
Veri�cation

Lecture 6

Martin Zimmermann



REVIEW: model checking

satis�ed

insu�cient

memory

counterexample

system

violated +

Model Checking

requirements

Formalizing Modeling

systemmodel
property

speci�cation



Plan for today

▸ Linear-time properties
▸ Safety
▸ Liveness
▸ Fairness



Linear-Time Properties



REVIEW: executions

▸ A �nite execution fragment ρ of TS is an alternating sequence

of states and actions ending with a state:

ρ = s0 α1 s1 α2 . . . αn sn such that si
αi+1−−−−→ si+1 for all 0 ≤ i < n.

▸ An in�nite execution fragment ρ of TS is an in�nite, alternating

sequence of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1−−−−→ si+1 for all 0 ≤ i.

▸ An execution of TS is an initial, maximal execution fragment
▸ a maximal execution fragment is either �nite ending in a

terminal state, or in�nite
▸ an execution fragment is initial if s0 ∈ I



State graph

▸ The state graph of TS, notation G(TS), is the digraph (V , E)
with vertices V = S and edges E = {(s, s′) ∈ S × S ∣ s′ ∈ Post(s)}

⇒ omit all state and transition labels in TS and ignore being initial

▸ Post∗(s) is the set of states reachable in G(TS) from s

Post∗(C) = ⋃
s∈C

Post∗(s) for C ⊆ S

▸ The notations Pre∗(s) and Pre∗(C) have analogous meaning

▸ The set of reachable states: Reach(TS) = Post∗(I)



Path fragments

▸ A path fragment is an execution fragment without actions

▸ A �nite path fragment π̂ of TS is a state sequence:

π̂ = s0 s1 . . . sn such that si+1 ∈ Post(si) for all 0 ≤ i < nwhere n ≥ 0

▸ An in�nite path fragment π of TS is an in�nite state sequence:

π = s0 s1 s2 . . . such that si+1 ∈ Post(si) for all i ≥ 0

▸ A path of TS is an initial, maximal path fragment
▸ a maximal path fragment is either �nite ending in a terminal

state, or in�nite
▸ a path fragment is initial if s0 ∈ I
▸ Paths(s) is the set of maximal path fragments π with �rst(π) = s



Traces

States themselves are not “observable”, but just their atomic

propositions

▸ Let transition system TS = (S,Act,→, I,AP, L)without terminal
states

▸ all maximal paths (and excutions) are in�nite

▸ The trace of path fragment π = s0 s1 . . . is
trace(π) = L(s0) L(s1) . . .

▸ the trace of π̂ = s0 s1 . . . sn is trace(π̂) = L(s0) L(s1) . . . L(sn)
▸ The set of traces of a set Π of paths:

trace(Π) = { trace(π) ∣ π ∈ Π }
▸ Traces(s) = trace(Paths(s)) Traces(TS) = ⋃s∈I Traces(s)
▸ Traces�n(s) = trace(Paths�n(s)) Traces�n(TS) = ⋃s∈I Traces�n(s)



Semaphore-basedmutual exclusion

wait1

crit1

noncrit1

y ∶= y+1

y ∶= y−1
y > 0 ∶

wait2

crit2

noncrit2

y ∶= y+1

y ∶= y−1
y > 0 ∶

PG1 ∶ PG2 ∶

y=0 means “lock is currently possessed”; y=1 means “lock is free”



Interleaving of transition systems

Let TSi = (Si ,Acti ,→i , Ii ,APi , Li) i=1, 2, be two transition systems.

Transition system

TS1 ∣∣∣TS2 = (S1 × S2 ,Act1 ⊎ Act2 ,→, I1 × I2 ,AP1 ⊎ AP2 , L)
where L(⟨s1 , s2⟩) = L1(s1) ∪ L2(s2) and the transition relation→ is

de�ned by the rules:

s1
α
−−→1 s

′

1

⟨s1 , s2⟩ α
−−→ ⟨s′1 , s2⟩ and

s2
α
−−→2 s′2

⟨s1 , s2⟩ α
−−→ ⟨s1 , s′2⟩



Transition system TS(PG1 ∣∣∣PG2)

⟨n1 ,n2 , y=1⟩

⟨w1 ,n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1,n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

y ∶= y−1

y ∶= y−1

y ∶= y+1

y ∶= y+1



Example traces

Let AP = { crit1 , crit2 }
Example path:

π = ⟨n1 , n2 , y = 1⟩→ ⟨w1 , n2 , y = 1⟩→ ⟨c1 , n2 , y = 0⟩→
⟨n1 , n2 , y = 1⟩→ ⟨n1 ,w2 , y = 1⟩→ ⟨n1 , c2 , y = 0⟩→ . . .

