
Veri�cation

Lecture 31

Martin Zimmermann



Plan for today

▸ Deductive veri�cation
▸ Congruence closure
▸ DAGmethod

2



Review: The Theory of Equality TE

ΣE ∶ {=, a, b, c, . . . , f , g, h, . . . , p, q, r, . . .}
uninterpreted symbols:● constants a, b, c, . . .● functions f , g, h, . . .● predicates p, q, r, . . .

Example:

x = y ∧ f(x) ≠ f(y) TE-unsatis�able

f(x) = f(y) ∧ x ≠ y TE-satis�able

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ≠ a

TE-unsatis�able

3



Axioms of TE

1. ∀x. x = x (re�exivity)

2. ∀x, y. x = y → y = x (symmetry)

3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)

de�ne = to be an equivalence relation.

Axiom schema

4. for each positive integer n and n-ary function symbol f ,

∀x1 , . . . , xn, y1 , . . . , yn . ⋀i xi = yi
→ f(x1 , . . . , xn) = f(y1 , . . . , yn) (congruence)

For example,

∀x, y. x = y → f(x) = f(y)
Then

x = g(y, z) → f(x) = f(g(y, z))
is TE-valid.

4



Axiom schema

5. for each positive integer n and n-ary predicate symbol p,

∀x1 , . . . , xn, y1 , . . . , yn . ⋀
i

xi = yi →

(p(x1 , . . . , xn) ↔ p(y1 , . . . , yn)) (equivalence)

Thus,

x = y → (p(x) ↔ p(y))
is TE-valid.

5



We discuss TE-formulae without predicates

For example, for ΣE-formula

F ∶ p(x) ∧ q(x, y) ∧ q(y, z) → ¬q(x, z)
introduce fresh constant ●, and fresh functions fp and fq, and

transform F to

G ∶ fp(x) = ● ∧ fq(x, y) = ● ∧ fq(y, z) = ● → fq(x, z) ≠ ● .

6



Equivalence and Congruence Relations: Basics

Binary relation R over set S

● is an equivalence relation if

▸ re�exive: ∀s ∈ S. sRs;
▸ symmetric: ∀s1 , s2 ∈ S. s1Rs2 → s2Rs1;

▸ transitive: ∀s1 , s2 , s3 ∈ S. s1Rs2 ∧ s2Rs3 → s1Rs3.

Example:

De�ne the binary relation ≡2 over the set Z of integers

m ≡2 n i� (mmod 2) = (nmod 2)
That is,m, n ∈ Z are related i� they are both even or both odd.≡2 is an equivalence relation

● is a congruence relation if in addition

∀s, t. n⋀
i=1

siRti → f(s)Rf(t) .
7



Classes

For { equivalence

congruence
}relation R over set S,

The { equivalence

congruence
} class of s ∈ S under R is

[s]R def= {s′ ∈ S ∶ sRs′} .
Example:

The equivalence class of 3 under ≡2 over Z is

[3]≡2 = {n ∈ Z ∶ n is odd} .

Partitions

A partition P of S is a set of subsets of S that is

▸ total (⋃
S′∈P

S′) = S

▸ disjoint ∀S1 , S2 ∈ P. S1 ∩ S2 = ∅ 8



Quotient

The quotient S/R of S by { equivalence

congruence
}relation R is the set of

{ equivalence

congruence
}classes

S/R = {[s]R ∶ s ∈ S} .
It is a partition

Example: The quotient Z/ ≡2 is a partition of Z. The set of

equivalence classes

{{n ∈ Z ∶ n is odd}, {n ∈ Z ∶ n is even}}

Note duality between relations and classes

9



Re�nements

Two binary relations R1 and R2 over set S.

R1 is re�nement of R2, R1 ≺ R2, if

∀s1 , s2 ∈ S. s1R1s2 → s1R2s2 .

R1 re�nes R2.

Examples:

▸ For S = {a, b},
R1 ∶ {aR1b} R2 ∶ {aR2b, bR2b}

Then R1 ≺ R2
▸ For set S,

R1 induced by the partition P1 ∶ {{s} ∶ s ∈ S}
R2 induced by the partition P2 ∶ {S}

Then R1 ≺ R2.

▸ For set Z

R1 ∶ {xR1y ∶ x mod 2 = ymod 2}
R2 ∶ {xR2y ∶ x mod 4 = ymod 4}

Then R2 ≺ R1. 10



Closures

Given binary relation R over S.

The equivalence closure RE of R is the equivalence relation s.t.

▸ R re�nes RE , i.e. R ≺ RE ;

▸ for all other equivalence relations R′ s.t. R ≺ R′,

either R′ = RE or RE ≺ R′

That is, RE is the “smallest” equivalence relation that “covers” R.

Example: If S = {a, b, c, d} and R = {aRb, bRc, dRd}, then● aRb, bRc, dRd ∈ RE since R ⊆ RE ;● aRa, bRb, cRc ∈ RE by re�exivity;● bRa, cRb ∈ RE by symmetry;● aRc ∈ RE by transitivity;● cRa ∈ RE by symmetry.
Hence,

RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd} .
Similarly, the congruence closure RC of R is the “smallest”

congruence relation that “covers” R. 11



Congruence Closure Algorithm

Given ΣE-formula

F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn

decide if F is ΣE-satis�able.

De�nition: For ΣE-formula F,

the subterm set SF of F is the set that contains precisely

the subterms of F.

Example: The subterm set of

F ∶ f(a, b) = a ∧ f(f(a, b), b) ≠ a

is

SF = {a, b, f(a, b), f(f(a, b), b)} .
12



The Algorithm

Given ΣE-formula F

F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn

with subterm set SF , F is TE-satis�able i� there exists a congruence

relation ∼ over SF such that

▸ for each i ∈ {1, . . . ,m}, si ∼ ti;
▸ for each i ∈ {m + 1, . . . , n}, si /∼ ti.

Such congruence relation ∼ de�nes TE-interpretation I ∶ (DI , αI) of F.
DI consists of ∣SF/ ∼ ∣ elements, one for each congruence class of SF
under ∼.
Instead of writing I ⊧ F for this TE-interpretation, we abbreviate∼ ⊧ F

The goal of the algorithm is to construct the congruence relation of

SF , or to prove that no congruence relation exists.
13



F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
generate congruence closure

∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
search for contradiction

The algorithm performs the following steps:

1. Construct the congruence closure ∼ of
{s1 = t1 , . . . , sm = tm}

over the subterm set SF . Then

∼ ⊧ s1 = t1 ∧ ⋯ ∧ sm = tm .

2. If for any i ∈ {m + 1, . . . , n}, si ∼ ti, return unsatis�able.

3. Otherwise, ∼⊧ F, so return satis�able.

How do we actually construct the congruence closure in Step 1?

14



Initially, begin with the �nest congruence relation ∼0 given by the

partition {{s} ∶ s ∈ SF} .
That is, let each term of SF be its own congruence class.

Then, for each i ∈ {1, . . . ,m}, impose si = ti by merging the

congruence classes

[si]∼i−1 and [ti]∼i−1
to form a new congruence relation ∼i. To accomplish this merging,

▸ form the union of [si]∼i−1 and [ti]∼i−1
▸ propagate any new congruences that arise within this union.

The new relation ∼i is a congruence relation in which si ∼ ti .

15


