
Veri�cation

Lecture 30

Martin Zimmermann



Plan for today

▸ Deductive veri�cation
▸ Quanti�er Elimination

2



Quanti�er Elimination (QE)

Algorithm for elimination of all quanti�ers of formula F until

quanti�er-free formula G that is equivalent to F remains

Note: Could be enough to require that F is equisatis�able to F′,

that is F is satis�able i� F′ is satis�able

A theory T admits quanti�er elimination if there is an algorithm that

given Σ-formula F returns a quanti�er-free Σ-formula G that is

T-equivalent to F.

3



Example

▸ For ΣQ-formula

F ∶ ∃x. 2x = y,

quanti�er-free TQ-equivalent ΣQ-formula is

G ∶ ⊺

▸ For ΣZ-formula

F ∶ ∃x. 2x = y,

there is no quanti�er-free TZ-equivalent ΣZ-formula.

▸ Let T
Ẑ
be TZ with divisibility predicates ∣.

For Σ
Ẑ
-formula

F ∶ ∃x. 2x = y,

a quanti�er-free T
Ẑ
-equivalent Σ

Ẑ
-formula is

G ∶ 2 ∣ y.

4



In developing a QE algorithm for theory T , we need only consider

formulae of the form

∃x. F
for quanti�er-free F

Example: For Σ-formula

G1 ∶ ∃x. ∀y. ∃z. F1[x, y, z]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F2[x,y]

G2∶ ∃x. ∀y. F2[x, y]
G3∶ ∃x. ¬∃y. ¬F2[x, y]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F3[x]

G4∶ ∃x. ¬F3[x]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F4

G5∶ F4

G5 is quanti�er-free and T-equivalent to G1 5



Quanti�er Elimination for TZ
ΣZ ∶ {. . . ,−2,−1, 0, 1, 2, . . . ,−3⋅,−2⋅, 2⋅, 3⋅, . . . , +, −, =, <}
Lemma:

Given quanti�er-free ΣZ-formula F s.t. free(F) = {y}.
F represents the set of integers

S ∶ {n ∈ Z ∶ F{y ↦ n} is TZ-valid} .
Either S ∩Z+ or Z+ ∖ S is �nite.

where Z+ is the set of positive integers

Example: ΣZ-formula F ∶ ∃x. 2x = y

S: even integers

S ∩Z+: positive even integers— in�nite

Z+ ∖ S: positive odd integers— in�nite

Therefore, by the lemma, there is no quanti�er-free TZ-formula that

is TZ-equivalent to F.

Thus, TZ does not admit QE. 6



Augmented theory T̂Z

Σ̂Z: ΣZ with countable number of unary divisibility predicates

k ∣ ⋅ for k ∈ Z+

Intended interpretations:

k ∣ x holds i� k divides x without any remainder

Example:

x > 1 ∧ y > 1 ∧ 2 ∣ x + y

is satis�able (choose x = 2, y = 2).

¬(2 ∣ x) ∧ 4 ∣ x
is not satis�able.

Axioms of T̂Z: axioms of TZ with additional countable set of axioms

∀x. k ∣ x ↔ ∃y. x = ky for k ∈ Z+

7



T̂Z admits QE (Cooper’s method)

Algorithm: Given Σ̂Z-formula ∃x. F[x], where F is quanti�er-free,
construct quanti�er-free Σ̂Z-formula that is equivalent to ∃x. F[x].
1. Put F[x] into Negation Normal Form (NNF).

2. Normalize literals: s < t, k∣t, or ¬(k∣t)
3. Put x in s < t on one side: hx < t or s < hx

4. Replace hx with x′ without a factor

5. Replace F[x′] by⋁ F[j] for �nitely many j.

8



Step 1: NNF

Put F[x] into NNF F1[x], that is,∃x. F1[x] has negations only in literals (only ∧, ∨)
and T̂Z-equivalent to ∃x. F[x]

To transform F to equivalent F′ in NNF use recursively

the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬⊺ ⇔ � ¬� ⇔ ⊺
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2
¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2 }De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

9



Step 2: Normalize literals

Normalize literals: s < t, k∣t, or ¬(k∣t)
Replace (left to right)

s = t ⇔ s < t + 1 ∧ t < s + 1¬(s = t) ⇔ s < t ∨ t < s¬(s < t) ⇔ t < s + 1

The output ∃x. F2[x] contains only literals of form
s < t , k ∣ t , or ¬(k ∣ t) ,

where s, t are T̂Z-terms and k ∈ Z+.

10



Step 3: Put x on one side

Put x in s < t on one side: hx < t or s < hx

Collect terms containing x so that literals have the form

hx < t , t < hx , k ∣ hx + t , or ¬(k ∣ hx + t) ,
where t is a term and h, k ∈ Z+. The output is the formula ∃x. F3[x],
which is T̂Z-equivalent to ∃x. F[x].

