Verification

Lecture 31

Martin Zimmermann

Plan for today

- Deductive verification
 - Congruence closure
 - DAG method

Review: The Theory of Equality T_E

$$\Sigma_E$$
: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

uninterpreted symbols:

- constants *a*, *b*, *c*, . . .
- functions f, g, h, \ldots
- predicates *p*,*q*,*r*,...

Example:

 $\begin{aligned} x &= y \land f(x) \neq f(y) & T_E \text{-unsatisfiable} \\ f(x) &= f(y) \land x \neq y & T_E \text{-satisfiable} \\ f(f(f(a))) &= a \land f(f(f(f(f(a))))) = a \land f(a) \neq a \\ & T_E \text{-unsatisfiable} \end{aligned}$

Axioms of T_E

1. $\forall x. x = x$ (reflexivity)2. $\forall x, y. x = y \rightarrow y = x$ (symmetry)3. $\forall x, y, z. x = y \land y = z \rightarrow x = z$ (transitivity)

define = to be an equivalence relation.

Axiom schema

4. for each positive integer n and n-ary function symbol f,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \land_i x_i = y_i \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$
 (congruence)

For example,

$$\forall x, y. x = y \rightarrow f(x) = f(y)$$

Then

$$x = g(y,z) \rightarrow f(x) = f(g(y,z))$$

is T_E-valid.

Axiom schema

5. for each positive integer *n* and *n*-ary predicate symbol *p*,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \bigwedge_i x_i = y_i \rightarrow$$

$$(p(x_1, \dots, x_n) \iff p(y_1, \dots, y_n))$$
(equivalence)

Thus,

$$x = y \rightarrow (p(x) \leftrightarrow p(y))$$

is T_E -valid.

We discuss T_E -formulae without predicates For example, for Σ_E -formula

$$F: p(x) \land q(x,y) \land q(y,z) \rightarrow \neg q(x,z)$$

introduce fresh constant •, and fresh functions f_p and f_q , and transform F to

$$G:\,f_p(x)=\bullet\,\wedge\,f_q(x,y)=\bullet\,\wedge\,f_q(y,z)=\bullet\,\rightarrow\,f_q(x,z)\neq\bullet\,.$$

Equivalence and Congruence Relations: Basics

Binary relation R over set S

- is an equivalence relation if
 - reflexive: $\forall s \in S. sRs;$
 - ▶ symmetric: $\forall s_1, s_2 \in S. s_1Rs_2 \rightarrow s_2Rs_1;$
 - ▶ transitive: $\forall s_1, s_2, s_3 \in S$. $s_1Rs_2 \land s_2Rs_3 \rightarrow s_1Rs_3$.

Example:

Define the binary relation \equiv_2 over the set \mathbb{Z} of integers

 $m \equiv_2 n$ iff $(m \mod 2) = (n \mod 2)$

That is, $m, n \in \mathbb{Z}$ are related iff they are both even or both odd. =₂ is an equivalence relation

• is a congruence relation if in addition

$$\forall \overline{s}, \overline{t}. \bigwedge_{i=1}^n s_i Rt_i \rightarrow f(\overline{s}) Rf(\overline{t}) .$$

Classes

For $\left\{\begin{array}{c} equivalence \\ congruence \end{array}\right\}$ relation *R* over set *S*, The $\left\{\begin{array}{c} equivalence \\ congruence \end{array}\right\}$ class of $s \in S$ under *R* is

$$[s]_R \stackrel{\text{def}}{=} \{s' \in S : sRs'\}.$$

Example:

The equivalence class of 3 under \equiv_2 over \mathbb{Z} is

$$[3]_{\equiv_2} = \{n \in \mathbb{Z} : n \text{ is odd}\}.$$

Partitions

A partition P of S is a set of subsets of S that is

• total
$$\left(\bigcup_{S'\in P}S'\right) = S$$

• disjoint $\forall S_1, S_2 \in P. S_1 \cap S_2 = \emptyset$

QuotientThe quotient S/R of S by $\begin{cases} equivalence \\ congruence \end{cases}$ relation R is the set of $\begin{cases} equivalence \\ congruence \end{cases}$ classes

$$S/R = \{ [s]_R : s \in S \} .$$

It is a partition

Example: The quotient \mathbb{Z}/\equiv_2 is a partition of \mathbb{Z} . The set of equivalence classes

$$\{\{n \in \mathbb{Z} : n \text{ is odd}\}, \{n \in \mathbb{Z} : n \text{ is even}\}\}$$

Note duality between relations and classes

Refinements

Two binary relations R_1 and R_2 over set *S*. R_1 is refinement of R_2 , $R_1 < R_2$, if

 $\forall s_1, s_2 \in S. \ s_1R_1s_2 \ \rightarrow \ s_1R_2s_2 \ .$

 R_1 refines R_2 .

