

Lecture 30

Martin Zimmermann

Plan for today

- Deductive verification
 - Quantifier Elimination

Algorithm for elimination of all quantifiers of formula F until quantifier-free formula G that is equivalent to F remains Note: Could be enough to require that F is equisatisfiable to F', that is F is satisfiable iff F' is satisfiable

A theory *T* admits quantifier elimination if there is an algorithm that given Σ -formula *F* returns a quantifier-free Σ -formula *G* that is *T*-equivalent to *F*.

Example

```
    For Σ<sub>Q</sub>-formula
    F: ∃x. 2x = y,
    quantifier-free T<sub>Q</sub>-equivalent Σ<sub>Q</sub>-formula is
    G: ⊤
```

• For $\Sigma_{\mathbb{Z}}$ -formula

F: $\exists x. 2x = y$, there is no quantifier-free $T_{\mathbb{Z}}$ -equivalent $\Sigma_{\mathbb{Z}}$ -formula.

Let T₂ be T₂ with divisibility predicates |.
 For Σ₂-formula
 F: ∃x. 2x = y,
 a quantifier-free T₂-equivalent Σ₂-formula is
 G: 2 | y.

In developing a QE algorithm for theory *T*, we need only consider formulae of the form

 $\exists x. F$ for quantifier-free F

Example: For Σ -formula

$$G_{1}: \exists x. \forall y. \underbrace{\exists z. F_{1}[x, y, z]}_{F_{2}[x, y]}$$

$$G_{2}: \exists x. \forall y. F_{2}[x, y]$$

$$G_{3}: \exists x. \neg \underbrace{\exists y. \neg F_{2}[x, y]}_{F_{3}[x]}$$

$$G_{4}: \underbrace{\exists x. \neg F_{3}[x]}_{F_{4}}$$

$$G_{5}: F_{4}$$

 G_5 is quantifier-free and T-equivalent to G_1

Quantifier Elimination for $T_{\mathbb{Z}}$

$$\Sigma_{\mathbb{Z}}: \{\ldots, -2, -1, 0, 1, 2, \ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots, +, -, =, <\}$$

Lemma:

Given quantifier-free $\Sigma_{\mathbb{Z}}$ -formula *F* s.t. free(*F*) = {*y*}. *F* represents the set of integers

 $S: \{n \in \mathbb{Z} : F\{y \mapsto n\} \text{ is } T_{\mathbb{Z}}\text{-valid}\}.$

Either $S \cap \mathbb{Z}^+$ or $\mathbb{Z}^+ \setminus S$ is finite. where \mathbb{Z}^+ is the set of positive integers

Example: $\Sigma_{\mathbb{Z}}$ -formula $F : \exists x. 2x = y$

S: even integers

 $S \cap \mathbb{Z}^+$: positive even integers — infinite

 $\mathbb{Z}^+ \smallsetminus S$: positive odd integers — infinite

Therefore, by the lemma, there is no quantifier-free $T_{\mathbb{Z}}$ -formula that is $T_{\mathbb{Z}}$ -equivalent to F.

Thus, $T_{\mathbb{Z}}$ does not admit QE.

Augmented theory $\widehat{T}_{\mathbb{Z}}$

 $\widehat{\Sigma_{\mathbb{Z}}}; \Sigma_{\mathbb{Z}}$ with countable number of unary divisibility predicates

 $k \mid \cdot \quad \text{for } k \in \mathbb{Z}^+$

Intended interpretations:

k | x holds iff k divides x without any remainder

Example:

 $x > 1 \land y > 1 \land 2 | x + y$ is satisfiable (choose x = 2, y = 2). $\neg(2 | x) \land 4 | x$

is not satisfiable.

