Verification

Lecture 33

Martin Zimmermann

Plan for today

- Deductive verification
 - The Nelson-Oppen Method

Review: Decidability of first-order theories

Theory		full	QFF
T _E	Equality	no	yes
T _{PA}	Peano arithmetic	no	no
$T_{\mathbb{N}}$	Presburger arithmetic	yes	yes
$T_{\mathbb{Z}}$	integers	yes	yes
$T_{\mathbb{R}}$	reals	yes	yes
$T_{\mathbb{Q}}$	rationals	yes	yes
T _{cons}	lists	no	yes
T _A	arrays	no	yes
$T_{A}^{=}$	arrays with extensionality	no	yes

What about sorted?

From the π VC tutorial:

 $\forall a \forall b((low \leq a \land a \leq b \land b \leq high) \rightarrow arr[a] \leq arr[b])$

Neither a formula of $T_{\mathbb{Z}}$ nor a formula of T_{A} .

Combining Decision Procedures

Given

Theories T_i over signatures Σ_i (constants, functions, predicates) with corresponding decision procedures P_i for T_i -satisfiability.

Goal

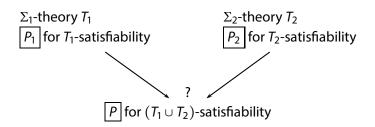
Decide satisfiability of a sentence in theory $\bigcup_i T_i$.

Example: How do we show that

$$F: 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$$

is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable?

Combining Decision Procedures



Problem:

Decision procedures are domain specific. How do we combine them?

Nelson-Oppen Combination Method (N-O Method)

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

 Σ_1 -theory T_1 stably infinite

 P_1 for T_1 -satisfiability of quantifier-free Σ_1 -formulae

 Σ_2 -theory T_2 stably infinite

 P_2 for T_2 -satisfiability of quantifier-free Σ_2 -formulae

 $P \text{ for } (T_1 \cup T_2) \text{-satisfiability}$ of quantifier-free $(\Sigma_1 \cup \Sigma_2)$ -formulae

Nelson-Oppen: Limitations

Given formula *F* in theory $T_1 \cup T_2$.

- 1. F must be quantifier-free.
- 2. Signatures Σ_i of the combined theory only share =, i.e.,

$$\Sigma_1 \cap \Sigma_2 = \{=\}$$

and both must contain the axioms of the theory of equality.

3. Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_i — combine two, then combine with another, and so on.
- We restrict F to be conjunctive formula otherwise convert to DNF and check each disjunct.

Stably Infinite Theories

A Σ -theory T is <u>stably infinite</u> iff for every quantifier-free Σ -formula F: if F is T-satisfiable then there exists some T-interpretation that satisfies Fand that has a domain whose quotient by the interpretation of = is of infinite cardinality.

Example: Σ -theory T

 $\Sigma: \{a, b, =\}$

Axioms

- $\forall x. x = a \lor x = b$
- and all axioms of the theory of equality

For every *T*-interpretation *I*, $|D_I|/\alpha_I(=) \le 2$ (at most two elements). Hence, *T* is <u>not</u> stably infinite.

All the other theories mentioned so far are stably infinite.

Example: Theory of partial orders Σ -theory T_{\leq}

$$\Sigma_{\preceq}:\;\{{\scriptstyle \preceq},\;{\scriptstyle =}\}$$

where \leq is a binary predicate.

Axioms

1. $\forall x. x \leq x$ (\leq reflexivity)2. $\forall x, y. x \leq y \land y \leq x \rightarrow x = y$ (\leq antisymmetry)3. $\forall x, y, z. x \leq y \land y \leq z \rightarrow x \leq z$ (\leq transitivity)

4. the axioms of the theory of equality

We prove T_{\leq} is stably infinite.

Consider T_{\leq} -satisfiable quantifier-free Σ_{\leq} -formula F. Consider arbitrary satisfying T_{\leq} -interpretation $I : (D_I, \alpha_I)$, where α_I maps \leq to \leq_I and = to $=_I$.

- Let $A = \{1_0, a_1, a_2, \ldots\}$ be any infinite set disjoint from D_I
- Construct new interpretation J : (D_J, α_J)

•
$$D_J = D_I \cup A$$

•
$$\alpha_J = \{ \le \mapsto \le_J, = \mapsto =_J \}$$
, where for $a, b \in D_J$,
 $a \le_J b$ iff one of the following cases holds

- $a, b \in D_l$ and $a \leq_l b$, or
- $a, b \in A, a = a_i, b = a_j \text{ and } i \leq j$.

and $a =_J b$ iff $a, b \in D_I$ and $a =_I b$

J is T_{\leq} -interpretation satisfying *F* with infinite quotient of domain under interpretation of = (all elements in *A* are pairwise unequal). Hence, T_{\leq} is stably infinite.

Example: Consider quantifier-free conjunctive $(\Sigma_E \cup \Sigma_Z)$ -formula

$$F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2).$$

The signatures of T_E and $T_{\mathbb{Z}}$ only share =. Also, both theories are stably infinite. Hence, the N-O combination of the decision procedures for T_E and $T_{\mathbb{Z}}$ decides the $(T_E \cup T_{\mathbb{Z}})$ -satisfiability of F.

Intuitively, *F* is $(T_E \cup T_Z)$ -unsatisfiable. For the first two literals imply $x = 1 \lor x = 2$ so that $f(x) = f(1) \lor f(x) = f(2)$. Contradict last two literals. Hence, *F* is $(T_E \cup T_Z)$ -unsatisfiable.