11



Step 4: Eliminate coe�cients

Replace hx with x′ without a factor

Let

δ
′ = lcm{h ∶ h is a coe�cient of x in F3[x]} ,

where lcm is the least commonmultiple. Multiply atoms in F3[x] by
constants so that δ′ is the coe�cient of x everywhere:

hx < t ⇔ δ
′x < h′t where h′h = δ

′

t < hx ⇔ h′t < δ
′x where h′h = δ

′

k ∣ hx + t ⇔ h′k ∣ δ′x + h′t where h′h = δ
′

¬(k ∣ hx + t) ⇔ ¬(h′k ∣ δ′x + h′t) where h′h = δ
′

The result ∃x. F′3[x], in which all occurrences of x in F′3[x] are in
terms δ′x.

Replace δ′x terms in F′3 with a fresh variable x′ to form

F′′3 ∶ F3{δ′x ↦ x′}
12



Finally, construct

∃x′ . F′′3 [x′] ∧ δ
′ ∣ x′´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F4[x′]

∃x′ .F4[x′] is equivalent to ∃x. F[x] and each literal of F4[x′] has one
of the forms:

(A) x′ < a

(B) b < x′

(C) h ∣ x′ + c

(D) ¬(k ∣ x′ + d)
where a, b, c, d are terms that do not contain x, and h, k ∈ Z+.

13



Step 5: Eliminate x′
Replace F[x′] by⋁ F[j] for �nitely many j.

1. Construct

left in�nite projection F−∞[x′]
of F4[x′] by
(A) replacing literals x′ < a by ⊺
(B) replacing literals b < x′ by �
idea: very small numbers satisfy (A) literals but not (B) literals

2. Let

δ = lcm{ h of (C) literals h ∣ x′ + c

k of (D) literals ¬(k ∣ x′ + d) }
and B be the set of b terms appearing in (B) literals. Construct

F5 ∶ δ⋁
j=1

F−∞[j] ∨ δ⋁
j=1

⋁
b∈B

F4[b + j] .
F5 is quanti�er-free and T̂Z-equivalent to F. 14



Intuition of Step 5

Property (Periodicity)

if k ∣ δ
then k ∣ n i� k ∣ n + λδ for all λ ∈ Z

That is, k ∣⋅ cannot distinguish between k ∣ n and k ∣ n + λδ.

By the choice of δ (lcm of the h’s and k’s) — no ∣ literal in F5 can

distinguish between n and n + δ.

F5 ∶ δ⋁
j=1

F−∞[j] ∨ δ⋁
j=1

⋁
b∈B

F4[b + j]

15



Intuition of Step 5

left disjunct ⋁δ

j=1 F−∞[j] :
Contains only ∣ literals
Asserts: no least n ∈ Z s.t. F[n].
If there exists n satisfying F−∞,

then every n − λδ, for λ ∈ Z+, also satis�es F−∞

right disjunct⋁δ

j=1⋁b∈B F4[b + j] :
If n ∈ Z is s.t. F[n],
let b∗ be the largest b in (B) such that b < n is satis�ed

then∃j(1 ≤ j ≤ δ). b∗ + j ≤ n ∧ F[b∗ + j]
In other words,

if there is a solution,

then one must already appear in δ interval to the right of some b
16



Improvement: Symmetric Elimination

In Step 5, if there are fewer

(A) literals x′ < a

than

(B) literals b < x′.

Construct the right in�nite projection F+∞[x′] from F4[x′] by
replacing

each (A) literal x′ < a by �
and

each (B) literal b < x′ by ⊺.
Then right elimination.

F5 ∶ δ⋁
j=1

F+∞[−j] ∨ δ⋁
j=1

⋁
a∈A

F4[a − j] .
17



Improvement: Eliminating Blocks of Quanti�ers

∃x1 .⋯∃xn . F[x1 , . . . , xn]
where F quanti�er-free.

Eliminating xn (left elimination) produces

G1 ∶ ∃x1 .⋯∃xn−1 . δ⋁
j=1

F−∞[x1 , . . . , xn−1 , j] ∨
δ⋁
j=1

⋁
b∈B

F4[x1 , . . . , xn−1 , b + j]
which is equivalent to

G2 ∶ δ⋁
j=1

∃x1 .⋯∃xn−1 . F−∞[x1 , . . . , xn−1 , j] ∨
δ⋁
j=1

⋁
b∈B

∃x1 .⋯∃xn−1 . F4[x1 , . . . , xn−1 , b + j]
Treat j as a free variable and examine only 1 + ∣B∣ formulae

▸ ∃x1 .⋯∃xn−1 . F−∞[x1 , . . . , xn−1 , j]
▸ ∃x1 .⋯∃xn−1 . F4[x1 , . . . , xn−1 , b + j] for each b ∈ B 18


