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Plan for today

▸ Deductive veri�cation
▸ Congruence closure DAGmethod
▸ Recursive Data Structures
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F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

generate congruence closure

∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
search for contradiction

The algorithm performs the following steps:

1. Construct the congruence closure ∼ of

{s1 = t1 , . . . , sm = tm}

over the subterm set SF . Then

∼ ⊧ s1 = t1 ∧ ⋯ ∧ sm = tm .

2. If for any i ∈ {m + 1, . . . , n}, si ∼ ti, return unsatis�able.

3. Otherwise, ∼⊧ F, so return satis�able.

How do we actually construct the congruence closure in Step 1?
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Initially, begin with the �nest congruence relation ∼0 given by the

partition

{{s} ∶ s ∈ SF} .

That is, let each term of SF be its own congruence class.

Then, for each i ∈ {1, . . . ,m}, impose si = ti by merging the

congruence classes

[si]∼i−1 and [ti]∼i−1
to form a new congruence relation ∼i. To accomplish this merging,

▸ form the union of [si]∼i−1 and [ti]∼i−1
▸ propagate any new congruences that arise within this union.

The new relation ∼i is a congruence relation in which si ∼ ti .
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Directed Acyclic Graph (DAG)

For ΣE-formula F, graph-based data structure for representing the

subterms of SF (and congruence relation between them).

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

f(f(a, b), b)
f(a, b)
a b

E�cient way for computing the congruence closure algorithm.
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TE-Satis�ability (Summary of idea)

f(a, b) = a ∧ f(f(a, b), b) ≠ a
1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

Initial DAG f(a, b) = a ⇒
merge f(a, b) a

explicit equation

f(a, b) ∼ a, b ∼ b ⇒
f(f(a, b), b) ∼ f(a, b)

merge f(f(a, b), b)
f(a, b)

by congruence

�nd f(f(a, b), b) = a = �nd a

f(f(a, b), b) ≠ a } ⇒ Unsatis�able
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DAG representation

type node = {
id : id

node’s unique identi�cation number

fn : string

constant or function name

args : id list

list of function arguments

mutable find : id

the representative of the congruence class

mutable ccpar : id set

if the node is the representative for its

congruence class, then its ccpar

(congruence closure parents) are all

parents of nodes in its congruence class}
ccpar is initialized with the set containing the parents of the node (if it

has any), findwith the id of the node.
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DAG Representation of node 2

type node = {
id : id

fn : string

args : idlist

mutable find : id

mutable ccpar : idset}

. . . 2

. . . f

. . . [3, 4]

. . . 3

. . . ∅

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b
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DAG Representation of node 3

type node = {
id : id

fn : string

args : idlist

mutable find : id

mutable ccpar : idset}

. . . 3

. . . a

. . . []

. . . 3

. . . {1, 2}

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b
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The Implementation

�nd function

returns the representative of node’s congruence class

let rec �nd i =
let n = node i in

if n.find = i then i else �nd n.find

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

Example: �nd 2 = 3
�nd 3 = 3

3 is the representative of 2.
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union function

let union i1 i2 =
let n1 = node (�nd i1) in
let n2 = node (�nd i2) in
n1.find ← n2.find;

n2.ccpar ← n1.ccpar ∪ n2.ccpar;

n1.ccpar ← ∅

n2 is the representative of the union class

11



Example

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

union 1 2 n1 = 1 n2 = 3
1.find← 3

3.ccpar← {1, 2}
1.ccpar← ∅
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ccpar function

Returns parents of all nodes in i’s congruence class

let ccpar i =(node (�nd i)).ccpar

congruent predicate

Test whether i1 and i2 are congruent

let congruent i1 i2 =
let n1 = node i1 in

let n2 = node i2 in

n1.fn = n2.fn
∧ ∣n1.args∣ = ∣n2 .args∣
∧ ∀i ∈ {1, . . . , ∣n1 .args∣}. �nd n1.args[i] = �nd n2.args[i]
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Example:

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

Are 1 and 2 congruent?

fn �elds — both f

# of arguments — same

left arguments f(a, b) and a—both congruent to 3

right arguments b and b —both 4 (congruent)

