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Plan for today

▸ Deductive veri�cation
▸ The Nelson-Oppen Method
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Review: Decidability of �rst-order theories

Theory full QFF

TE Equality no yes

TPA Peano arithmetic no no

TN Presburger arithmetic yes yes

TZ integers yes yes

TR reals yes yes

TQ rationals yes yes

Tcons lists no yes

TA arrays no yes

T=A arrays with extensionality no yes
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What about sorted?

From the πVC tutorial:

predicate sorted(int[] arr, int low, int high) :=

(forall a,b. ((low <= a && a <= b && b <= high) ->

arr[a]<=arr[b]));

∀a∀b((low ≤ a ∧ a ≤ b ∧ b ≤ high) → arr[a] ≤ arr[b])

Neither a formula of TZ nor a formula of TA.
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Combining Decision Procedures

Given

Theories Ti over signatures Σi

(constants, functions, predicates)

with corresponding decision procedures Pi for Ti-satis�ability.

Goal

Decide satis�ability of a sentence in theory⋃i Ti .

Example: How do we show that

F ∶ 1 ≤ x ∧ x ≤ 2 ∧ f(x) ≠ f(1) ∧ f(x) ≠ f(2)

is (TE ∪ TZ)-unsatis�able?
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Combining Decision Procedures

Σ1-theory T1 Σ2-theory T2

P1 for T1-satis�ability P2 for T2-satis�ability

?

P for (T1 ∪ T2)-satis�ability

Problem:

Decision procedures are domain speci�c.

How do we combine them?
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Nelson-Oppen Combination Method (N-O Method)

Σ1 ∩ Σ2 = {=}

Σ1-theory T1 Σ2-theory T2
stably in�nite stably in�nite

P1 for T1-satis�ability P2 for T2-satis�ability

of quanti�er-free Σ1-formulae of quanti�er-free Σ2-formulae

P for (T1 ∪ T2)-satis�ability
of quanti�er-free (Σ1 ∪ Σ2)-formulae
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Nelson-Oppen: Limitations

Given formula F in theory T1 ∪ T2.

1. Fmust be quanti�er-free.

2. Signatures Σi of the combined theory only share =, i.e.,

Σ1 ∩ Σ2 = {=}

and both must contain the axioms of the theory of equality.

3. Theories must be stably in�nite.

Note:

▸ Algorithm can be extended to combine arbitrary number of

theories Ti —combine two, then combine with another, and so

on.

▸ We restrict F to be conjunctive formula— otherwise convert to

DNF and check each disjunct.
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Stably In�nite Theories
A Σ-theory T is stably in�nite i�

for every quanti�er-free Σ-formula F:

if F is T-satis�able

then there exists some T-interpretation that satis�es F

and that has a domain whose quotient by the

interpretation of = is of in�nite cardinality.

Example: Σ-theory T

Σ ∶ {a, b, =}

Axioms

▸ ∀x. x = a ∨ x = b
▸ and all axioms of the theory of equality

For every T-interpretation I, ∣DI∣/αI(=) ≤ 2 (at most two elements).

Hence, T is not stably in�nite.

All the other theories mentioned so far are stably in�nite. 9



Example: Theory of partial orders

Σ-theory T⪯

Σ⪯ ∶ {⪯, =}

where ⪯ is a binary predicate.

Axioms

1. ∀x. x ⪯ x (⪯ re�exivity)

2. ∀x, y. x ⪯ y ∧ y ⪯ x → x = y (⪯ antisymmetry)

3. ∀x, y, z. x ⪯ y ∧ y ⪯ z → x ⪯ z (⪯ transitivity)

4. the axioms of the theory of equality
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We prove T⪯ is stably in�nite.

Consider T⪯-satis�able quanti�er-free Σ⪯-formula F.

Consider arbitrary satisfying T⪯-interpretation I ∶ (DI , αI),
where αI maps ⪯ to ≤I and = to =I.

▸ Let A = {10, a1 , a2 , . . .} be any in�nite set disjoint from DI

▸ Construct new interpretation J ∶ (DJ , αJ)
▸ DJ = DI ∪ A
▸ αJ = {⪯↦ ≤J , =↦ =J}, where for a, b ∈ DJ,

a ≤J b i� one of the following cases holds:

▸ a, b ∈ DI and a ≤I b, or
▸ a, b ∈ A, a = ai, b = aj and i ≤ j.

and a =J b i� a, b ∈ DI and a =I b

J is T⪯-interpretation satisfying F with in�nite quotient of domain

under interpretation of = (all elements in A are pairwise unequal).

Hence, T⪯ is stably in�nite.
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Example: Consider quanti�er-free conjunctive (ΣE ∪ ΣZ)-formula

F ∶ 1 ≤ x ∧ x ≤ 2 ∧ f(x) ≠ f(1) ∧ f(x) ≠ f(2) .

The signatures of TE and TZ only share =. Also, both theories are

stably in�nite. Hence, the N-O combination of the decision

procedures for TE and TZ decides the (TE ∪ TZ)-satis�ability of F.

Intuitively, F is (TE ∪ TZ)-unsatis�able.
For the �rst two literals imply x = 1 ∨ x = 2 so that

f(x) = f(1) ∨ f(x) = f(2).
Contradict last two literals.

