Verification

Lecture 8

Martin Zimmermann

Plan for today

- Regular properties
- Finite automata
- Checking regular safety properties
- Büchi automata

Regular properties

Review: Finite automata

A nondeterministic finite automaton (NFA) \mathcal{A} is a tuple ($\left.Q, \Sigma, \delta, Q_{0}, F\right)$ where:

- Q is a finite set of states
- Σ is an alphabet
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is a transition function
- $Q_{0} \subseteq Q$ a set of initial states
- $F \subseteq Q$ is a set of accept (or: final) states

Review: Accepted language revisited

Extend the transition function δ to $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ by:

$$
\begin{gathered}
\delta^{*}(q, \varepsilon)=\{q\} \quad \text { and } \quad \delta^{*}(q, A)=\delta(q, A) \\
\delta^{*}\left(q, A_{1} A_{2} \ldots A_{n}\right)=\bigcup_{p \in \delta\left(q, A_{1}\right)} \delta^{*}\left(p, A_{2} \ldots A_{n}\right)
\end{gathered}
$$

$\delta^{*}(q, w)=$ set of states reachable from q for the word w
Then: $\mathcal{L}(\mathcal{A})=\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \cap F \neq \varnothing\right.$ for some $\left.q_{0} \in Q_{0}\right\}$

The class of languages accepted by NFA (over Σ)
$=$ the class of regular languages (over Σ)

Intersection

- Let NFA $\mathcal{A}_{i}=\left(Q_{i}, \Sigma, \delta_{i}, Q_{0, i}, F_{i}\right)$, with $i=1,2$
- The product automaton

$$
\mathcal{A}_{1} \otimes \mathcal{A}_{2}=\left(Q_{1} \times Q_{2}, \Sigma, \delta, Q_{0,1} \times Q_{0,2}, F_{1} \times F_{2}\right)
$$

where δ is defined by:

$$
\frac{q_{1}{ }^{A} 1 q_{1}^{\prime} \wedge q_{2} \xrightarrow{A}_{2} q_{2}^{\prime}}{\left(q_{1}, q_{2}\right) \xrightarrow{A}\left(q_{1}^{\prime}, q_{2}^{\prime}\right)}
$$

- Well-known result: $\mathcal{L}\left(\mathcal{A}_{1} \otimes \mathcal{A}_{2}\right)=\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}\left(\mathcal{A}_{2}\right)$

Total NFA

Automaton \mathcal{A} is called deterministic if

$$
\left|Q_{0}\right| \leq 1 \quad \text { and } \quad|\delta(q, A)| \leq 1 \quad \text { for all } q \in Q \text { and } A \in \Sigma
$$

DFA \mathcal{A} is called total if

$$
\left|Q_{0}\right|=1 \quad \text { and } \quad|\delta(q, A)|=1 \quad \text { for all } q \in Q \text { and } A \in \Sigma
$$

any DFA can be turned into an equivalent total DFA
total DFA provide unique successor states, and thus, unique runs for each input word

Determinization

For NFA $\mathcal{A}=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ let $\mathcal{A}_{\text {det }}=\left(2^{Q}, \Sigma, \delta_{\text {det }}, Q_{0}, F_{\text {det }}\right)$ with:

$$
F_{\text {det }}=\left\{Q^{\prime} \subseteq Q \mid Q^{\prime} \cap F \neq \varnothing\right\}
$$

and the total transition function $\delta_{d e t}: 2^{Q} \times \Sigma \rightarrow 2^{Q}$ is defined by:

$$
\delta_{\operatorname{det}}\left(Q^{\prime}, A\right)=\bigcup_{q \in Q^{\prime}} \delta(q, A)
$$

$\mathcal{A}_{\text {det }}$ is a total DFA and, for all $w \in \Sigma^{*}: \delta_{\text {det }}^{*}\left(Q_{0}, w\right)=\bigcup_{q_{0} \in Q_{0}} \delta^{*}\left(q_{0}, w\right)$
Thus: $\mathcal{L}\left(\mathcal{A}_{\text {det }}\right)=\mathcal{L}(\mathcal{A})$

Determinization

a deterministic finite automaton accepting $\mathcal{L}\left((A+B)^{*} B(A+B)\right)$

