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Plan for today

▸ Linear-time properties
▸ Safety
▸ Liveness
▸ Fairness
▸ Regular Properties

▸ Finite automata
▸ Checking regular safety properties



Summary LT properties

▸ LT properties are sets of in�nite words over 2AP (= traces)

▸ An invariant requires a condition Φ to hold in any reachable

state

▸ Each trace refuting a safety property has a �nite pre�x causing
this

▸ invariants are safety properties with bad pre�x Φ∗(¬Φ)
⇒ safety properties constrain �nite behaviors

▸ A liveness property does not rule out �nite behaviour

⇒ liveness properties constrain in�nite behaviors

▸ Any LT property is equivalent to a conjunction of a safety and a

liveness property



Fairness



Does this program terminate?

Inc ∣∣∣Reset

where

proc Inc = while ⟨ x ≥ 0 do x ∶= x + 1 ⟩ od
proc Reset = x ∶= −1

x is a shared integer variable that initially has value 0



Do we starve?
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Process two starves
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process two �nitely many times in critical section remains unfair



Process one starves
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Fairness

▸ Starvation freedom is often considered under process fairness

⇒ there is a fair scheduling of the execution of processes

▸ Fairness is typically needed to prove liveness
▸ not for safety properties!
▸ to prove some form of progress, progress needs to be possible

▸ Fairness is concerned with a fair resolution of nondeterminism
▸ such that it is not biased to consistently ignore a possible

option

▸ Problem: liveness properties constrain in�nite behaviours
▸ but some traces—that are unfair—refute the liveness property



Fairness constraints

▸ What is wrong with our examples? Nothing!
▸ interleaving: not realistic as in reality no processor is in�nitely

faster than another

▸ Rule out “unrealistic” runs by imposing fairness constraints
▸ what to rule out? ⇒ di�erent kinds of fairness constraints

▸ “A process gets its turn in�nitely often”
▸ always unconditional fairness
▸ if it is enabled in�nitely often strong fairness
▸ if it is continuously enabled from some point on weak fairness



Fairness

This program terminates under unconditional fairness:

proc Inc = while ⟨ x ≥ 0 do x ∶= x + 1 ⟩ od
proc Reset = x ∶= −1

x is a shared integer variable that initially has value 0



Fairness constraints

▸ Unconditional fairness

an activity is executed in�nitely often
▸ Strong fairness

if an activity is in�nitely often enabled (not necessarily always!)

then it has to be executed in�nitely often
▸ Weak fairness

if an activity is continuously enabled (no temporary disabling!)

then it has to be executed in�nitely often

we will use actions to distinguish fair and unfair behaviours



Fairness de�nition
For TS = (S,Act,→, I,AP, L)without terminal states, A ⊆ Act,

and in�nite execution fragment ρ = s0
α0−−−→ s1

α1−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever:
true Ô⇒ ∀k ≥ 0. ∃j ≥ k. αj ∈ A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in�nitely often A is taken

2. ρ is strongly A-fair whenever:

(∀k ≥ 0. ∃j ≥ k. Act(sj) ∩ A ≠ ∅)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

in�nitely often A is enabled

Ô⇒ (∀k ≥ 0. ∃j ≥ k. αj ∈ A )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in�nitely often A is taken

3. ρ is weakly A-fair whenever:

(∃k ≥ 0.∀j ≥ k. Act(sj) ∩ A ≠ ∅)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A is eventually always enabled

Ô⇒ (∀k ≥ 0. ∃j ≥ k. αj ∈ A )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in�nitely often A is taken

where Act(s) = {α ∈ Act ∣ ∃s′ ∈ S. s α−−→ s′ }



Which fairness notion to use?

▸ Fairness constraints aim to rule out “unreasonable” runs

▸ Too strong? ⇒ relevant computations ruled out

veri�cation yields:
▸ “false”: error found
▸ “true”: don’t know as some relevant execution may refute it

▸ Too weak? ⇒ too many computations considered

veri�cation yields:
▸ “true”: property holds
▸ “false”: don’t know, as refutation maybe due to some

unreasonable run



Relation between fairness constraints

unconditional A-fairness Ô⇒ strong A-fairness Ô⇒ weak A-fairness



Fairness assumptions

▸ Fairness constraints impose a requirement on any α ∈ A
▸ In practice: di�erent constraints on di�erent action sets

needed

▸ This is realised by fairness assumptions



Fairness assumptions

▸ A fairness assumption for Act is a triple

F = (Fucond ,Fstrong,Fweak)

withFucond ,Fstrong,Fweak ⊆ 2Act.

▸ Execution ρ isF -fair if:
▸ it is unconditionally A-fair for all A ∈ Fucond , and
▸ it is strongly A-fair for all A ∈ Fstrong , and
▸ it is weakly A-fair for all A ∈ Fweak

fairness assumption (∅,F ′,∅) denotes strong fairness; (∅,∅,F ′)weak,
etc.



Fairness for mutual exclusion
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F = (∅, {{ enter1 , enter2 }}
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Fairness for mutual exclusion
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F = (∅, {{ enter1 }, { enter2 }}
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Fairness for mutual exclusion
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F ′ = (∅, {{ enter1 }, { enter2 }}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Fweak

)

in anyF ′-fair execution each process in�nitely often requests access



Fair paths and traces

▸ Path s0 −→ s1 −→ s2 . . . isF -fair if
▸ there exists anF -fair execution s0

α1−−→ s1
α2−−−→ s2 . . .