Hence, F is (TE ∪ TZ)-unsatis�able.
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Nelson-Oppen Method: Overview

Phase 1: Variable Abstraction

▸ Given conjunction F in theory T1 ∪ T2.

▸ Convert to conjunction F1 ∧ F2 s.t.
▸ Fi in theory Ti
▸ F1 ∧ F2 satis�able i� F satis�able.

Phase 2: Check

▸ If there is some set S of equalities and disequalities between

the shared variables of F1 and F2
shared(F1 , F2) = free(F1) ∩ free(F2)
s.t. S ∧ Fi are Ti-satis�able for all i,
then F is satis�able.

▸ Otherwise, unsatis�able.
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Nelson-Oppen Method: Overview

Consider quanti�er-free conjunctive (Σ1 ∪ Σ2)-formula F.

Two versions:

▸ nondeterministic — simple to present, but high complexity

▸ deterministic — e�cient

Nelson-Oppen (N-O) method proceeds in two steps:

▸ Phase 1 (variable abstraction)

— same for both versions

▸ Phase 2

nondeterministic: guess equalities/disequalities and check

deterministic: generate equalities/disequalities by equality

propagation
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Phase 1: Variable abstraction

Given quanti�er-free conjunctive (Σ1 ∪ Σ2)-formula F.

Transform F into two quanti�er-free conjunctive formulae

Σ1-formula F1 and Σ2-formula F2

s.t. F is (T1 ∪ T2)-satis�able i� F1 ∧ F2 is (T1 ∪ T2)-satis�able
F1 and F2 are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f .
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Generation of F1 and F2

For i, j ∈ {1, 2} and i ≠ j, repeat the transformations

(1) if function f ∈ Σi and hd(t) ∈ Σj,

F[f(t1 , . . . , t, . . . , tn)] ⇒ F[f(t1 , . . . ,w, . . . , tn)] ∧ w = t

(2) if predicate p ∈ Σi and hd(t) ∈ Σj,

F[p(t1 , . . . , t, . . . , tn)] ⇒ F[p(t1 , . . . ,w, . . . , tn)] ∧ w = t

(3) if hd(s) ∈ Σi and hd(t) ∈ Σj,

F[s = t] ⇒ F[⊺] ∧ w = s ∧ w = t

(4) if hd(s) ∈ Σi and hd(t) ∈ Σj,

F[s ≠ t] ⇒ F[w1 ≠ w2] ∧ w1 = s ∧ w2 = t

where w,w1, and w2 are fresh variables.
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Phase 2: Guess and Check

▸ Phase 1 separated (Σ1 ∪ Σ2)-formula F into two formulae:

Σ1-formula F1 and Σ2-formula F2

▸ F1 and F2 are linked by a set of shared variables:

V = shared(F1 , F2) = free(F1) ∩ free(F2)

▸ Let E be an equivalence relation over V .

▸ The arrangement α(V , E) of V induced by E is:

α(V , E) ∶ ⋀
u,v ∈ V . uEv

u = v ∧ ⋀
u,v ∈ V . ¬(uEv)

u ≠ v

Then,

the original formula F is (T1 ∪ T2)-satis�able i�
there exists an equivalence relation E of V s.t.

(1) F1 ∧ α(V , E) is T1-satis�able, and
(2) F2 ∧ α(V , E) is T2-satis�able.

Otherwise, F is (T1 ∪ T2)-unsatis�able.

17



Practical E�ciency

Phase 2 was formulated as “guess and check”:

First, guess an equivalence relation E,

then check the induced arrangement.

The number of equivalence relations grows super-exponentially

with the # of shared variables. It is given by Bell numbers.

e.g., 12 shared variables ⇒ over four million equivalence relations.

Solution: Deterministic Version

Phase 1 as before

Phase 2 asks the decision procedures P1 and P2 to propagate new

equalities.
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Convex Theories

Equality propagation is a decision procedure for convex theories.

Def. A Σ-theory T is convex i�

for every quanti�er-free conjunction Σ-formula F

and for every disjunction
n

⋁
i=1

(ui = vi)

if F ⊧
n

⋁
i=1

(ui = vi)

then F ⊧ ui = vi, for some i ∈ {1, . . . , n}

19



Convex Theories

▸ TE , TR, TQ, Tcons are convex

▸ TZ , TA are not convex

Example: TZ is not convex

Consider quanti�er-free conjunction

F ∶ 1 ≤ z ∧ z ≤ 2 ∧ u = 1 ∧ v = 2

Then

F ⊧ z = u ∨ z = v

but

F /⊧ z = u

F /⊧ z = v
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Example:

The theory of arrays TA is not convex.

Consider the quanti�er-free conjunctive ΣA-formula

F ∶ a⟨i◁ v⟩[j] = v .

Then

F ⇒ i = j ∨ a[j] = v ,

but
F /⇒ i = j
F /⇒ a[j] = v .
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What if T is Not Convex?

Case split when:

Γ ⊧
n

⋁
i=1

(ui = vi)

but

Γ /⊧ ui = vi for all i = 1, . . . , n

▸ For each i = 1, . . . , n, construct a branch on which

ui = vi is assumed.

▸ If all branches are contradictory, then unsatis�able.

Otherwise, satis�able.

⋅

⋮ ⋮ ⋮

u1 = v1
ui = vi

un = vn
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