Facts about finite automata

- They are as expressive as regular languages
- They are closed under \cap and complementation
- NFA $\mathcal{A} \otimes B$ (= cross product) accepts $\mathcal{L}(A) \cap \mathcal{L}(B)$
- Total DFA $\overline{\mathcal{A}}$ (= swap all accept and normal states) accepts $\overline{\mathcal{L}(A)}=\Sigma^{*} \backslash \mathcal{L}(\mathcal{A})$
- They are closed under determinization (= removal of choice)
- although at an exponential cost.....
- $\mathcal{L}(\mathcal{A})=\varnothing$? = check for reachable accept state in \mathcal{A}
- this can be done using a simple depth-first search
- For regular language \mathcal{L} there is a unique minimal DFA accepting \mathcal{L}

Peterson's banking system

Person Left behaves as follows:

Person Right behaves as follows:

Is the banking system safe?

Can we guarantee that only one person at a time has access to the bank account?

Is the banking system safe?

- Safe = at most one person may have access to the account
- Unsafe: two have access to the account simultaneously
- unsafe behaviour can be characterized by bad prefix
- alternatively (in this case) by the finite automaton:
$\neg\left(\right.$ @account $_{L}$
\wedge @account $)_{\text {}}$)

$$
\text { @account }_{L} \wedge \text { @account } R_{R}
$$

Regular safety properties

Safety property $P_{\text {safe }}$ over $A P$ is regular
if its set of bad prefixes is a regular language over $2^{A P}$
every invariant is regular

Problem statement

Let

- $P_{\text {safe }}$ be a regular safety property over $A P$
- \mathcal{A} an NFA recognizing the bad prefixes of $P_{\text {safe }}$
- assume that $\varepsilon \notin \mathcal{L}(\mathcal{A})$
\Rightarrow otherwise all finite words over $2^{A P}$ are bad prefixes
- TS a finite transition system (over AP) without terminal states

How to establish whether $T S \vDash P_{\text {safe }}$?

Basic idea of the algorithm

$$
\begin{array}{ll}
T S \vDash P_{\text {safe }} & \text { if and only if } \quad \operatorname{Traces}_{\text {fin }}(T S) \cap \operatorname{BadPref}\left(P_{\text {safe }}\right)=\varnothing \\
& \text { if and only if } \operatorname{Traces}_{\text {fin }}(T S) \cap \mathcal{L}(\mathcal{A})=\varnothing \\
& \text { if and only if } T S \otimes \mathcal{A} \vDash \text { "always" } \Phi \text { to be proven }
\end{array}
$$

$$
\text { But this amounts to invariant checking on } T S \otimes \mathcal{A}
$$

\Rightarrow checking regular safety properties can be done by depth-first search!

Synchronous product (revisited)

For transition system $T S=(S, A c t, \rightarrow, I, A P, L)$ without terminal states and $\mathcal{A}=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ an NFA with $\Sigma=2^{A P}$ and $Q_{0} \cap F=\varnothing$, let:

$$
T S \otimes \mathcal{A}=\left(S^{\prime}, A c t, \rightarrow^{\prime}, I^{\prime}, A P^{\prime}, L^{\prime}\right) \quad \text { where }
$$

- $S^{\prime}=S \times Q, A P^{\prime}=Q$ and $L^{\prime}(\langle s, q\rangle)=\{q\}$
$\rightarrow \rightarrow^{\prime}$ is the smallest relation defined by: $\xrightarrow{s \xrightarrow{\alpha} t \wedge q \xrightarrow{L(t)} p} \underset{\langle s, q\rangle \xrightarrow{\alpha}\langle t, p\rangle}{ }$
- $I^{\prime}=\left\{\left\langle s_{0}, q\right\rangle \mid s_{0} \in I \wedge \exists q_{0} \in Q_{0} . q_{0} \xrightarrow{L\left(s_{0}\right)} q\right\}$

Example product

Verification of regular safety properties

Let $T S$ over $A P$ and NFA \mathcal{A} with alphabet $2^{A P}$ as before, regular safety property $P_{\text {safe }}$ over $A P$ such that $\mathcal{L}(\mathcal{A})$ is the set of bad prefixes of $P_{\text {safe }}$.

