

Lecture 8

Martin Zimmermann

Plan for today

- Regular properties
 - Finite automata
 - Checking regular safety properties
 - Büchi automata

Regular properties

Review: Finite automata

A <u>nondeterministic finite automaton</u> (NFA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $Q_0 \subseteq Q$ a set of initial states
- $F \subseteq Q$ is a set of accept (or: final) states

Review: Accepted language revisited

Extend the transition function δ to $\delta^* : Q \times \Sigma^* \to 2^Q$ by:

$$\delta^*(q,\varepsilon) = \{q\}$$
 and $\delta^*(q,A) = \delta(q,A)$

$$\delta^*(q, A_1A_2 \dots A_n) = \bigcup_{p \in \delta(q, A_1)} \delta^*(p, A_2 \dots A_n)$$

 $\delta^*(q, w)$ = set of states reachable from q for the word w

Then:
$$\mathcal{L}(\mathcal{A})$$
 = $\left\{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F
eq arnothing$ for some $q_0 \in \mathsf{Q}_0
ight\}$

The class of languages accepted by NFA (over Σ) = the class of regular languages (over Σ)

Intersection

- Let NFA $A_i = (Q_i, \Sigma, \delta_i, Q_{0,i}, F_i)$, with *i*=1, 2
- The product automaton

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = (Q_1 \times Q_2, \Sigma, \delta, Q_{0,1} \times Q_{0,2}, F_1 \times F_2)$$

where δ is defined by:

$$\frac{q_1 \xrightarrow{A}_1 q'_1 \land q_2 \xrightarrow{A}_2 q'_2}{(q_1, q_2) \xrightarrow{A} (q'_1, q'_2)}$$

• Well-known result: $\mathcal{L}(\mathcal{A}_1 \otimes \mathcal{A}_2) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$

Total NFA

Automaton \mathcal{A} is called <u>deterministic</u> if

 $|Q_0| \le 1$ and $|\delta(q, A)| \le 1$ for all $q \in Q$ and $A \in \Sigma$

DFA \mathcal{A} is called <u>total</u> if

 $|Q_0| = 1$ and $|\delta(q, A)| = 1$ for all $q \in Q$ and $A \in \Sigma$

any DFA can be turned into an equivalent total DFA

total DFA provide unique successor states, and thus, unique runs for each input word

Determinization

For NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ let $\mathcal{A}_{det} = (2^Q, \Sigma, \delta_{det}, Q_0, F_{det})$ with: $F_{det} = \left\{ Q' \subseteq Q \mid Q' \cap F \neq \emptyset \right\}$

and the total transition function $\delta_{det} : 2^Q \times \Sigma \rightarrow 2^Q$ is defined by:

$$\delta_{det}(Q',A) = \bigcup_{q \in Q'} \delta(q,A)$$

 \mathcal{A}_{det} is a total DFA and, for all $w \in \Sigma^*$: $\delta^*_{det}(Q_0, w) = \bigcup_{q_0 \in Q_0} \delta^*(q_0, w)$ Thus: $\mathcal{L}(\mathcal{A}_{det}) = \mathcal{L}(\mathcal{A})$

Determinization

a deterministic finite automaton accepting $\mathcal{L}((A+B)^*B(A+B))$

Facts about finite automata

- They are as expressive as regular languages
- ► They are closed under ∩ and complementation
 - NFA $\mathcal{A} \otimes B$ (= cross product) accepts $\mathcal{L}(A) \cap \mathcal{L}(B)$
 - Total DFA $\overline{\mathcal{A}}$ (= swap all accept and normal states) accepts $\overline{\mathcal{L}(\mathcal{A})} = \Sigma^* \smallsetminus \mathcal{L}(\mathcal{A})$
- They are closed under determinization (= removal of choice)
 - although at an exponential cost.....
- - this can be done using a simple depth-first search
- For regular language ${\cal L}$ there is a unique minimal DFA accepting ${\cal L}$

Peterson's banking system

Person Left behaves as follows:

while true { $rq: b_1, x = true, 2;$ $wt: wait until(x == 1 || \neg b_2) \{$ $cs: ...@account_L...\}$ $b_1 = false;$ } Person Right behaves as follows:

	while true {
rq :	<i>b</i> ₂ , <i>x</i> = true, 1;
wt:	wait until($x == 2 \parallel \neg b_1$) {
cs :	\ldots @account _R \ldots }
	$b_2 = false;$
	}

Is the banking system safe?

Can we guarantee that only one person at a time has access to the bank account?

"always \neg (@account_L \land @account_R)"

Is the banking system safe?