Nelson-Oppen Method: Overview

Phase 1: Variable Abstraction

- Given conjunction *F* in theory $T_1 \cup T_2$.
- Convert to conjunction $F_1 \wedge F_2$ s.t.
 - F_i in theory T_i
 - $F_1 \wedge F_2$ satisfiable iff *F* satisfiable.

Phase 2: Check

- If there is some set S of equalities and disequalities between the shared variables of F₁ and F₂ shared(F₁, F₂) = free(F₁) ∩ free(F₂) s.t. S ∧ F_i are T_i-satisfiable for all *i*, then F is **satisfiable**.
- Otherwise, **unsatisfiable**.

Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula *F*. Two versions:

- nondeterministic simple to present, but high complexity
- deterministic efficient

Nelson-Oppen (N-O) method proceeds in two steps:

- Phase 1 (variable abstraction)
 - same for both versions
- Phase 2

nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation

Given quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula F. Transform F into two quantifier-free conjunctive formulae Σ_1 -formula F_1 and Σ_2 -formula F_2 s.t. F is $(T_1 \cup T_2)$ -satisfiable iff $F_1 \wedge F_2$ is $(T_1 \cup T_2)$ -satisfiable F_1 and F_2 are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f.

Generation of F_1 and F_2

For $i, j \in \{1, 2\}$ and $i \neq j$, repeat the transformations (1) if function $f \in \Sigma_i$ and $hd(t) \in \Sigma_i$, $F[f(t_1,\ldots,t_n)] \quad \Rightarrow \quad F[f(t_1,\ldots,w,\ldots,t_n)] \land w = t$ (2) if predicate $p \in \Sigma_i$ and $hd(t) \in \Sigma_i$, $F[p(t_1,\ldots,t,\ldots,t_n)] \Rightarrow F[p(t_1,\ldots,w,\ldots,t_n)] \land w = t$ (3) if hd(s) $\in \Sigma_i$ and hd(t) $\in \Sigma_i$, $F[s = t] \implies F[\top] \land w = s \land w = t$ (4) if $hd(s) \in \Sigma_i$ and $hd(t) \in \Sigma_i$, $F[s \neq t] \implies F[w_1 \neq w_2] \land w_1 = s \land w_2 = t$

where w, w_1 , and w_2 are fresh variables.

Phase 2: Guess and Check

- Phase 1 separated $(\Sigma_1 \cup \Sigma_2)$ -formula *F* into two formulae: Σ_1 -formula F_1 and Σ_2 -formula F_2
- ► F_1 and F_2 are linked by a set of shared variables: $V = \text{shared}(F_1, F_2) = \text{free}(F_1) \cap \text{free}(F_2)$
- Let *E* be an equivalence relation over *V*.
- ► The arrangement $\alpha(V, E)$ of V induced by E is: $\alpha(V, E) : \bigwedge_{u, v \in V.} u = v \land \bigwedge_{u, v \in V. \neg(uEv)} u \neq v$

Then,

the original formula *F* is $(T_1 \cup T_2)$ -satisfiable iff there exists an equivalence relation *E* of *V* s.t.

(1) $F_1 \land \alpha(V, E)$ is T_1 -satisfiable, and (2) $F_2 \land \alpha(V, E)$ is T_2 -satisfiable. Otherwise, F is $(T_1 \cup T_2)$ -unsatisfiable.

Practical Efficiency

Phase 2 was formulated as "guess and check": First, guess an equivalence relation *E*, then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the # of shared variables. It is given by Bell numbers. e.g., 12 shared variables \Rightarrow over four million equivalence relations.

Solution: Deterministic Version Phase 1 as before Phase 2 asks the decision procedures P_1 and P_2 to propagate new equalities.

Convex Theories

Equality propagation is a decision procedure for convex theories.

Def. A Σ -theory T is <u>convex</u> iff for every quantifier-free conjunction Σ -formula Fand for every disjunction $\bigvee_{i=1}^{n} (u_i = v_i)$ if $F \models \bigvee_{i=1}^{n} (u_i = v_i)$ then $F \models u_i = v_i$, for some $i \in \{1, ..., n\}$

Convex Theories

- $T_E, T_{\mathbb{R}}, T_{\mathbb{Q}}, T_{\text{cons}}$ are convex
- $T_{\mathbb{Z}}$, T_{A} are not convex

Example: $T_{\mathbb{Z}}$ is not convex

Consider quantifier-free conjunction

 $F: \quad 1 \leq z \ \land \ z \leq 2 \ \land \ u = 1 \ \land \ v = 2$

Then

 $F \models z = u \lor z = v$

but

$$F \not\models z = u$$
$$F \not\models z = v$$

Example:

The theory of arrays T_A is not convex. Consider the quantifier-free conjunctive Σ_A -formula

$$F: a\langle i \triangleleft v \rangle [j] = v$$
.

Then

$$F \Rightarrow i = j \lor a[j] = v$$
,

but

$$F \Rightarrow i = j$$

 $F \Rightarrow a[j] = v$.

What if T is Not Convex?

Case split when:

$$\Gamma \vDash \bigvee_{i=1}^{n} (u_i = v_i)$$

but

$$\Gamma \neq u_i = v_i$$
 for all $i = 1, ..., n$

- For each i = 1, ..., n, construct a branch on which $u_i = v_i$ is assumed.
- If all branches are contradictory, then unsatisfiable.
 Otherwise, satisfiable.

$$u_1 = v_1 \qquad u_n = v_n$$