The following statements are equivalent:

$$
\begin{gathered}
\text { (a) } T S \vDash P_{\text {safe }} \\
\text { (b) } \operatorname{Traces}_{\text {fin }}(T S) \cap \mathcal{L}(\mathcal{A})=\varnothing \\
\text { (c) } T S \otimes \mathcal{A} \vDash P_{\operatorname{inv}(A)}
\end{gathered}
$$

$$
\text { where } P_{\operatorname{inv}(A)}=\bigwedge_{q \in F} \neg q
$$

Counterexamples

For each initial path fragment $\left\langle s_{0}, q_{1}\right\rangle \ldots\left\langle s_{n}, q_{n+1}\right\rangle$ of $T S \otimes \mathcal{A}$: $q_{1}, \ldots, q_{n} \notin F$ and $q_{n+1} \in F \Rightarrow \underbrace{\operatorname{trace}\left(s_{0} s_{1} \ldots s_{n}\right)}_{\text {bad prefix for } P_{\text {safe }}} \in \mathcal{L}(\mathcal{A})$

Verification algorithm

Require: finite transition system $T S$ and regular safety property $P_{\text {safe }}$ Ensure: true if $T S \vDash P_{\text {safe }}$. Otherwise false plus a counterexample for $P_{\text {safe }}$.

Let NFA \mathcal{A} (with accept states F) be such that $\mathcal{L}(\mathcal{A})=\operatorname{BadPref}\left(P_{\text {safe }}\right)$; Construct the product transition system $T S \otimes \mathcal{A}$; Check the invariant $P_{\operatorname{inv}(\mathcal{A})}$ with proposition $\neg F=\wedge_{q \in F} \neg q$ on $T S \otimes \mathcal{A}$
if $T S \otimes \mathcal{A} \vDash P_{\operatorname{inv}(\mathcal{A})}$ then
return true
else
Determine initial path fragment $\left\langle s_{0}, q_{1}\right\rangle \ldots\left\langle s_{n}, q_{n+1}\right\rangle$ of $T S \otimes \mathcal{A}$ with $q_{n+1} \in F$
return (false, $s_{0} s_{1} \ldots s_{n}$)
end if

Time complexity

The time and space complexity of checking a regular safety property $P_{\text {safe }}$ against transition system $T S$ is in:

$$
\mathcal{O}(|T S| \cdot|\mathcal{A}|)
$$

where \mathcal{A} is an NFA recognizing the bad prefixes of $P_{\text {safe }}$

Büchi Automata

Peterson's banking system

Person Left behaves as follows:

Person Right behaves as follows:

Is the banking system live?

If someone wants to update the account, does (s)he ever get the opportunity to do so? "always $\left(\right.$ req $_{L} \Rightarrow$ eventually @account $\left.L_{L}\right) \wedge$ always $\left(\right.$ req $_{R} \Rightarrow$ eventually @account $\left.{ }_{R}\right)$ "

ω-regular expressions

1. $\underline{\varnothing}$ and $\underline{\varepsilon}$ are regular expressions over Σ
2. if $A \in \Sigma$ then \underline{A} is a regular expression over Σ
3. if $\mathrm{E}_{1} \mathrm{E}_{1}$ and E_{2} are regular expressions over Σ then so are $E_{1}+E_{2}, E_{1} \cdot E_{2}$ and E^{*}
E^{+}is an abbreviation for the regular expression $\mathrm{E} . \mathrm{E}^{*}$

$$
\mathrm{G}=\mathrm{E}_{1} \cdot \mathrm{~F}_{1}^{\omega}+\ldots+\mathrm{E}_{n} \cdot \mathrm{~F}_{n}^{\omega} \quad \text { for } n>0
$$

where $\mathrm{E}_{i}, \mathrm{~F}_{i}$ are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}\left(\mathrm{F}_{i}\right)$, for all

$$
0<i \leq n
$$

Semantics of ω-regular expressions

- The semantics of regular expression E is a language $\mathcal{L}(\mathrm{E}) \subseteq \Sigma^{*}$:

$$
\begin{gathered}
\mathcal{L}(\underline{\varnothing})=\varnothing, \quad \mathcal{L}(\underline{\varepsilon})=\{\varepsilon\}, \quad \mathcal{L}(\underline{A})=\{A\} \\
\mathcal{L}\left(\mathrm{E}+\mathrm{E}^{\prime}\right)=\mathcal{L}(\mathrm{E}) \cup \mathcal{L}\left(\mathrm{E}^{\prime}\right) \quad \mathcal{L}\left(\mathrm{E} \cdot \mathrm{E}^{\prime}\right)=\mathcal{L}(\mathrm{E}) \cdot \mathcal{L}\left(\mathrm{E}^{\prime}\right) \quad \mathcal{L}\left(\mathrm{E}^{*}\right)=\mathcal{L}(\mathrm{E})^{*}
\end{gathered}
$$

