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Plan for today

▸ Regular properties
▸ Finite automata
▸ Checking regular safety properties
▸ Büchi automata



Regular properties



Review: Finite automata
A nondeterministic �nite automaton (NFA)A is a tuple (Q, Σ, δ ,Q0, F)
where:

▸ Q is a �nite set of states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ Q0 ⊆ Q a set of initial states

▸ F ⊆ Q is a set of accept (or: �nal) states

q0 q1 q2
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Review: Accepted language revisited

Extend the transition function δ to δ
∗ ∶ Q × Σ∗ → 2Q by:

δ
∗(q, ε) = {q} and δ

∗(q,A) = δ(q,A)

δ
∗(q,A1A2 . . .An) = ⋃p∈δ(q,A1) δ

∗(p,A2 . . .An)

δ
∗(q,w) = set of states reachable from q for the word w

Then: L(A) = {w ∈ Σ∗ ∣ δ∗(q0 ,w) ∩ F /= ∅ for some q0 ∈ Q0}

The class of languages accepted by NFA (over Σ)

= the class of regular languages (over Σ)



Intersection

▸ Let NFAAi = (Qi , Σ, δi ,Q0,i , Fi), with i=1, 2

▸ The product automaton

A1⊗A2 = (Q1 ×Q2 , Σ, δ,Q0,1 ×Q0,2 , F1 × F2)

where δ is de�ned by:

q1
A−−→1 q

′
1 ∧ q2

A−−→2 q
′
2

(q1 , q2) A−−→(q′1 , q
′
2)

▸ Well-known result: L(A1⊗A2) = L(A1)∩L(A2)



Total NFA

AutomatonA is called deterministic if

∣Q0∣ ≤ 1 and ∣δ(q,A)∣ ≤ 1 for all q ∈ Q and A ∈ Σ

DFAA is called total if

∣Q0∣ = 1 and ∣δ(q,A)∣ = 1 for all q ∈ Q and A ∈ Σ

any DFA can be turned into an equivalent total DFA

total DFA provide unique successor states, and thus, unique runs for each

input word



Determinization

For NFAA = (Q, Σ, δ,Q0, F) letAdet = (2Q, Σ, δdet ,Q0, Fdet)with:

Fdet = {Q′ ⊆ Q ∣ Q′ ∩ F /= ∅}

and the total transition function δdet ∶ 2Q × Σ → 2Q is de�ned by:

δdet(Q′ ,A) = ⋃
q∈Q′

δ(q,A)

Adet is a total DFA and, for allw ∈ Σ∗: δ∗det(Q0 ,w) = ⋃q0∈Q0
δ
∗(q0 ,w)

Thus: L(Adet) = L(A)



Determinization

{q0 } {q0 , q1 }

{q0 , q2 } {q0 , q1 , q2 }
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a deterministic �nite automaton accepting L((A + B)∗B(A + B))



Facts about �nite automata

▸ They are as expressive as regular languages

▸ They are closed under ∩ and complementation
▸ NFAA⊗ B (= cross product) accepts L(A) ∩ L(B)
▸ Total DFAA (= swap all accept and normal states) accepts

L(A) = Σ∗ ∖L(A)
▸ They are closed under determinization (= removal of choice)

▸ although at an exponential cost.....

▸ L(A) = ∅? = check for reachable accept state inA
▸ this can be done using a simple depth-�rst search

▸ For regular language L there is a unique minimal DFA

accepting L



Peterson’s banking system

Person Left behaves as follows:

while true {

. . . . . .

rq ∶ b1 , x = true, 2;

wt ∶ wait until(x == 1 ∣∣ ¬b2){

cs ∶ . . .@accountL . . .}

b1 = false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

rq ∶ b2 , x = true, 1;

wt ∶ wait until(x == 2 ∣∣ ¬b1){

cs ∶ . . .@accountR . . .}

b2 = false;

. . . . . .

}



Is the banking system safe?

x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

Can we guarantee that only one person at a time has access to the bank

account?

“always ¬(@accountL ∧ @accountR)”



Is the banking system safe?

