Verification

Lecture 9

Martin Zimmermann

Plan for today

- Regular properties
- Finite automata
- Checking regular safety properties
- Büchi automata

Review: ω-regular expressions

1. $\underline{\varnothing}$ and $\underline{\varepsilon}$ are regular expressions over Σ
2. if $A \in \Sigma$ then \underline{A} is a regular expression over Σ
3. if $\mathrm{E}_{1} \mathrm{E}_{1}$ and E_{2} are regular expressions over Σ then so are $E_{1}+E_{2}, E_{1} \cdot E_{2}$ and E^{*}
E^{+}is an abbreviation for the regular expression $\mathrm{E} . \mathrm{E}^{*}$
An $\underline{\omega \text {-regular expression }} \mathrm{G}$ over the alphabet Σ has the form:

$$
\mathrm{G}=\mathrm{E}_{1} \cdot \mathrm{~F}_{1}^{\omega}+\ldots+\mathrm{E}_{n} \cdot \mathrm{~F}_{n}^{\omega} \quad \text { for } n>0
$$

where $\mathrm{E}_{i}, \mathrm{~F}_{i}$ are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}\left(\mathrm{F}_{i}\right)$, for all

$$
0<i \leq n
$$

Review: Büchi automata

NBA are more expressive than DBA

NFA and DFA are equally expressive but NBA and DBA are not!

There is no DBA that accepts $\mathcal{L}_{\omega}\left((A+B)^{*} B^{\omega}\right)$

Proof

- Assume that $L=\mathcal{L}\left((A+B)^{*} B^{\omega}\right)$ is recognized by the deterministic Büchi automaton \mathcal{A}.
- Since $b^{\omega} \in L$, there is a run
$r_{0}=s_{0,0} s_{0,1} s_{0,2}, \ldots$
with $s_{0, n_{0}} \in F$ for some $n_{0} \in \mathbb{N}$.
- Similarly, $b^{n_{0}} a b^{\omega} \in L$ and there must be a run $r_{1}=s_{0,0} s_{0,1} s_{0,2} \ldots s_{0, n_{0}} s_{1} s_{1,0} s_{1,1} s_{1,2} \ldots$
with $s_{1, n_{1}} \in F$
- Repeating this argument, there is a word $b^{n_{0}} a b^{n_{1}} a b^{n_{2}} a \ldots$ accepted by \mathcal{A}.
- This contradicts $L=\mathcal{L}_{\omega}(\mathcal{A})$.

NBA versus NFA

finite equivalence
$\nRightarrow \omega$-equivalence
$\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}^{\prime}\right)$,
but $\mathcal{L}_{\omega}(\mathcal{A}) \neq \mathcal{L}_{\omega}\left(\mathcal{A}^{\prime}\right)$
a

ω-equivalence
\nRightarrow finite equivalence
$\mathcal{L}_{\omega}(\mathcal{A})=\mathcal{L}_{\omega}\left(\mathcal{A}^{\prime}\right)$,
but $\mathcal{L}(\mathcal{A}) \neq \mathcal{L}\left(\mathcal{A}^{\prime}\right)$

NBA and ω-regular languages

The class of languages accepted by NBA agrees with the class of ω-regular languages
(1) any ω-regular language is recognized by an NBA
(2) for any NBA \mathcal{A}, the language $\mathcal{L}_{\omega}(\mathcal{A})$ is ω-regular

For any ω-regular language there is an NBA

- How to construct an NBA for the ω-regular expression:

$$
\mathrm{G}=\mathrm{E}_{1} \cdot \mathrm{~F}_{1}^{\omega}+\ldots+\mathrm{E}_{n} \cdot \mathrm{~F}_{n}^{\omega} ?
$$

where E_{i} and F_{i} are regular expressions over alphabet $\Sigma ; \varepsilon \notin \mathrm{F}_{i}$

- Rely on operations for NBA that mimic operations on ω-regular expressions:
(1) for NBA \mathcal{A}_{1} and \mathcal{A}_{2} there is an NBA accepting $\mathcal{L}_{\omega}\left(\mathcal{A}_{1}\right) \cup \mathcal{L}_{\omega}\left(\mathcal{A}_{2}\right)$
(2) for any regular language \mathcal{L} with $\varepsilon \notin \mathcal{L}$ there is an NBA accepting \mathcal{L}^{ω}
(3) for regular language \mathcal{L} and NBA \mathcal{A}^{\prime} there is an NBA accepting $\mathcal{L} . \mathcal{L}_{\omega}\left(\mathcal{A}^{\prime}\right)$

Union of NBA

For NBA \mathcal{A}_{1} and \mathcal{A}_{2} (both over the alphabet Σ) there exists an NBA \mathcal{A} such that:

$$
\mathcal{L}_{\omega}(\mathcal{A})=\mathcal{L}_{\omega}\left(\mathcal{A}_{1}\right) \cup \mathcal{L}_{\omega}\left(\mathcal{A}_{2}\right) \quad \text { and } \quad|\mathcal{A}|=\mathcal{O}\left(\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|\right)
$$

Proof on blackboard!

ω-operator for NFA

For each NFA \mathcal{A} with $\varepsilon \notin \mathcal{L}(\mathcal{A})$ there exists an NBA \mathcal{A}^{\prime} such that:

$$
\mathcal{L}_{\omega}\left(\mathcal{A}^{\prime}\right)=\mathcal{L}(\mathcal{A})^{\omega} \quad \text { and } \quad\left|\mathcal{A}^{\prime}\right|=\mathcal{O}(|\mathcal{A}|)
$$

Proof on blackboard!