Examples:

- ► For $S = \{a, b\}$, $R_1 : \{aR_1b\}$ $R_2 : \{aR_2b, bR_2b\}$ Then $R_1 < R_2$
- ► For set S,

 R_1 induced by the partition $P_1: \{\{s\} : s \in S\}$

 R_2 induced by the partition $P_2: \{S\}$ Then $R_1 \prec R_2$.

• For set \mathbb{Z}

 $R_1 : \{xR_1y : x \mod 2 = y \mod 2\}$ $R_2 : \{xR_2y : x \mod 4 = y \mod 4\}$ Then $R_2 < R_1$.

Closures

Given binary relation R over S.

The equivalence closure R^E of R is the equivalence relation s.t.

- *R* refines R^E , i.e. $R < R^E$;
- for all other equivalence relations R' s.t. R < R', either $R' = R^E$ or $R^E < R'$

That is, R^E is the "smallest" equivalence relation that "covers" R.

- *aRb*, *bRc*, *dRd* $\in R^E$ since $R \subseteq R^E$;
- *aRa*, *bRb*, *cRc* $\in R^E$ by reflexivity;
- $bRa, cRb \in R^E$ by symmetry;
- $aRc \in R^{E}$ by transitivity;
- $cRa \in R^E$ by symmetry.

Hence,

 $R^{E} = \{aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd\}.$

Similarly, the congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

Congruence Closure Algorithm

Given Σ_E -formula

 $F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n$

decide if *F* is Σ_E -satisfiable.

Definition: For Σ_{E} -formula F, the subterm set S_{F} of F is the set that contains precisely the subterms of F.

Example: The subterm set of

$$F: f(a,b) = a \land f(f(a,b),b) \neq a$$

is

$$S_F = \{a, b, f(a,b), f(f(a,b),b)\}.$$

The Algorithm

Given Σ_E -formula F

$$F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n$$

with subterm set S_F , F is T_E -satisfiable iff there exists a congruence relation ~ over S_F such that

- for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- for each $i \in \{m + 1, ..., n\}$, $s_i \not \sim t_i$.

Such congruence relation ~ defines T_E -interpretation $I : (D_I, \alpha_I)$ of F. D_I consists of $|S_F/ \sim |$ elements, one for each congruence class of S_F under ~.

Instead of writing $I \models F$ for this T_E -interpretation, we abbreviate $\sim \models F$

The goal of the algorithm is to construct the congruence relation of S_F , or to prove that no congruence relation exists.

$$F: \underbrace{s_1 = t_1 \land \dots \land s_m = t_m}_{\text{generate congruence closure}} \land \underbrace{s_{m+1} \neq t_{m+1} \land \dots \land s_n \neq t_n}_{\text{search for contradiction}}$$

The algorithm performs the following steps:

1. Construct the congruence closure ~ of

$$\{s_1 = t_1, \ldots, s_m = t_m\}$$

over the subterm set S_F. Then

$$\sim \models s_1 = t_1 \land \cdots \land s_m = t_m$$
.

- 2. If for any $i \in \{m + 1, ..., n\}$, $s_i \sim t_i$, return unsatisfiable.
- 3. Otherwise, $\sim \models F$, so return satisfiable.

How do we actually construct the congruence closure in Step 1?

Initially, begin with the finest congruence relation \sim_{0} given by the partition

 $\left\{\left\{s\right\} \;:\; s\in S_F\right\}$.

That is, let each term of S_F be its own congruence class. Then, for each $i \in \{1, ..., m\}$, impose $s_i = t_i$ by merging the congruence classes

 $[s_i]_{\sim_{i-1}}$ and $[t_i]_{\sim_{i-1}}$

to form a new congruence relation \sim_i . To accomplish this merging,

- form the union of $[s_i]_{\sim_{i-1}}$ and $[t_i]_{\sim_{i-1}}$
- propagate any new congruences that arise within this union.

The new relation \sim_i is a congruence relation in which $s_i \sim t_i$.