▸ Safe = at most one personmay have access to the account

▸ Unsafe: two have access to the account simultaneously
▸ unsafe behaviour can be characterized by bad pre�x
▸ alternatively (in this case) by the �nite automaton:

@accountL ∧@accountR

¬(@accountL
∧@accountR)



Regular safety properties

Safety property Psafe over AP is regular

if its set of bad pre�xes is a regular language over 2AP

every invariant is regular



Problem statement

Let

▸ Psafe be a regular safety property over AP

▸ A an NFA recognizing the bad pre�xes of Psafe
▸ assume that ε ∉ L(A)
⇒ otherwise all �nite words over 2AP are bad pre�xes

▸ TS a �nite transition system (over AP) without terminal states

How to establish whether TS ⊧ Psafe?



Basic idea of the algorithm

TS ⊧ Psafe if and only if Traces�n(TS) ∩ BadPref(Psafe) = ∅

if and only if Traces�n(TS) ∩ L(A) = ∅

if and only if TS⊗A ⊧ “always” Φ to be proven

But . . . . . . this amounts to invariant checking on TS⊗A

⇒ checking regular safety properties can be done by depth-�rst search!



Synchronous product (revisited)

For transition system TS = (S,Act,→, I,AP, L)without terminal states

andA = (Q, Σ, δ,Q0, F) an NFA with Σ = 2AP and Q0 ∩ F = ∅, let:

TS⊗A = (S′ ,Act,→ ′, I′,AP′ , L′) where

▸ S′ = S ×Q, AP′ = Q and L′(⟨s, q⟩) = {q}

▸ → ′ is the smallest relation de�ned by:
s α−−→ t ∧ q

L(t)−−−−→p

⟨s, q⟩ α−−→′ ⟨t, p⟩

▸ I′ = { ⟨s0 , q⟩ ∣ s0 ∈ I ∧ ∃q0 ∈ Q0. q0
L(s0)−−−−−→q}

without loss of generality it may be assumed that TS⊗A has no terminal states



Example product

red

yellow red/yellow

green

q0

q1 qF

red

yellow ∧ ¬red

¬yellow

¬red ∧ ¬yellow

⟨green, q0⟩ ⟨red/yellow, q0⟩

⟨yellow, q1⟩ ⟨red, q0⟩

yellow



Veri�cation of regular safety properties

Let TS over AP and NFAAwith alphabet 2AP as before, regular safety

property Psafe over AP such that L(A) is the set of bad pre�xes of

Psafe.

The following statements are equivalent:

(a) TS ⊧ Psafe

(b) Traces�n(TS) ∩ L(A) = ∅

(c) TS⊗A ⊧ Pinv(A)

where Pinv(A) = ⋀q∈F ¬q



Counterexamples

For each initial path fragment ⟨s0 , q1⟩ . . . ⟨sn , qn+1⟩ of TS⊗A:

q1 , . . . , qn /∈ F and qn+1 ∈ F ⇒ trace(s0 s1 . . . sn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bad pre�x for Psafe

∈ L(A)



Veri�cation algorithm

Require: �nite transition system TS and regular safety property Psafe
Ensure: true if TS ⊧ Psafe . Otherwise false plus a counterexample for Psafe .

Let NFAA (with accept states F) be such that L(A) = BadPref(Psafe);
Construct the product transition system TS⊗A;

Check the invariant Pinv(A) with proposition ¬F = ⋀q∈F ¬q on TS⊗A

if TS⊗A ⊧ Pinv(A) then

return true

else

Determine initial path fragment ⟨s0 , q1⟩ . . . ⟨sn , qn+1⟩ of TS⊗Awith

qn+1 ∈ F

return (false, s0 s1 . . . sn)
end if



Time complexity

The time and space complexity of checking a regular safety property Psafe

against transition system TS is in:

O(∣TS∣ ⋅ ∣A∣)

whereA is an NFA recognizing the bad pre�xes of Psafe



Büchi Automata



Peterson’s banking system

Person Left behaves as follows:

while true {

. . . . . .

rq ∶ b1 , x = true, 2;

wt ∶ wait until(x == 1 ∣∣ ¬b2){

cs ∶ . . .@accountL . . .}

b1 = false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

rq ∶ b2 , x = true, 1;

wt ∶ wait until(x == 2 ∣∣ ¬b1){

cs ∶ . . .@accountR . . .}

b2 = false;

. . . . . .

