees that nothing bad will happen. If this is ensured from every

state then there is no opportunity for any bad behavior such that the safety

property is fulfilled and the strategies are winning.

To find an adequate move ik for a given player pπ′
k
in a given state s =

(st, qt) = ((sπ1
t , . . . , sπm

t , s
π′
1

t , . . . , s
π′
n

t ), qt) we compute the following for all

possible values of ik, i.e. for 1 ≤ ik ≤ dK(s
π′
k

t ):

L(s, ik) = ∀ 1 ≤ l ≤ m. ∀k < k+ ≤ n.
&

1<ik+≤dK(s
π′
k+

t )

&

1≤jl≤dK(s
πl
t )

&
qt+1∈Qt+1

ps′

where s′ = (st+1, qt+1) = ((sπ1,j1
t+1 , . . . , sπm,jm

t+1 , s
π′
1,i1

t+1 , . . . , s
π′
n,in

t+1 ), qt+1) and

• ∀1 ≤ l ≤ m. sπl,jl
t+1 = δK(sπl

t , jl)

• ∀1 ≤ k− < k. s
π′
k−

,ik−
t+1 = δK(s

π′
k−

t ,σpπ′
k−

(s))

• s
π′
k,ik

t+1 = δK(s
π′
k

t , ik)

• ∀k < k+ ≤ n. s
π′
k+

,ik+

t+1 = δK(s
π′
k+

t , ik+)

• Qt+1 = δA′(qt, st+1)

Intuitively this formula checks whether there is a combination of moves

chosen by the other players such that no bad behavior is caused by the

resulting transition.

We choose any of the values ik for which L(s, ik) holds and define σpπ′
k

(s) =

ik. This means that there was at least one true prophecy variable ps′ checked

by L(s, ik). This prophecy variable assures that taking the transition from s

to its successor state s′ does not cause any bad behavior and thus preserves

the possibility to win. Moreover it guarantees that the universal players pπl

will choose adequate moves guaranteeing that their future behavior matches

the language requirements of state s′ expressed as ϕs′ . Adequate moves for

the remaining existential players are then chosen using the same technique.

The strategies for the existential players pπ′
k
in a state s have to be computed

in an increasing order from k = 1 to k = n. When this is done for every

s ∈ Q we have found the desired strategies σpπ′
k

.

Because we assume that the initial ∀∗∃∗ HyperLTL formula holds on the

given Kripke structure K we also can conclude that in every step there is a
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corresponding move for the existential players that does not cause a violation

of the safety requirements. If this was not the case at one point in time then

the existential players had no possibility to win from that state and would

not have chosen a move to go to that state one step before.

The strategies for the remaining players pπ
ϕ
y
s
for every s ∈ Q and 1 ≤

y ≤ x may be chosen arbitrarily. In the case when the strategies for pπ
ϕ
y
s

are guessed correctly then the strategies of the players pπ′
k
guarantee that

the formula ψ is fulfilled. If the strategies were chosen wrong then this

means that the premise does not hold anymore and the overall implication

is fulfilled automatically. □

4.4 Completeness Proof

Having this set of strategies we can show that the proof system for Hyper-

LTL presented here is complete for finite state systems and safety formulas.

This means if a safety HyperLTL formula ϕ holds on a finite state Kripke

structure K and we apply Rule 4.5 and Rule 4.3 then the resulting ATL*

formula ψ holds on the generated concurrent game structure S. S |= ψ is

shown by proving that the strategies resulting from Construction 4.7 are

winning. Together with the completeness of the ATL* proof system proven

in [24] we then can conclude that our proof system is complete.

Theorem 4.8 (Completeness of the Poof System)

The presented proof system for HyperLTL is relative complete to the proof

system of ATL* for finite state systems and safety formulas of the ∀∗∃∗
fragment. □

Proof To prove this claim we show that the statement S |= true → ∀s ∈
Q.〈〈pπ′

1
, . . . pπ′

n
, pπ1

s
, . . . pπx

s
〉〉(

!
s∈Q

(ps ↔ ϕs)) → ψ holds that means that

there exists a set of strategies F∃ (generated by Construction 4.7) that is

winning.