▸ FairPathsF(s) denotes the set ofF -fair paths that start in s
▸ FairPathsF(TS) = ⋃s∈I FairPathsF(s)

▸ Trace σ is F -fair if there exists anF -fair execution ρ with
trace(ρ) = σ

▸ FairTracesF(s) = trace(FairPathsF(s))
▸ FairTracesF(TS) = trace(FairPathsF(TS))

these notions are only de�ned for in�nite paths and traces; why?



Fair satisfaction

▸ TS satis�es LT-property P:

TS ⊧ P if and only if Traces(TS) ⊆ P

▸ TS satis�es the LT property P if all its observable behaviors are

admissible

▸ TS fairly satis�es LT-property Pwrt. fairness assumptionF :

TS ⊧F P if and only if FairTracesF(TS) ⊆ P

▸ if all paths in TS are F -fair, then TS ⊧F P if and only if TS ⊧ P
▸ if some path in TS is notF -fair, then possibly TS ⊧F P but TS /⊧ P



Fairness for mutual exclusion
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TS /⊧ “every process enters its critical section in�nitely often”

and TS /⊧F “every . . . often”

but TS ⊧F ′ “every . . . often”



Fair concurrency with synchronization

▸ TSi = (Si ,Acti ,→i, Ii ,APi , Li), for 1 ≤ i ≤ n, has no terminal states

▸ TSi and TSj (i≠j) synchronize on their common actions:

Syni,j = Acti ∩ Actj

State space of TS1∥ . . . ∥TSn is the Cartesian product of those of TSi

▸ for α ∈ Acti ∖ ( ⋃
0<j≤n

i≠j

Syni,j) and 0 < i ≤ n:

si
α−−→ i s

′

i

⟨s1 , . . . , si , . . . , sn⟩ α−−→ ⟨s1 , . . . , s′i , . . . sn⟩

▸ for α ∈ Syni,j and 0 < i < j ≤ n:

si
α−−→ i s

′

i ∧ sj
α−−→ j s

′

j

⟨s1 , . . . , si , . . . , sj , . . . , sn⟩ α−−→ ⟨s1 , . . . , s′i , . . . , s′j , . . . , sn⟩



Asynchronous concurrent systems

concurrency = interleaving (i.e., nondeterminism) + fairness



Some fairness assumptions

▸ Strong fairness constraint: {Act1 ,Act2 , . . . ,Actn}
▸ TSi executes an action (not necessarily a sync!) in�nitely often

provided TS is in�nitely often in a (global) state with a transition

of TSi enabled

▸ Strong fairness constraint: { {α } ∣ α ∈ Syni,j , 0 < i < j ≤ n}
▸ every individual synchronization is forced to happen in�nitely

often

▸ Strong fairness constraint: { Syni,j ∣ 0 < i < j ≤ n}
▸ every pair of processes is forced to synchronize in�nitely often

▸ Strong fairness constraint: {⋃0<i<j≤n Syni,j }
▸ a synchronization (possibly the same) takes place in�nitely

often



Realizable fairness

For TSwith set of actions Act and fairness assumptionF for Act:

F is realizable for TS if for any s ∈ Reach(TS): FairPathsF(s) ≠ ∅

every initial �nite execution fragment of TS can be completed to a fair execution



Realizable fairness and safety

For TS and safety property Psafe (both over AP)

and F a realizable fairness assumption for TS:

TS ⊧ Psafe if and only if TS ⊧F Psafe



Summary of fairness

▸ Fairness constraints rule out unrealistic traces
▸ i.e., constraints on the actions that occur along in�nite

executions
▸ important for the veri�cation of liveness properties

▸ Unconditional, strong, and weak fairness constraints
▸ unconditional ⇒ strong fair ⇒ weak fair

▸ Fairness assumptions allow distinct constraints on distinct

action sets

▸ (Realizable) fairness assumptions are irrelevant for safety

properties



Regular properties



Finite automata
A nondeterministic �nite automaton (NFA)A is a tuple (Q, Σ, δ ,Q0, F)
where:

▸ Q is a �nite set of states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ Q0 ⊆ Q a set of initial states

▸ F ⊆ Q is a set of accept (or: �nal) states

q0 q1 q2

A

B

B

A

B



Size of an NFA

The size ofA, denoted ∣A∣, is the number of states and transitions in

A:

∣A∣ = ∣Q∣ + ∑
q∈Q

∑
A∈Σ

∣ δ(q,A) ∣



Language of an automaton

▸ NFAA = (Q, Σ, δ,Q0, F) and word w = A1 . . .An ∈ Σ∗
▸ A run forw inA is a �nite sequence q0 q1 . . . qn such that:

▸ q0 ∈ Q0 and qi
Ai+1−−−−→qi+1 for all 0 ≤ i < n

▸ Run q0 q1 . . . qn is accepting if qn ∈ F
▸ w ∈ Σ∗ is accepted byA if there exists an accepting run forw

▸ The accepted language ofA:

L(A) = {w ∈ Σ∗ ∣ there exists an accepting run forw inA }

▸ NFAA andA′ are equivalent if L(A) = L(A′)



Accepted language revisited

Extend the transition function δ to δ∗ ∶ Q × Σ∗ → 2Q by:

δ∗(q, ε) = {q} and δ∗(q,A) = δ(q,A)

δ∗(q,A1A2 . . .An) = ⋃p∈δ(q,A1) δ
∗(p,A2 . . .An)

δ∗(q,w) = set of states reachable from q for the word w

Then: L(A) = {w ∈ Σ∗ ∣ δ∗(q0 ,w) ∩ F /= ∅ for some q0 ∈ Q0}

The class of languages accepted by NFA (over Σ)

= the class of regular languages (over Σ)