The trace of this path is the in�nite word:

trace(π) = ∅∅{ crit1 }∅∅{ crit2 }∅∅{ crit1 }∅∅{ crit2 } . . .
The trace of the �nite path fragment:

π̂ = ⟨n1 , n2 , y = 1⟩→ ⟨w1 , n2 , y = 1⟩→ ⟨w1 ,w2 , y = 1⟩→
⟨w1 , c2 , y = 0⟩→ ⟨w1 , n2 , y = 1⟩→ ⟨c1 , n2 , y = 0⟩

is:

trace(π̂) = ∅∅∅{ crit2 }∅{ crit1 }



Linear-time properties

▸ Linear-time properties specify the traces that a TS may exhibit
▸ LT-property speci�es the admissible behaviour of system under

consideration

later, a logic will be introduced for specifying LT properties

▸ A linear-time property (LT property) over AP is

a subset of (2AP)ω
▸ �nite words are not needed, as it is assumed that there are

no terminal states

▸ TS (over AP) satis�es LT property P (over AP):

TS ⊧ P if and only if Traces(TS) ⊆ P

▸ TS satis�es the LT property P if all its “observable” behaviors are

admissible
▸ state s ∈ S satis�es P, notation s ⊧ P, whenever Traces(s) ⊆ P



How to specify mutual exclusion?

“Always at most one process is in its critical section”

▸ Let AP = { crit1 , crit2 }
▸ other atomic propositions are not of any relevance for this

property

▸ Formalization as LT property

Pmutex = set of in�nite words A0 A1 A2 . . .

with { crit1 , crit2 } /⊆ Ai for all 0 ≤ i

▸ Contained in Pmutex are e.g., the in�nite words:
▸ ({ crit1 }{ crit2 })ω and { crit1 }{ crit1 }{ crit1 } . . . and ∅∅∅ . . .

▸ but not { crit1 }∅{ crit1 , crit2 } . . . or
∅{ crit1 },∅∅{ crit1 , crit2 }∅ . . .

Does the semaphore-based algorithm satisfy Pmutex?



Does the semaphore-based algorithm satisfy Pmutex?

⟨n1 ,n2 , y=1⟩

∅

⟨w1 ,n2 , y=1⟩

∅

⟨n1 ,w2 , y=1⟩

∅

⟨c1 ,n2 , y=0⟩ { crit1 } ⟨w1 ,w2 , y=1⟩

∅

⟨n1 , c2 , y=0⟩{ crit2 }

⟨c1,w2 , y=0⟩{ crit1 } ⟨w1 , c2 , y=0⟩ { crit2 }

Yes as there is no reachable state labeled with { crit1 , crit2 }



How to specify starvation freedom?

“A process that wants to enter the critical section is eventually able

to do so‘”

▸ Let AP = {wait1, crit1 ,wait2 , crit2 }
▸ Formalization as LT-property

Pnostarve = set of in�nite words A0 A1 A2 . . . such that:

(∞∃ j. waiti ∈ Aj ) ⇒ (∞∃ j. criti ∈ Aj ) for each i ∈ { 1, 2}

there exist in�nitely many:

(∞∃ j.waiti ∈ Aj) ≡ (∀k ≥ 0. ∃j > k.waiti ∈ Aj)

Does the semaphore-based algorithm satisfy Pnostarve?



Does the semaphore-based algorithm satisfy Pnostarve?