- The semantics of ω-regular expression G is a language $\mathcal{L}(\mathrm{G}) \subseteq \Sigma^{\omega}:$

$$
\mathcal{L}_{\omega}(\mathrm{G})=\mathcal{L}\left(\mathrm{E}_{1}\right) \cdot \mathcal{L}\left(\mathrm{F}_{1}\right)^{\omega} \cup \ldots \cup \mathcal{L}\left(\mathrm{E}_{n}\right) \cdot \mathcal{L}\left(\mathrm{F}_{n}\right)^{\omega}
$$

where $L^{\omega}=\left\{w_{0} w_{1} w_{2} \cdots \mid w_{i} \in L\right.$ for all $\left.i\right\}$ (for $L \subseteq \Sigma^{*}$).

- G_{1} and G_{2} are equivalent, denoted $G_{1} \equiv G_{2}$, if $\mathcal{L}_{\omega}\left(G_{1}\right)=\mathcal{L}_{\omega}\left(G_{2}\right)$

ω-regular languages and properties

 G (over Σ)

- ω-regular languages possess several closure properties
- they are closed under union, intersection, and complementation
- complementation is not treated here; we use a trick to avoid it
- LT property P over $A P$ is called $\underline{\omega \text {-regular }}$
if P is an ω-regular language over the alphabet $2^{A P}$
all invariants and regular safety properties are ω-regular!

Büchi automata

- NFA (and DFA) are incapable of accepting infinite words
- Automata on infinite words
- suited for accepting ω-regular languages
- we consider nondeterministic Büchi automata (NBA)
- Accepting runs have to "check" the entire input word \Rightarrow are infinite
\Rightarrow acceptance criteria for infinite runs are needed
- NBA are like NFA, but have a distinct acceptance criterion
- one of the accept states must be visited infinitely often

Büchi automata

A nondeterministic Büchi automaton (NBA) \mathcal{A} is a tuple ($\left.Q, \Sigma, \delta, Q_{0}, F\right)$ where:

- Q is a finite set of states with $Q_{0} \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is a transition function
- $F \subseteq Q$ is a set of accept (or: final) states

The size of \mathcal{A}, denoted $|\mathcal{A}|$, is the number of states and transitions in \mathcal{A} :

$$
|\mathcal{A}|=|Q|+\sum_{q \in Q} \sum_{A \in \Sigma}|\delta(q, A)|
$$

Language of an NBA

- NBA $\mathcal{A}=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ and word $\sigma=A_{1} A_{2} A_{3} \ldots \in \Sigma^{\omega}$
- A run for σ in \mathcal{A} is an infinite sequence $q_{0} q_{1} q_{2} \ldots$ such that:
- $q_{0} \in Q_{0}$ and $q_{i} \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \leq i$
- Run $q_{0} q_{1} q_{2} \ldots$ is accepting if $q_{i} \in F$ for infinitely i
- $\sigma \in \Sigma^{\omega}$ is accepted by \mathcal{A} if there exists an accepting run for σ
- The accepted language of \mathcal{A} :

$$
\mathcal{L}_{\omega}(\mathcal{A})=\left\{\sigma \in \Sigma^{\omega} \mid \text { there exists an accepting run for } \sigma \text { in } \mathcal{A}\right\}
$$

- NBA \mathcal{A} and \mathcal{A}^{\prime} are equivalent if $\mathcal{L}_{\omega}(\mathcal{A})=\mathcal{L}_{\omega}\left(\mathcal{A}^{\prime}\right)$

Deterministic BA

Büchi automaton \mathcal{A} is called deterministic if

$$
\begin{aligned}
& \left|Q_{0}\right| \leq 1 \quad \text { and } \quad|\delta(q, A)| \leq 1 \quad \text { for all } q \in Q \text { and } A \in \Sigma \\
& \qquad \text { DBA } \mathcal{A} \text { is called total if } \\
& \left|Q_{0}\right|=1 \quad \text { and } \quad|\delta(q, A)|=1 \quad \text { for all } q \in Q \text { and } A \in \Sigma
\end{aligned}
$$

total DBA provide unique runs for each input word