Let K = (QK , q0, dK , δK , APK , lK) be a finite state Kripke structure and

∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ be a safety HyperLTL formula. Then we apply

the Rule Prophecy 4.5 and afterwards the Modified Rule Self-Composition

4.3. Let S′ and A′ be the concurrent game structure and the nondeter-

ministic Büchi automaton generated within this step. We obtain a finite

state concurrent game structure S = (A,Q,AP, l, d, δ) and the ATL* for-

mula true → ∀s ∈ Q.〈〈pπ′
1
, . . . pπ′

n
, pπ1

s
, . . . pπx

s
〉〉(

!
s∈Q

(ps ↔ ϕs)) → ψ. Let

F∃ = F{pπ′
1
,...pπ′

n
,p

π1
s
,...pπx

s
|∀s∈Q} be the set of strategies resulting from running

Construction 4.7.
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Assume that K |= ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ.

We have to show that F∃ is a winning set of strategies. This means that for

any choice of the strategies for the universal players pπl
with 1 ≤ l ≤ m the

strategies in F∃ always guarantee that there is an accepting run through the

nondeterministic concurrent game structure S. Thus the strategies together

fix a unique path u′ through S′ and therefore define a set of paths u through

S that only differ in their automaton component because the automaton A′

is nondeterministic on the input u′.

If A′ accepts u′ we know that there has to be an accepting run r through

A′. At the same time this means that u′ is in the language of A′ and thus

by construction of A′ that the traces defined by the paths encoded in u′

satisfy the formula ψ, i.e. Πu′ |=K ψ. Then we know that one of the

paths u through S, namely the one encoding the accepting run r in the

automaton component, is the accepting one that we were looking for and

we can conclude that the strategies in F∃ are winning.

What is left to show is that the path u′ is in the language of A′ or equiv-

alently that Πu′ |=K ψ assuming that the prophecy variables ps are chosen

appropriately. Recall that ψ is a safety formula and that therefore the exis-

tential players win if they can ensure that in every step nothing bad happens.

If no step of a path causes any bad behavior then the safety property holds

for this path. We show that the strategies in F∃ ensure exactly this.

By the assumption that ∀π1. . . . ∀πm.∃π′
1. . . . ∃π′

n.ψ holds on K we know that

starting in the initial state there has to be for every choice of the universal

quantified players a move vector of the existential players that causes no bad

behavior and thus preserves the possibility to win. The existential players

then choose their moves in a given state s according to Construction 4.7.

Thus every player chooses a move for which L(s, i) holds. That implies that

there was at least one prophecy variable ps′ that was true where s′ is a

successor state of s in S. This prophecy variable intuitively guarantees that

the universal players will behave in a way such that the existential players

can choose adequate moves in order to satisfy the given safety property. As

long as this possibility is given nothing bad has happened yet and thus a

transition to the state s′ cannot cause any bad behavior. By doing this over

and over again it is ensured that in every step good moves for the existential

players are chosen meaning that no bad behavior occurs. The resulting path

then satisfies the safety property.

Note that there always has to be at least one move i for every existential

player such that L(s, i) is true. If this was not the case we would have no

possibility to win in the current state s and thus would have never gone

there by construction.
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Because the moves chosen by the strategies in F∃ ensure in every step that

nothing bad will happen that violates the safety requirements expressed in

the formula we can conclude that these strategies are winning. Thus we

have shown that S |= ∀s ∈ Q.〈〈pπ′
1
, . . . pπ′

n
, pπ1

s
, . . . pπx

s
〉〉(

!
s∈Q

(ps ↔ ϕs)) →

ψ as an adequate set of strategies F∃ exists. The following equivalence

φ ↔ (true → φ) then implies that the statement we wanted to prove holds

as well: S |= true → ∀s ∈ Q.〈〈pπ′
1
, . . . pπ′

n
, pπ1

s
, . . . pπx

s
〉〉(

!
s∈Q

(ps ↔ ϕs)) → ψ

Together with the completeness of the ATL* proof system that can be ap-

plied to this statement we have proven that the HyperLTL proof system

presented is complete. "

By adding the automaton A′ representing the safety LTL formula to the

concurrent game structure and by the introduction of prophecy variables we

were able to prove that the two sound Rules 4.5 and 4.3 together are complete

for safety properties on finite state systems. This is the case because the

prophecy variables cover all information that is needed in order to give an

appropriate winning set of strategies for the resulting ATL* formula on

the concurrent game structure. After that the ATL* proof system can be

applied to the resulting formula. Because this proof system is sound and

relative complete to the assertion language LTL we have obtained a sound

and relative complete proof system for HyperLTL considering finite state

systems and safety properties.