⟨n1 ,n2 , y=1⟩

⟨w1 ,n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 ,n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel

No. Trace ∅ ({wait2 }{wait1 ,wait2 }{ crit1 ,wait2 } )ω ∈ Traces(TS), but
/∈ Pnostarve



Trace equivalence and LT properties

Let TS and TS′ be transition systems (over AP) without terminal states:

Traces(TS) ⊆ Traces(TS′)
if and only if

for any LT property P: TS′ ⊧ P implies TS ⊧ P

Traces(TS) = Traces(TS′)
if and only if

TS and TS′ satisfy the same LT properties



Two beverage vending machines

pay

selectsprite beerτ
τ

pay

select1 select2sprite beer

τ
τ

AP = {pay, sprite, beer }
there is no LT-property that can distinguish between these machines



Invariants

▸ Safety properties ≈ “nothing bad should happen” [Lamport 1977]

▸ Typical safety property: mutual exclusion property
▸ the bad thing (having > 1 process in the critical section) never

occurs

▸ Another typical safety property is deadlock freedom

⇒ These properties are in fact invariants
▸ An invariant is an LT property

▸ that is given by a condition Φ for the states
▸ and requires thatΦ holds for all reachable states
▸ e.g., for mutex property Φ ≡ ¬crit1 ∨ ¬crit2



Invariants

▸ An LT property Pinv over AP is an invariant if there is a

propositional logic formulaΦ over AP such that:

Pinv = { A0A1A2 . . . ∈ (2AP)ω ∣ ∀j ≥ 0. Aj ⊧ Φ }

▸ Φ is called an invariant condition of Pinv

▸ Note that
TS ⊧ Pinv i� trace(π) ∈ Pinv for all paths π in TS

i� L(s) ⊧ Φ for all states s that belong to a path of TS

i� L(s) ⊧ Φ for all states s ∈ Reach(TS)
▸ Φ has to be ful�lled by all initial states and

▸ satisfaction ofΦ is invariant under all transitions in the

reachable fragment of TS



Checking an invariant

▸ Checking an invariant for the propositional formulaΦ

= check the validity ofΦ in every reachable state

⇒ use a slight modi�cation of standard graph traversal algorithms

(DFS and BFS)
▸ provided the given transition system TS is �nite

▸ Perform a forward depth-�rst search
▸ at least one state s is found with s /⊧ Φ⇒ the invariance ofΦ is

violated

▸ Alternative: backward search
▸ starts with all states whereΦ does not hold
▸ calculates (by a DFS or BFS) the set⋃s∈S,s/⊧Φ Pre∗(s)

▸ The time complexity for invariant checking is
O(N ∗ (1 + ∣Φ∣) +M )

▸ where N denotes the number of reachable states, and
▸ M = ∑s∈S ∣Post(s)∣ the number of transitions in the reachable

fragment of TS



Safety properties

▸ Safety properties may impose requirements on �nite path
fragments

▸ and cannot be veri�ed by considering the reachable states only

▸ A safety property which is not an invariant:
▸ consider a cash dispenser, also known as automated teller

machine (ATM)
▸ property “money can only be withdrawn once a correct PIN has

been provided”

⇒ not an invariant, since it is not a state property

▸ But a safety property:
▸ any in�nite run violating the property has a �nite pre�x that is

“bad”
▸ i.e., in which money is withdrawn without issuing a PIN before



Safety properties

▸ LT property Psafe over AP is a safety property if

▸ for all σ ∈ (2AP)ω ∖ Psafe there exists a �nite pre�x σ̂ of σ such

that:

Psafe ∩ {σ ′ ∈ (2AP)ω ∣ σ̂ is a pre�x of σ ′}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

all possible extensions of σ̂

= ∅

▸ any such �nite word σ̂ is called a bad pre�x for Psafe

▸ Minimal bad pre�x for Psafe:
▸ is a bad pre�x σ̂ for Psafe for which no proper pre�x of σ̂ is a bad

pre�x for Psafe
⇒ minimal bad pre�xes are bad pre�xes of minimal length



Safety properties and �nite traces

For transition system TSwithout terminal states

and safety property Psafe :

TS ⊧ Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

where BadPref(Psafe) is the set of bad pre�xes of Psafe



Finite trace equivalence and safety properties

For TS and TS′ be transition systems (over AP) without terminal states:

Tracesfin(TS) ⊆ Tracesfin(TS′)
if and only if

for any safety property Psafe ∶ TS′ ⊧ Psafe ⇒ TS ⊧ Psafe

Tracesfin(TS) = Tracesfin(TS′)
if and only if

TS and TS′ satisfy the same safety properties



Why liveness?