Axioms of $\widehat{\mathcal{T}}_{\mathbb{Z}}$: axioms of $\mathcal{T}_{\mathbb{Z}}$ with additional countable set of axioms

$$\forall x. k \mid x \iff \exists y. x = ky \text{ for } k \in \mathbb{Z}^+$$

$\widehat{\mathcal{T}_{\mathbb{Z}}}$ admits QE (Cooper's method)

Algorithm: Given $\widehat{\Sigma_{\mathbb{Z}}}$ -formula $\exists x. F[x]$, where F is quantifier-free, construct quantifier-free $\widehat{\Sigma_{\mathbb{Z}}}$ -formula that is equivalent to $\exists x. F[x]$.

- 1. Put F[x] into Negation Normal Form (NNF).
- 2. Normalize literals: $s < t, k | t, \text{ or } \neg(k | t)$
- 3. Put x in s < t on one side: hx < t or s < hx
- 4. Replace hx with x' without a factor
- 5. Replace F[x'] by $\bigvee F[j]$ for finitely many *j*.

Step 1: NNF

Put F[x] into NNF $F_1[x]$, that is, $\exists x. F_1[x]$ has negations only in literals (only \land, \lor) and $\widehat{\mathcal{T}}_{\mathbb{Z}}$ -equivalent to $\exists x. F[x]$

To transform F to equivalent F' in NNF use recursively the following template equivalences (left-to-right):

$$\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \bot \quad \neg \bot \Leftrightarrow \top$$
$$\neg (F_{1} \land F_{2}) \Leftrightarrow \neg F_{1} \lor \neg F_{2}$$
$$\neg (F_{1} \lor F_{2}) \Leftrightarrow \neg F_{1} \land \neg F_{2}$$
$$P_{1} \Rightarrow F_{2} \Leftrightarrow \neg F_{1} \land \neg F_{2}$$
$$P_{1} \Rightarrow F_{2} \Leftrightarrow \neg F_{1} \lor F_{2}$$
$$P_{1} \leftrightarrow F_{2} \Leftrightarrow (F_{1} \rightarrow F_{2}) \land (F_{2} \rightarrow F_{1})$$

Step 2: Normalize literals

Normalize literals: $s < t, k | t, \text{ or } \neg(k | t)$

Replace (left to right)

$$s = t \iff s < t + 1 \land t < s + 1$$

$$\neg(s = t) \iff s < t \lor t < s$$

$$\neg(s < t) \iff t < s + 1$$

The output $\exists x. F_2[x]$ contains only literals of form

$$s < t$$
, $k \mid t$, or $\neg(k \mid t)$,

where *s*, *t* are $\widehat{T}_{\mathbb{Z}}$ -terms and $k \in \mathbb{Z}^+$.

Put x in s < t on one side: hx < t or s < hx

Collect terms containing x so that literals have the form

$$hx < t$$
, $t < hx$, $k \mid hx + t$, or $\neg(k \mid hx + t)$,

where *t* is a term and $h, k \in \mathbb{Z}^+$. The output is the formula $\exists x. F_3[x]$, which is $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x. F[x]$.

Step 4: Eliminate coefficients

Replace hx with x' without a factor

Let

 $\delta' = \operatorname{lcm}\{h : h \text{ is a coefficient of } x \text{ in } F_3[x]\},\$

where lcm is the least common multiple. Multiply atoms in $F_3[x]$ by constants so that δ' is the coefficient of x everywhere:

δ'
δ'
δ'
δ'

The result $\exists x. F'_3[x]$, in which all occurrences of x in $F'_3[x]$ are in terms $\delta' x$.

Replace $\delta' x$ terms in F'_3 with a fresh variable x' to form $F''_3 : F_3 \{ \delta' x \mapsto x' \}$

Finally, construct $\exists x'. \underbrace{F''_3[x'] \land \delta' \mid x'}_{F_4[x']}$

 $\exists x'.F_4[x']$ is equivalent to $\exists x.F[x]$ and each literal of $F_4[x']$ has one of the forms:

(A)
$$x' < a$$

(B) $b < x'$
(C) $h | x' + c$
(D) $\neg (k | x' + d)$

where *a*, *b*, *c*, *d* are terms that do not contain *x*, and *h*, *k* $\in \mathbb{Z}^+$.