}



Is the banking system live?

x == 1
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b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1
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b2 = 1

x == 1 x == 2

x == 2

If someone wants to update the account, does (s)he ever get the opportunity to do so?

“always (reqL ⇒ eventually @accountL) ∧ always (reqR ⇒ eventually @accountR)”



ω-regular expressions

1. ∅ and ε are regular expressions over Σ

2. if A ∈ Σ then A is a regular expression over Σ

3. if E, E1 and E2 are regular expressions over Σ

then so are E1 + E2, E1 .E2 and E∗

E+ is an abbreviation for the regular expression E.E∗

An ω-regular expression G over the alphabet Σ has the form:

G = E1 .F
ω

1 + . . . + En .F
ω

n for n > 0

where Ei , Fi are regular expressions over Σ such that ε ∉ L(Fi), for all
0 < i ≤ n



Semantics of ω-regular expressions

▸ The semantics of regular expression E is a language L(E) ⊆ Σ∗:

L(∅) = ∅, L(ε) = { ε }, L(A) = {A }

L(E+E′) = L(E)∪L(E′) L(E.E′) = L(E).L(E′) L(E∗) = L(E)∗

▸ The semantics of ω-regular expression G is a language

L(G) ⊆ Σω:

Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω

where Lω = {w0w1w2⋯ ∣ wi ∈ L for all i} (for L ⊆ Σ∗).
▸ G1 and G2 are equivalent, denoted G1 ≡ G2, if Lω(G1) = Lω(G2)



ω-regular languages and properties

▸ L ⊆ Σω is ω-regular ifL = Lω(G) for some ω-regular expression

G (over Σ)

▸ ω-regular languages possess several closure properties
▸ they are closed under union, intersection, and

complementation
▸ complementation is not treated here; we use a trick to avoid it

▸ LT property P over AP is called ω-regular

if P is an ω-regular language over the alphabet 2AP

all invariants and regular safety properties are ω-regular!



Büchi automata

▸ NFA (and DFA) are incapable of accepting in�nite words

▸ Automata on in�nite words
▸ suited for accepting ω-regular languages
▸ we consider nondeterministic Büchi automata (NBA)

▸ Accepting runs have to “check” the entire input word ⇒ are
in�nite

⇒ acceptance criteria for in�nite runs are needed

▸ NBA are like NFA, but have a distinct acceptance criterion
▸ one of the accept states must be visited in�nitely often



Büchi automata

A nondeterministic Büchi automaton (NBA)A is a tuple (Q, Σ, δ ,Q0, F)
where:

▸ Q is a �nite set of states with Q0 ⊆ Q a set of initial states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ F ⊆ Q is a set of accept (or: �nal) states

The size ofA, denoted ∣A∣, is the number of states and transitions inA:

∣A∣ = ∣Q∣ +∑
q∈Q

∑
A∈Σ

∣ δ(q,A) ∣



Language of an NBA

▸ NBAA = (Q, Σ, δ,Q0, F) and word σ = A1A2A3 . . . ∈ Σ
ω

▸ A run for σ inA is an in�nite sequence q0 q1 q2 . . . such that:

▸ q0 ∈ Q0 and qi
Ai+1
−−−−→qi+1 for all 0 ≤ i

▸ Run q0 q1 q2 . . . is accepting if qi ∈ F for in�nitely i

▸ σ ∈ Σω is accepted byA if there exists an accepting run for σ

▸ The accepted language ofA:

Lω(A) = {σ ∈ Σω ∣ there exists an accepting run for σ inA }

▸ NBAA andA′ are equivalent if Lω(A) = Lω(A′)



Deterministic BA

Büchi automatonA is called deterministic if

∣Q0∣ ≤ 1 and ∣δ(q,A)∣ ≤ 1 for all q ∈ Q and A ∈ Σ

DBAA is called total if

∣Q0∣ = 1 and ∣δ(q,A)∣ = 1 for all q ∈ Q and A ∈ Σ

total DBA provide unique runs for each input word