▸ Safety properties specify that “something bad never happens”

▸ Doing nothing easily ful�lls a safety property
▸ as this will never lead to a “bad” situation

⇒ Safety properties are complemented by liveness properties
▸ that require some progress

▸ Liveness properties assert that:
▸ ”something good” will happen eventually [Lamport 1977]



Liveness properties

LT property Plive over AP is a liveness property whenever

pref(Plive) = (2AP)∗

▸ A liveness property is an LT property
▸ that does not rule out any pre�x

▸ Liveness properties are violated in “in�nite time”
▸ whereas safety properties are violated in �nite time
▸ �nite traces are of no use to decide whether P holds or not
▸ any �nite pre�x can be extended such that the resulting in�nite

trace satis�es P



Example liveness properties

▸ “If the tank is empty, the outlet valve will eventually be closed”

▸ “If the outlet valve is open and the request signal disappears,

the outlet valve will eventually be closed”

▸ “If the tank is full and a request is present,

the outlet valve will eventually be opened”

▸ “The program terminates within 31 computational steps”

⇒ a �nite trace may violate this; this is a safety property!

▸ “The program eventually terminates”



Liveness properties for mutual exclusion

▸ Eventually:
▸ each process will eventually enter its critical section

▸ Repeated eventually:
▸ each process will enter ist critical section in�nitely often

▸ Starvation freedom:
▸ each waiting process will eventually enter its critical section

how to formalize these properties?



Liveness properties for mutual exclusion

P = {A0 A1 A2 . . . ∣ Aj ⊆ AP & . . . } and AP = {wait1 , crit1 ,wait2 , crit2}
▸ Eventually:

(∃j ≥ 0. crit1 ∈ Aj) ∧ (∃j ≥ 0. crit2 ∈ Aj)
▸ Repeated eventually:

(∞∃ j ≥ 0. crit1 ∈ Aj) ∧ (∞∃ j ≥ 0. crit2 ∈ Aj)
▸ Starvation freedom:

∀j ≥ 0. (wait1 ∈ Aj ⇒ (∃k > j. crit1 ∈ Ak)) ∧
∀j ≥ 0. (wait2 ∈ Aj ⇒ (∃k > j. crit2 ∈ Ak))



Safety vs. liveness

▸ Are safety and liveness properties disjoint? Only (2AP)ω is both.

▸ Is every linear-time property a safety or liveness property? No.

“the machine provides in�nitely often beer

after initially providing sprite three times in a row”

▸ This property consists of two parts:
▸ it requires beer to be provided in�nitely often

⇒ as any �nite trace ful�lls this, it is a liveness property
▸ the �rst three drinks it provides should all be sprite

⇒ bad pre�x = one of �rst three drinks is beer; this is a safety

property

▸ Property is thus a conjunction of a safety and a liveness

property

does this apply to all properties?



Decomposition theorem

For any LT property P over AP there exists

a safety property Psafe and a liveness property Plive

(both over AP) such that:

P = Psafe ∩ Plive

⇒ safety and liveness provide an essential characterization of LT

properties



Classi�cation of LT properties

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

liveness properties

neither liveness
nor safety properties

invariants

safety properties

safety and liveness property



Summary LT properties

▸ LT properties are sets of in�nite words over 2AP (= traces)

▸ An invariant requires a condition Φ to hold in any reachable

state

▸ Each trace refuting a safety property has a �nite pre�x causing
this

▸ invariants are safety properties with bad pre�x Φ∗(¬Φ)
⇒ safety properties constrain �nite behaviors

▸ A liveness property does not rule out �nite behaviour

⇒ liveness properties constrain in�nite behaviors

▸ Any LT property is equivalent to a conjunction of a safety and a

liveness property


