Verification

Lecture 33

Martin Zimmermann

Plan for today

- Deductive verification
- The Nelson-Oppen Method

Review: Decidability of first-order theories

Theory	full	QFF	
T_{E}	Equality	no	yes
T_{PA}	Peano arithmetic	no	no
$T_{\mathbb{N}}$	Presburger arithmetic	yes	yes
$T_{\mathbb{Z}}$	integers	yes	yes
$T_{\mathbb{R}}$	reals	yes	yes
$T_{\mathbb{Q}}$	rationals	yes	yes
$T_{\text {cons }}$	lists	no	yes
T_{A}	arrays	no	yes
$T_{\mathrm{A}}^{\overline{=}}$	arrays with extensionality	no	yes

What about sorted?

From the $\pi \mathrm{VC}$ tutorial:

$$
\begin{gathered}
\text { predicate sorted(int [] arr, int low, int high) := } \\
\text { (forall } \mathrm{a}, \mathrm{~b} . \quad((\operatorname{low}<=\mathrm{a} \& \& \mathrm{a}<=\mathrm{b} \& \& \mathrm{~b}<=\text { high) }-> \\
\operatorname{arr}[\mathrm{a}]<=\operatorname{arr}[\mathrm{b}])) \text {; }
\end{gathered}
$$

$$
\forall a \forall b((l o w \leq a \wedge a \leq b \wedge b \leq h i g h) \rightarrow \operatorname{arr}[a] \leq \operatorname{arr}[b])
$$

Neither a formula of $T_{\mathbb{Z}}$ nor a formula of T_{A}.

Combining Decision Procedures

Given

Theories T_{i} over signatures Σ_{i} (constants, functions, predicates) with corresponding decision procedures P_{i} for T_{i}-satisfiability.

Goal

Decide satisfiability of a sentence in theory $\bigcup_{i} T_{i}$.
Example: How do we show that

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable?

Combining Decision Procedures

Problem:

Decision procedures are domain specific.
How do we combine them?

Nelson-Oppen Combination Method (N-O Method)

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

Σ_{1}-theory T_{1}
stably infinite

$$
\Sigma_{2} \text {-theory } T_{2}
$$

stably infinite
P_{1} for T_{1}-satisfiability
of quantifier-free Σ_{1}-formulae

P for $\left(T_{1} \cup T_{2}\right)$-satisfiability of quantifier-free $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formulae

Nelson-Oppen: Limitations

Given formula F in theory $T_{1} \cup T_{2}$.

1. F must be quantifier-free.
2. Signatures Σ_{i} of the combined theory only share $=$, i.e.,

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

and both must contain the axioms of the theory of equality.
3. Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_{i} - combine two, then combine with another, and so on.
- We restrict F to be conjunctive formula - otherwise convert to DNF and check each disjunct.

Stably Infinite Theories

A Σ-theory T is stably infinite iff
for every quantifier-free Σ-formula F :
if F is T-satisfiable
then there exists some T-interpretation that satisfies F and that has a domain whose quotient by the interpretation of $=$ is of infinite cardinality.

Example: Σ-theory T

$$
\Sigma:\{a, b,=\}
$$

Axioms

- $\forall x . x=a \vee x=b$
- and all axioms of the theory of equality

For every T-interpretation $I,\left|D_{l}\right| / \alpha_{l}(=) \leq 2$ (at most two elements). Hence, T is not stably infinite.

All the other theories mentioned so far are stably infinite.

Example: Theory of partial orders
Σ-theory $T_{\text {s }}$

$$
\Sigma_{\leq}:\{\leq,=\}
$$

where \leq is a binary predicate.
Axioms

1. $\forall x . x \leq x$
2. $\forall x, y \cdot x \leq y \wedge y \leq x \rightarrow x=y$
3. $\forall x, y, z . x \leq y \wedge y \leq z \rightarrow x \leq z$
4. the axioms of the theory of equality
(\leq reflexivity)
(\leq antisymmetry)
(\leq transitivity)

We prove T_{\leq}is stably infinite.
Consider T_{\leq}-satisfiable quantifier-free Σ_{\leq}-formula F. Consider arbitrary satisfying T_{\leq}-interpretation $/:\left(D_{l}, \alpha_{l}\right)$,
where α_{l} maps \leq to \leq_{l} and $=$ to $=/$.

