Verification

Lecture 7

Martin Zimmermann

Plan for today

- Linear-time properties
 - Safety
 - Liveness
 - Fairness
 - Regular Properties
 - Finite automata
 - Checking regular safety properties

Summary LT properties

- LT properties are sets of infinite words over 2^{AP} (= traces)
- An invariant requires a condition Φ to hold in any reachable state
- Each trace refuting a safety property has a finite prefix causing this
 - invariants are safety properties with bad prefix $\Phi^*(\neg \Phi)$
 - ⇒ safety properties constrain finite behaviors
- A liveness property does not rule out finite behaviour

⇒ liveness properties constrain infinite behaviors

 Any LT property is equivalent to a conjunction of a safety and a liveness property

Fairness

Does this program terminate?

Inc ||| Reset

where proc Inc = while $(x \ge 0 \text{ do } x := x + 1) \text{ od}$ proc Reset = x := -1

x is a shared integer variable that initially has value 0

Do we starve?

Process two starves

process two finitely many times in critical section remains unfair

Process one starves

Fairness

- Starvation freedom is often considered under process fairness
 - ⇒ there is a fair scheduling of the execution of processes
- Fairness is typically needed to prove liveness
 - not for safety properties!
 - to prove some form of progress, progress needs to be possible
- Fairness is concerned with a fair resolution of nondeterminism
 - such that it is not biased to consistently ignore a possible option
- Problem: liveness properties constrain infinite behaviours
 - but some traces—that are unfair—refute the liveness property

Fairness constraints

- What is wrong with our examples? Nothing!
 - interleaving: not realistic as in reality no processor is infinitely faster than another
- Rule out "unrealistic" runs by imposing fairness constraints
 - what to rule out? \Rightarrow different kinds of fairness constraints
- "A process gets its turn infinitely often"
 - always unconditional fairness
 - if it is enabled infinitely often
 - if it is continuously enabled from some point on weak fairness

strong fairness

Fairness

This program terminates under unconditional fairness:

proc Inc = while $\langle x \ge 0 \text{ do } x := x + 1 \rangle$ od proc Reset = x := -1

x is a shared integer variable that initially has value 0

Fairness constraints

Unconditional fairness

an activity is executed infinitely often

Strong fairness

if an activity is <u>infinitely often</u> enabled (not necessarily always!) then it has to be executed infinitely often

Weak fairness

if an activity is <u>continuously enabled</u> (no temporary disabling!) then it has to be executed infinitely often

we will use actions to distinguish fair and unfair behaviours

Fairness definition

For $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states, $A \subseteq Act$,

and infinite execution fragment $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$ of *TS*:

1. ρ is <u>unconditionally A-fair</u> whenever: true $\implies \forall k \ge 0. \exists j \ge k. \alpha_j \in A$ infinitely often A is taken

2. ρ is strongly *A*-fair whenever:

$$(\forall k \ge 0. \exists j \ge k. Act(s_j) \cap A \neq \emptyset) \implies$$

$$(\forall k \ge 0. \exists j \ge k. \alpha_j \in A)$$

infinitely often A is enabled

infinitely often A is taken

3. ρ is <u>weakly A-fair</u> whenever:

$$\underbrace{(\exists k \ge 0, \forall j \ge k, Act(s_j) \cap A \neq \emptyset)}_{(\exists k \ge 0, \exists j \ge k, \alpha_j \in A)} \implies \underbrace{(\forall k \ge 0, \exists j \ge k, \alpha_j \in A)}_{(\forall k \ge 0, \exists j \ge k, \alpha_j \in A)}$$

A is eventually always enabled

infinitely often A is taken

where
$$Act(s) = \{ \alpha \in Act \mid \exists s' \in S. s \xrightarrow{\alpha} s' \}$$

Which fairness notion to use?