- Safe = at most one person may have access to the account
- Unsafe: two have access to the account simultaneously
 - unsafe behaviour can be characterized by bad prefix
 - alternatively (in this case) by the finite automaton:

Regular safety properties

Safety property P_{safe} over AP is regular

if its set of bad prefixes is a regular language over 2^{AP}

every invariant is regular

Problem statement

Let

- *P_{safe}* be a regular safety property over *AP*
- A an NFA recognizing the bad prefixes of P_{safe}
 - assume that $\varepsilon \notin \mathcal{L}(\mathcal{A})$
 - \Rightarrow otherwise all finite words over 2^{AP} are bad prefixes
- TS a <u>finite</u> transition system (over AP) without terminal states

How to establish whether $TS \vDash P_{safe}$?

Basic idea of the algorithm

 $TS \vDash P_{safe} \quad \text{if and only if} \quad Traces_{fin}(TS) \cap BadPref(P_{safe}) = \emptyset$ if and only if $\quad Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) = \emptyset$ if and only if $\quad TS \otimes \mathcal{A} \vDash \text{``always''} \Phi \text{ to be proven}$

But this amounts to invariant checking on $TS \otimes A$ \Rightarrow checking regular safety properties can be done by depth-first search!

Synchronous product (revisited)

For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ an NFA with $\Sigma = 2^{AP}$ and $Q_0 \cap F = \emptyset$, let:

$$TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L')$$
 where

$$\bullet S' = S \times Q, AP' = Q \text{ and } L'(\langle s, q \rangle) = \{q\}$$

► → ' is the smallest relation defined by: $\frac{s \stackrel{\alpha}{\longrightarrow} t \land q \stackrel{\alpha}{\longrightarrow} p}{\langle s, q \rangle \stackrel{\alpha}{\longrightarrow} \langle t, p \rangle}$

$$\bullet I' = \{ \langle s_0, q \rangle \mid s_0 \in I \land \exists q_0 \in Q_0. q_0 \xrightarrow{L(s_0)} q \}$$

without loss of generality it may be assumed that $TS \otimes A$ has no terminal states

Example product

Verification of regular safety properties

Let *TS* over *AP* and NFA \mathcal{A} with alphabet 2^{AP} as before, regular safety property P_{safe} over *AP* such that $\mathcal{L}(\mathcal{A})$ is the set of bad prefixes of P_{safe} .

The following statements are equivalent: (a) $TS \models P_{safe}$ (b) $Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) = \emptyset$ (c) $TS \otimes \mathcal{A} \models P_{inv(\mathcal{A})}$

where $P_{inv(A)} = \bigwedge_{q \in F} \neg q$

Counterexamples

For each initial path fragment $\langle s_0, q_1 \rangle \dots \langle s_n, q_{n+1} \rangle$ of $TS \otimes \mathcal{A}$: $q_1, \dots, q_n \notin F$ and $q_{n+1} \in F \implies \underbrace{trace(s_0 s_1 \dots s_n)}_{\text{bad prefix for } P_{safe}} \in \mathcal{L}(\mathcal{A})$

Verification algorithm

Require: finite transition system *TS* and regular safety property P_{safe} **Ensure:** true if $TS \models P_{safe}$. Otherwise false plus a counterexample for P_{safe} .

Let NFA \mathcal{A} (with accept states F) be such that $\mathcal{L}(\mathcal{A}) = BadPref(P_{safe})$; Construct the product transition system $TS \otimes \mathcal{A}$; Check the invariant $P_{inv(\mathcal{A})}$ with proposition $\neg F = \bigwedge_{q \in F} \neg q$ on $TS \otimes \mathcal{A}$

if $TS \otimes \mathcal{A} \vDash P_{inv(\mathcal{A})}$ then return true

else

Determine initial path fragment $(s_0, q_1) \dots (s_n, q_{n+1})$ of $TS \otimes A$ with $q_{n+1} \in F$ return (false, $s_0 s_1 \dots s_n$) end if

Time complexity

The time and space complexity of checking a regular safety property P_{safe} against transition system *TS* is in: $\mathcal{O}(|TS| \cdot |\mathcal{A}|)$ where \mathcal{A} is an NFA recognizing the bad prefixes of P_{safe}

Büchi Automata

Peterson's banking system

Person Left behaves as follows:

while true { $rq: b_1, x = true, 2;$ $wt: wait until(x == 1 || \neg b_2) \{$ $cs: ...@account_L...\}$ $b_1 = false;$ } Person Right behaves as follows:

	while true {
rq :	$b_2, x = $ true, 1;
wt:	wait until($x == 2 \parallel \neg b_1$) {
cs :	\ldots @account _R \ldots }
	$b_2 = false;$
	}

Is the banking system live?