Chapter 5

Conclusion

Within this thesis we developed a sound proof system for the ∀∗∃∗ fragment

of HyperLTL. When limited to safety HyperLTL formulas and finite state

systems the proof system for HyperLTL presented is shown to be relative

complete to the underlying proof system for ATL*.

In chapter 3 a first suggestion of a proof system was made. Using the concept

of self-composition [5] several copies of the same system were combined

in order to simultaneously represent different paths through that system

(see Rule 3.3). To the resulting statement the ATL* proof system can be

applied. We saw that this proof system is sound but not complete by giving

a counterexample.

The relative completeness was achieved by introducing prophecy variables

[1] that represent information about the future behavior of the universally

quantified traces (see Rule 4.5). These variables contain explicit information

about the future that is accessible in every state of the system. Using a

product construction the automaton state is additionally introduced to the

system representation (see Rule 4.3) in order to gain information about the

accepted languages. Having these pieces of information it is possible to

explicitly give a winning set of strategies for the quantified players in the

resulting ATL* formula showing that the proof system is complete for safety

formulas on finite state systems. The sound and relative complete proof

system for ATL* is then applied to this ATL* formula and the generated

concurrent game structure.

During the development of the proof system we illustrated on a small exam-

ple how the different rules are applied. The problem we considered was how

the valid statement K |= ∀π1.∃π2. (aπ1 ↔ aπ2) can be proven using the

presented proof system with K being the Kripke structure given in Figure

2.1.
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Having a proof system for a logic in general is beneficial because it allows

the formal verification of every property that is expressible in that logic.

A proof system for HyperLTL thus allows the verification of linear-time

hyperproperties. Many interesting information-flow security policies like

observational determinism are expressible in HyperLTL and can be proven

on a given system model using this proof system. When using a proof system

for a less expressive logic these properties cannot be examined in general.

Nevertheless, some safety properties can be proven by applying the self-

composition [5] as shown in [25] because the properties can be reduced to

equivalent properties on the self-composed system. But overall, the set of

properties that can be proven to hold on a system is extended by considering

a HyperLTL proof system.

Using HyperLTL as a specification language for verification and synthesis

tools allows to examine a wide range of desired system properties including

interesting privacy and security constraints like information-flow properties.

HyperLTL is similar to LTL which is nowadays used as a specification lan-

guage in practice. Replacing this language by HyperLTL is therefore likely

to be accepted by the actual users of these tools because they do not have

to change completely but are already familiar and only have to integrate

the concept of trace quantifiers in order to gain a lot of expressive power.

This thesis is a first step towards this direction because it provides valuable

insights into the formal verification of hyperproperties.

Future Work

The proof system as presented here is restricted to model checking finite

state systems together with linear-time properties that are expressible in

the ∀∗∃∗ fragment of HyperLTL as a safety formula.

A next step would be to examine and prove the completeness of this proof

system for liveness properties.

It would also be interesting to investigate the ∃∗∀∗ fragment of HyperLTL

as well as the fragments that contain more than one quantifier alternation.

In the ∃∗∀∗ case it is likely that the approach presented here only needs a

minor adaption when the strategies for the existential players are computed.

It might be sufficient to consider the conjunction of possible moves for the

universal players instead of their disjunction. The adaption for the case

with more than one quantifier alternation is possibly similar but there the

additional question arises how the prophecy formulas ϕs can be computed

properly. Further research is needed to solve these challenges.

Another interesting problem that was not addressed in this thesis is the de-

velopment of a proof system for HyperCTL*. As we have seen, HyperCTL*

can express even more hyperproperties than HyperLTL can, because it uses
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path quantifiers and the quantifiers may occur at any position in the for-

mula. By providing a proof system for this logic, all these hyperproperties

could be formally proven on system models. This HyperCTL* proof system

has to cope with the arbitrary position of the quantifiers. In our setting it

might be possible to postpone the handling of this problem to the applica-

tion of the ATL* proof system because the selective ATL* quantifiers may

also occur at any position in the formula. In order to do that, there has to

be a construction yielding an adequate ATL* formula for every HyperCTL*

formula.

This bachelor’s thesis provides a basis on which these open questions can be

answered in future work.
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