- Fairness constraints aim to rule out "unreasonable" runs
- ► Too strong? ⇒ relevant computations ruled out verification yields:
 - "false": error found
 - "true": don't know as some relevant execution may refute it
- ► Too weak? ⇒ too many computations considered verification yields:
 - "true": property holds
 - "false": don't know, as refutation maybe due to some unreasonable run

Relation between fairness constraints

unconditional A-fairness \implies strong A-fairness \implies weak A-fairness

Fairness assumptions

- ► Fairness constraints impose a requirement on any $\alpha \in A$
- In practice: different constraints on different action sets needed
- This is realised by <u>fairness assumptions</u>

Fairness assumptions

A <u>fairness assumption</u> for Act is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

with \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

- Execution ρ is \mathcal{F} -fair if:
 - it is unconditionally A-fair for all $A \in \mathcal{F}_{ucond}$, and
 - it is strongly A-fair for all $A \in \mathcal{F}_{strong}$, and
 - it is weakly A-fair for all $A \in \mathcal{F}_{weak}$

fairness assumption $(\emptyset, \mathcal{F}', \emptyset)$ denotes strong fairness; $(\emptyset, \emptyset, \mathcal{F}')$ weak, etc.

 $\mathcal{F} = (\emptyset, \{\{enter_1, enter_2\}\}, \emptyset)$ \mathcal{F}_{strong}

in any \mathcal{F}' -fair execution each process infinitely often requests access

Fair paths and traces

- Path $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ is <u> \mathcal{F} -fair</u> if
 - there exists an \mathcal{F} -fair execution $s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \dots$
 - *FairPaths*_{\mathcal{F}}(*s*) denotes the set of \mathcal{F} -fair paths that start in *s*
 - FairPaths_{\mathcal{F}}(TS) = $\bigcup_{s \in I}$ FairPaths_{\mathcal{F}}(s)
- Trace σ is \mathcal{F} -fair if there exists an \mathcal{F} -fair execution ρ with $trace(\rho) = \sigma$
 - $FairTraces_{\mathcal{F}}(s) = trace(FairPaths_{\mathcal{F}}(s))$
 - $FairTraces_{\mathcal{F}}(TS) = trace(FairPaths_{\mathcal{F}}(TS))$

these notions are only defined for infinite paths and traces; why?

Fair satisfaction

TS <u>satisfies</u> LT-property P:

```
TS \models P if and only if Traces(TS) \subseteq P
```

- TS satisfies the LT property P if <u>all</u> its observable behaviors are admissible
- TS fairly satisfies LT-property P wrt. fairness assumption \mathcal{F} :

 $TS \models_{\mathcal{F}} P$ if and only if $FairTraces_{\mathcal{F}}(TS) \subseteq P$

- if all paths in TS are \mathcal{F} -fair, then TS $\models_{\mathcal{F}} P$ if and only if TS $\models P$
- if some path in TS is not \mathcal{F} -fair, then possibly $TS \vDash_{\mathcal{F}} P$ but $TS \notin P$

 $TS \notin$ "every process enters its critical section infinitely often" and $TS \notin_{\mathcal{F}}$ "every . . . often" but $TS \models_{\mathcal{F}'}$ "every . . . often"

Fair concurrency with synchronization

- ► $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$, for $1 \le i \le n$, has no terminal states
- ► *TS_i* and *TS_j* (*i*≠*j*) synchronize on their common actions:

$$Syn_{i,j} = Act_i \cap Act_j$$

State space of $TS_1 \parallel \ldots \parallel TS_n$ is the Cartesian product of those of TS_i

• for
$$\alpha \in Act_i \setminus \left(\bigcup_{\substack{0 < j \le n \\ i \neq j}} Syn_{i,j}\right)$$
 and $0 < i \le n$:

$$\frac{s_i \xrightarrow{\alpha} i s'_i}{\langle s_1, \ldots, s_i, \ldots, s_n \rangle \xrightarrow{\alpha} \langle s_1, \ldots, s'_i, \ldots, s_n \rangle}$$