- Let $A=\left\{1_{0}, a_{1}, a_{2}, \ldots\right\}$ be any infinite set disjoint from D_{l}
- Construct new interpretation J : $\left(D_{\jmath}, \alpha_{\jmath}\right)$
- $D_{J}=D_{1} \cup A$
- $\left.\alpha_{J}=\{\leq \mapsto \leq \jmath,=\mapsto=\lrcorner\right\}$, where for $a, b \in D_{J}$, $a \leq \jmath b$ iff one of the following cases holds:
- $a, b \in D_{I}$ and $a \leq b$, or
- $a, b \in A, a=a_{i}, b=a_{j}$ and $i \leq j$.

$$
\text { and } a=\jmath b \text { iff } a, b \in D_{l} \text { and } a=l b
$$

J is T_{\leq}-interpretation satisfying F with infinite quotient of domain under interpretation of = (all elements in A are pairwise unequal). Hence, T_{\leq}is stably infinite.

Example: Consider quantifier-free conjunctive $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2) .
$$

The signatures of T_{E} and $T_{\mathbb{Z}}$ only share $=$. Also, both theories are stably infinite. Hence, the $\mathrm{N}-\mathrm{O}$ combination of the decision procedures for T_{E} and $T_{\mathbb{Z}}$ decides the ($T_{E} \cup T_{\mathbb{Z}}$)-satisfiability of F.

Intuitively, F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable.
For the first two literals imply $x=1 \vee x=2$ so that
$f(x)=f(1) \vee f(x)=f(2)$.
Contradict last two literals. Hence, F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable.

Nelson-Oppen Method: Overview

Phase 1: Variable Abstraction

- Given conjunction F in theory $T_{1} \cup T_{2}$.
- Convert to conjunction $F_{1} \wedge F_{2}$ s.t.
- F_{i} in theory T_{i}
- $F_{1} \wedge F_{2}$ satisfiable iff F satisfiable.

Phase 2: Check

- If there is some set S of equalities and disequalities between the shared variables of F_{1} and F_{2} $\operatorname{shared}\left(F_{1}, F_{2}\right)=$ free $\left(F_{1}\right) \cap$ free $\left(F_{2}\right)$
s.t. $S \wedge F_{i}$ are T_{i}-satisfiable for all i, then F is satisfiable.
- Otherwise, unsatisfiable.

Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F.
Two versions:

- nondeterministic - simple to present, but high complexity
- deterministic - efficient

Nelson-Oppen (N-O) method proceeds in two steps:

- Phase 1 (variable abstraction)
- same for both versions
- Phase 2 nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation

Phase 1: Variable abstraction

Given quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F. Transform F into two quantifier-free conjunctive formulae Σ_{1}-formula $F_{1} \quad$ and $\quad \Sigma_{2}$-formula F_{2} s.t. F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff $F_{1} \wedge F_{2}$ is $\left(T_{1} \cup T_{2}\right)$-satisfiable F_{1} and F_{2} are linked via a set of shared variables.

For term t, let $h d(t)$ be the root symbol, e.g. $h d(f(x))=f$.