Step 5: Eliminate x'Replace F[x'] by $\lor F[j]$ for finitely many j.

1. Construct

left infinite projection $F_{-\infty}[x']$ of $F_4[x']$ by (A) replacing literals x' < a by \top (B) replacing literals b < x' by \perp

idea: very small numbers satisfy (A) literals but not (B) literals

$$\delta = \operatorname{Icm} \left\{ \begin{array}{l} h \text{ of (C) literals } h \mid x' + c \\ k \text{ of (D) literals } \neg(k \mid x' + d) \end{array} \right\}$$

and B be the set of b terms appearing in (B) literals. Construct

$$F_5: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{b \in B} F_4[b+j].$$

 F_5 is quantifier-free and $\widehat{T}_{\mathbb{Z}}$ -equivalent to F.

Intuition of Step 5

Property (Periodicity)

```
if k \mid \delta
then k \mid n iff k \mid n + \lambda \delta for all \lambda \in \mathbb{Z}
That is, k \mid c annot distinguish between k \mid n and k \mid n + \lambda \delta.
```

By the choice of δ (lcm of the *h*'s and *k*'s) — no | literal in F_5 can distinguish between *n* and $n + \delta$.

$$F_5: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{b \in B} F_4[b+j]$$

Intuition of Step 5

left disjunct $\bigvee_{j=1}^{\delta} F_{-\infty}[j]$:

Contains only | literals

Asserts: no least $n \in \mathbb{Z}$ s.t. F[n].

If there exists *n* satisfying $F_{-\infty}$, then every $n - \lambda \delta$, for $\lambda \in \mathbb{Z}^+$, also satisfies $F_{-\infty}$

```
right disjunct \bigvee_{j=1}^{\delta} \bigvee_{b \in B} F_4[b+j]:
```

If $n \in \mathbb{Z}$ is s.t. F[n],

let b^* be the largest b in (B) such that b < n is satisfied

then

 $\exists j (1 \leq j \leq \delta). b^* + j \leq n \land F[b^* + j]$

In other words,

if there is a solution,

then one must already appear in δ interval to the right of some b

Improvement: Symmetric Elimination

```
In Step 5, if there are fewer
(A) literals x' < a
than
(B) literals b < x'.
```

```
Construct the right infinite projection F_{+\infty}[x'] from F_4[x'] by
replacing
each (A) literal x' < a by \bot
and
```

```
each (B) literal b < x' by \top.
```

Then right elimination.

$$F_5: \bigvee_{j=1}^{\delta} F_{+\infty}[-j] \vee \bigvee_{j=1}^{\delta} \bigvee_{a \in A} F_4[a-j].$$

Improvement: Eliminating Blocks of Quantifiers

 $\exists x_1. \cdots \exists x_n. F[x_1, \ldots, x_n]$

where F quantifier-free.

Eliminating x_n (left elimination) produces

$$G_1: \quad \exists x_1. \cdots \exists x_{n-1}. \bigvee_{j=1}^{\circ} F_{-\infty}[x_1, \dots, x_{n-1}, j] \lor$$
$$\bigvee_{j=1}^{\delta} \bigvee_{b \in B} F_4[x_1, \dots, x_{n-1}, b+j]$$

which is equivalent to

$$G_{2}: \bigvee_{\substack{j=1\\ \delta}}^{\circ} \exists x_{1}...\exists x_{n-1}.F_{-\infty}[x_{1},...,x_{n-1},j] \lor$$
$$\bigvee_{\substack{j=1\\ b\in B}}^{\circ} \exists x_{1}...\exists x_{n-1}.F_{4}[x_{1},...,x_{n-1},b+j]$$

Treat *j* as a free variable and examine only 1 + |B| formulae

►
$$\exists x_1 \dots \exists x_{n-1}, F_{-\infty}[x_1, \dots, x_{n-1}, j]$$

► $\exists x_1, \dots \exists x_{n-1}, F_4[x_1, \dots, x_{n-1}, b+j]$ for each $b \in B$