• for $\alpha \in Syn_{i,j}$ and $0 < i < j \le n$:

$$\frac{s_i \stackrel{\alpha}{\longrightarrow} _i s'_i \wedge s_j \stackrel{\alpha}{\longrightarrow} _j s'_j}{\langle s_1, \ldots, s_i, \ldots, s_j, \ldots, s_n \rangle \stackrel{\alpha}{\longrightarrow} \langle s_1, \ldots, s'_i, \ldots, s'_j, \ldots, s_n \rangle}$$

Asynchronous concurrent systems

concurrency = interleaving (i.e., nondeterminism) + fairness

Some fairness assumptions

- Strong fairness constraint: $\{Act_1, Act_2, \dots, Act_n\}$
 - TS_i executes an action (not necessarily a sync!) infinitely often provided TS is infinitely often in a (global) state with a transition of TS_i enabled
- ► Strong fairness constraint: $\{ \{ \alpha \} \mid \alpha \in Syn_{ij}, 0 < i < j \le n \}$
 - every individual synchronization is forced to happen infinitely often
- ▶ Strong fairness constraint: $\{Syn_{i,j} \mid 0 < i < j \le n\}$
 - every pair of processes is forced to synchronize infinitely often
- Strong fairness constraint: $\left\{\bigcup_{0 < i < j \le n} Syn_{i,j}\right\}$
 - a synchronization (possibly the same) takes place infinitely often

For *TS* with set of actions *Act* and fairness assumption \mathcal{F} for *Act*: \mathcal{F} is <u>realizable</u> for *TS* if for any $s \in Reach(TS)$: *FairPaths* $\mathcal{F}(s) \neq \emptyset$

every initial finite execution fragment of TS can be completed to a fair execution

Realizable fairness and safety

For *TS* and safety property P_{safe} (both over *AP*) and \mathcal{F} a realizable fairness assumption for *TS*: $TS \models P_{safe}$ if and only if $TS \models_{\mathcal{F}} P_{safe}$

Summary of fairness

- Fairness constraints rule out unrealistic traces
 - i.e., constraints on the actions that occur along infinite executions
 - important for the verification of liveness properties
- Unconditional, strong, and weak fairness constraints
 - unconditional \Rightarrow strong fair \Rightarrow weak fair
- Fairness assumptions allow distinct constraints on distinct action sets
- (Realizable) fairness assumptions are irrelevant for safety properties

Regular properties

Finite automata

A <u>nondeterministic finite automaton</u> (NFA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $Q_0 \subseteq Q$ a set of initial states
- $F \subseteq Q$ is a set of accept (or: final) states

The size of \mathcal{A} , denoted $|\mathcal{A}|$, is the number of states and transitions in \mathcal{A} :

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Language of an automaton

- NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ and word $w = A_1 \dots A_n \in \Sigma^*$
- A *run* for *w* in A is a finite sequence $q_0 q_1 \dots q_n$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \le i < n$
- Run $q_0 q_1 \ldots q_n$ is <u>accepting</u> if $q_n \in F$
- $w \in \Sigma^*$ is *accepted* by \mathcal{A} if there exists an accepting run for w
- ► The <u>accepted language</u> of *A*:

 $\mathcal{L}(\mathcal{A}) = \left\{ w \in \Sigma^* \mid \text{ there exists an accepting run for } w \text{ in } \mathcal{A} \right\}$

• NFA \mathcal{A} and \mathcal{A}' are <u>equivalent</u> if $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$

Accepted language revisited

Extend the transition function δ to $\delta^* : Q \times \Sigma^* \to 2^Q$ by:

$$\delta^*(q,\varepsilon) = \{q\}$$
 and $\delta^*(q,A) = \delta(q,A)$

$$\delta^*(q, A_1A_2 \dots A_n) = \bigcup_{p \in \delta(q, A_1)} \delta^*(p, A_2 \dots A_n)$$

 $\delta^*(q, w)$ = set of states reachable from q for the word w

Then:
$$\mathcal{L}(\mathcal{A})$$
 = $\left\{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F
eq arnothing$ for some $q_0 \in \mathsf{Q}_0
ight\}$

The class of languages accepted by NFA (over Σ) = the class of regular languages (over Σ)