If someone wants to update the account, does (s)he ever get the opportunity to do so? "always ($req_L \Rightarrow$ eventually @account_L) \land always ($req_R \Rightarrow$ eventually @account_R)"

ω -regular expressions

- 1. $\underline{\varnothing}$ and $\underline{\varepsilon}$ are regular expressions over Σ
- 2. if $A \in \Sigma$ then <u>A</u> is a regular expression over Σ
- 3. if E, E₁ and E₂ are regular expressions over Σ then so are E₁ + E₂, E₁.E₂ and E^{*}

E⁺ is an abbreviation for the regular expression E.E^{*}

An ω -regular expression G over the alphabet Σ has the form:

 $G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega} \text{ for } n > 0$

where E_i , F_i are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(F_i)$, for all $0 < i \le n$

Semantics of ω -regular expressions

• The <u>semantics</u> of regular expression E is a language $\mathcal{L}(E) \subseteq \Sigma^*$:

$$\mathcal{L}(\underline{\emptyset}) = \emptyset, \ \mathcal{L}(\underline{\varepsilon}) = \{\varepsilon\}, \ \mathcal{L}(\underline{A}) = \{A\}$$

 $\mathcal{L}(\mathsf{E}+\mathsf{E}')=\mathcal{L}(\mathsf{E})\cup\mathcal{L}(\mathsf{E}')\quad \mathcal{L}(\mathsf{E}.\mathsf{E}')=\mathcal{L}(\mathsf{E}).\mathcal{L}(\mathsf{E}')\quad \mathcal{L}(\mathsf{E}^*)=\mathcal{L}(\mathsf{E})^*$

• The <u>semantics</u> of ω -regular expression G is a language $\mathcal{L}(G) \subseteq \Sigma^{\omega}$:

 $\mathcal{L}_{\omega}(G) = \mathcal{L}(E_1).\mathcal{L}(F_1)^{\omega} \cup \ldots \cup \mathcal{L}(E_n).\mathcal{L}(F_n)^{\omega}$

where $L^{\omega} = \{w_0 w_1 w_2 \cdots \mid w_i \in L \text{ for all } i\}$ (for $L \subseteq \Sigma^*$).

• G_1 and G_2 are <u>equivalent</u>, denoted $G_1 \equiv G_2$, if $\mathcal{L}_{\omega}(G_1) = \mathcal{L}_{\omega}(G_2)$

w-regular languages and properties

- $\mathcal{L} \subseteq \Sigma^{\omega}$ is $\underline{\omega}$ -regular if $\mathcal{L} = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G (over Σ)
- ω-regular languages possess several closure properties
 - they are closed under union, intersection, and complementation
 - complementation is not treated here; we use a trick to avoid it
- LT property *P* over *AP* is called ω -regular

if P is an ω -regular language over the alphabet 2^{AP}

all invariants and regular safety properties are ω -regular!

Büchi automata

- NFA (and DFA) are incapable of accepting infinite words
- Automata on infinite words
 - suited for accepting *w*-regular languages
 - we consider nondeterministic Büchi automata (NBA)
- \blacktriangleright Accepting runs have to "check" the entire input word $\ \Rightarrow\$ are infinite
 - ⇒ acceptance criteria for infinite runs are needed
- NBA are like NFA, but have a distinct <u>acceptance criterion</u>
 - one of the accept states must be visited infinitely often

Büchi automata

A <u>nondeterministic Büchi automaton</u> (NBA) A is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- *Q* is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $F \subseteq Q$ is a set of accept (or: final) states

The size of A, denoted |A|, is the number of states and transitions in A:

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Language of an NBA

- NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ and word $\sigma = A_1 A_2 A_3 \ldots \in \Sigma^{\omega}$
- A *run* for σ in \mathcal{A} is an infinite sequence $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \le i$
- ▶ Run $q_0 q_1 q_2 \dots$ is <u>accepting</u> if $q_i \in F$ for infinitely *i*
- $\sigma \in \Sigma^{\omega}$ is *accepted* by \mathcal{A} if there exists an accepting run for σ
- ► The <u>accepted language</u> of *A*:

 $\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{A} \right\}$

• NBA \mathcal{A} and \mathcal{A}' are <u>equivalent</u> if $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}')$

Deterministic BA

Büchi automaton \mathcal{A} is called <u>deterministic</u> if $|Q_0| \leq 1$ and $|\delta(q, A)| \leq 1$ for all $q \in Q$ and $A \in \Sigma$ DBA \mathcal{A} is called <u>total</u> if $|Q_0| = 1$ and $|\delta(q, A)| = 1$ for all $q \in Q$ and $A \in \Sigma$

total DBA provide unique runs for each input word