Therefore 1 and 2 are congruent.
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merge function

let recmerge i1 i2 =
if �nd i1 ≠ �nd i2 then begin

let Pi1 = ccpar i1 in

let Pi2 = ccpar i2 in

union i1 i2;

foreach t1 , t2 ∈ Pi1 × Pi2 do

if �nd t1 ≠ �nd t2 ∧ congruent t1 t2
thenmerge t1 t2

done

end

Pi1 and Pi2 store the current values of ccpar i1 and ccpar i2.
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Decision Procedure: TE-satis�ability

Given ΣE-formula

F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn ,

with subterm set SF , perform the following steps:

1. Construct the initial DAG for the subterm set SF .

2. For i ∈ {1, . . . ,m}, merge si ti.

3. If �nd si = �nd ti for some i ∈ {m+ 1, . . . , n}, return unsatis�able.
4. Otherwise (if �nd si ≠ �nd ti for all i ∈ {m + 1, . . . , n}) return

satis�able.
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Theorem (Sound and Complete)

Quanti�er-free conjunctive ΣE-formula F is TE-satis�able i� the

congruence closure algorithm returns satis�able.
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Recursive Data Structures
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Recursive Data Structures

Quanti�er-free Theory of Lists Tcons

Σcons ∶ {cons, car, cdr, atom, =}
● constructor cons : cons(a, b) list constructed by

prepending a to b

● left projector car : car(cons(a, b)) = a
● right projector cdr : cdr(cons(a, b)) = b
● atom : unary predicate
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Axioms of Tcons

▸ re�exivity, symmetry, transitivity

▸ congruence axioms:

∀x1 , x2 , y1 , y2 . x1 = x2 ∧ y1 = y2 → cons(x1 , y1) = cons(x2 , y2)
∀x, y. x = y → car(x) = car(y)
∀x, y. x = y → cdr(x) = cdr(y)

▸ equivalence axiom:

∀x, y. x = y → (atom(x) ↔ atom(y))
▸

(A1) ∀x, y. car(cons(x, y)) = x (left projection)(A2) ∀x, y. cdr(cons(x, y)) = y (right projection)(A3) ∀x. ¬atom(x)→ cons(car(x), cdr(x)) = x (construction)(A4) ∀x, y. ¬atom(cons(x, y)) (atom)
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Simpli�cations

▸ Consider only quanti�er-free conjunctive Σcons-formulae.

Convert non-conjunctive formula to DNF and check each

disjunct.

▸ ¬atom(ui) literals are removed:

replace ¬atom(ui) with ui = cons(u1i , u2i )
by the (construction) axiom.

▸ Because of similarity to ΣE, we sometimes combine Σcons ∪ ΣE.
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Algorithm: Tcons-Satis�ability (the idea)

F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
generate congruence closure

∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
search for contradiction

∧ atom(u1) ∧ ⋯ ∧ atom(ul)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
search for contradiction

where si, ti, and ui are Tcons-terms
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Algorithm: Tcons-Satis�ability

1. Construct the initial DAG for SF

2. for each node nwith n.fn = cons
▸ add car(n) and merge car(n) n.args[1]
▸ add cdr(n) and merge cdr(n) n.args[2]

by axioms (A1), (A2)

3. for 1 ≤ i ≤ m, merge si ti

4. form + 1 ≤ i ≤ n, if �nd si = �nd ti, return unsatis�able

5. for 1 ≤ i ≤ l, if ∃v. �nd v = �nd ui ∧ v.fn = cons,
return unsatis�able

6. Otherwise, return satis�able

car cdr

cons

x y

23



Example:

Given (Σcons ∪ ΣE)-formula

F ∶
car(x) = car(y) ∧ cdr(x) = cdr(y)

∧ ¬atom(x) ∧ ¬atom(y) ∧ f(x) ≠ f(y)
where the function symbol f is in ΣE

F′ ∶

car(x) = car(y) ∧ (1)
cdr(x) = cdr(y) ∧ (2)
x = cons(u1 , v1) ∧ (3)
y = cons(u2 , v2) ∧ (4)
f(x) ≠ f(y) (5)

Recall the projection axioms:

(A1) ∀x, y. car(cons(x, y)) = x(A2) ∀x, y. cdr(cons(x, y)) = y
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Example(cont): congruence

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

4C

4D

F is unsatis�able
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