Generation of F_{1} and F_{2}

For $i, j \in\{1,2\}$ and $i \neq j$, repeat the transformations
(1) if function $f \in \Sigma_{i}$ and $\operatorname{hd}(t) \in \Sigma_{j}$,

$$
F\left[f\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \quad \Rightarrow \quad F\left[f\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(2) if predicate $p \in \Sigma_{i}$ and $\operatorname{hd}(t) \in \Sigma_{j}$,

$$
F\left[p\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \Rightarrow F\left[p\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(3) if $h d(s) \in \Sigma_{i}$ and $h d(t) \in \Sigma_{j}$,

$$
F[s=t] \quad \Rightarrow \quad F[T] \wedge w=s \wedge w=t
$$

(4) if $h d(s) \in \Sigma_{i}$ and $h d(t) \in \Sigma_{j}$,

$$
F[s \neq t] \quad \Rightarrow \quad F\left[w_{1} \neq w_{2}\right] \wedge w_{1}=s \wedge w_{2}=t
$$

where w, w_{1}, and w_{2} are fresh variables.

Phase 2: Guess and Check

- Phase 1 separated $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F into two formulae: Σ_{1}-formula F_{1} and Σ_{2}-formula F_{2}
- F_{1} and F_{2} are linked by a set of shared variables:

$$
V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\text { free }\left(F_{1}\right) \cap \text { free }\left(F_{2}\right)
$$

- Let E be an equivalence relation over V.
- The arrangement $\alpha(V, E)$ of V induced by E is:

$$
\alpha(V, E): \bigwedge_{u, v \in V \cdot u E V} u=v \wedge \bigwedge_{u, v \in V . \neg(u E V)} u \neq v
$$

Then,
the original formula F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff there exists an equivalence relation E of V s.t.
(1) $F_{1} \wedge \alpha(V, E)$ is T_{1}-satisfiable, and
(2) $F_{2} \wedge \alpha(V, E)$ is T_{2}-satisfiable.

Otherwise, F is $\left(T_{1} \cup T_{2}\right)$-unsatisfiable.

Practical Efficiency

Phase 2 was formulated as "guess and check":
First, guess an equivalence relation E, then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the \# of shared variables. It is given by Bell numbers. e.g., 12 shared variables \Rightarrow over four million equivalence relations.

Solution: Deterministic Version
Phase 1 as before
Phase 2 asks the decision procedures P_{1} and P_{2} to propagate new equalities.

Convex Theories

Equality propagation is a decision procedure for convex theories.

Def. A Σ-theory T is convex iff
for every quantifier-free conjunction Σ-formula F
and for every disjunction $\bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right)$

$$
\begin{aligned}
& \text { if } F \vDash \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right) \\
& \text { then } F \vDash u_{i}=v_{i}, \text { for some } i \in\{1, \ldots, n\}
\end{aligned}
$$

Convex Theories

- $T_{E}, T_{\mathbb{R}}, T_{\mathbb{Q}}, T_{\text {cons }}$ are convex
- $T_{\mathbb{Z}}, T_{\mathrm{A}}$ are not convex

Example: $T_{\mathbb{Z}}$ is not convex
Consider quantifier-free conjunction

$$
F: \quad 1 \leq z \wedge z \leq 2 \wedge u=1 \wedge v=2
$$

Then

$$
F \vDash z=u \vee z=v
$$

but

$$
\begin{aligned}
& F \not \approx z=u \\
& F \not \approx z=v
\end{aligned}
$$

Example:

The theory of arrays T_{A} is not convex.
Consider the quantifier-free conjunctive Σ_{A}-formula

$$
F: a\langle i \triangleleft v\rangle[j]=v .
$$

Then

$$
F \Rightarrow i=j \vee a[j]=v,
$$

but

$$
\begin{aligned}
& F \nRightarrow i=j \\
& F \nRightarrow a[j]=v .
\end{aligned}
$$

What if T is Not Convex?

Case split when:

$$
\Gamma \vDash \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right)
$$

but

$$
\Gamma \not \models u_{i}=v_{i} \quad \text { for all } i=1, \ldots, n
$$

- For each $i=1, \ldots, n$, construct a branch on which $u_{i}=v_{i}$ is assumed.
- If all branches are contradictory, then unsatisfiable. Otherwise, satisfiable.

