Verification

Lecture 30

Martin Zimmermann

Plan for today

- Deductive verification
- Quantifier Elimination

Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until quantifier-free formula G that is equivalent to F remains
Note: Could be enough to require that F is equisatisfiable to F^{\prime}, that is F is satisfiable iff F^{\prime} is satisfiable

A theory T admits quantifier elimination if there is an algorithm that given Σ-formula F returns a quantifier-free Σ-formula G that is T-equivalent to F.

Example

- For $\Sigma_{\mathbb{Q}}$-formula

$$
F: \exists x .2 x=y,
$$

quantifier-free $T_{\mathbb{Q}}$-equivalent $\Sigma_{\mathbb{Q}^{-}}$-formula is

$$
G: T
$$

- For $\Sigma_{\mathbb{Z}}$-formula

$$
F: \exists x .2 x=y
$$

there is no quantifier-free $T_{\mathbb{Z}}$-equivalent $\Sigma_{\mathbb{Z}}$-formula.

- Let $T_{\widehat{\mathbb{Z}}}$ be $T_{\mathbb{Z}}$ with divisibility predicates \mid. For $\Sigma_{\widehat{\mathbb{Z}}}$-formula

$$
F: \exists x .2 x=y
$$

a quantifier-free $T_{\widehat{\mathbb{Z}}}$-equivalent $\Sigma_{\widehat{\mathbb{Z}}}$-formula is $G: 2 \mid y$.

In developing a QE algorithm for theory T, we need only consider formulae of the form

$$
\exists x . F
$$

for quantifier-free F
Example: For Σ-formula

$$
\begin{aligned}
& G_{1}: \exists x . \forall y . \underbrace{\exists z . F_{1}[x, y, z]}_{F_{2}[x, y]} \\
& G_{2}: \exists x . \forall y . F_{2}[x, y] \\
& G_{3}: \exists x . \neg \underbrace{\exists y \cdot \neg F_{2}[x, y]}_{F_{3}[x]} \\
& G_{4}: \underbrace{\exists x . \neg F_{3}[x]}_{F_{4}} \\
& G_{5}: F_{4}
\end{aligned}
$$

Quantifier Elimination for $T_{\mathbb{Z}}$

$$
\Sigma_{\mathbb{Z}}:\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots,+,-,=,<\}
$$

Lemma:
Given quantifier-free $\Sigma_{\mathbb{Z}}$-formula F s.t. free $(F)=\{y\}$.
F represents the set of integers

$$
S:\left\{n \in \mathbb{Z}: F\{y \mapsto n\} \text { is } T_{\mathbb{Z}} \text {-valid }\right\} .
$$

Either $S \cap \mathbb{Z}^{+}$or $\mathbb{Z}^{+} \backslash S$ is finite. where \mathbb{Z}^{+}is the set of positive integers

Example: $\Sigma_{\mathbb{Z}}$-formula $\quad F: \exists x .2 x=y$
S : even integers
$S \cap \mathbb{Z}^{+}$: positive even integers - infinite $\mathbb{Z}^{+} \backslash S$: positive odd integers - infinite
Therefore, by the lemma, there is no quantifier-free $T_{\mathbb{Z}}$-formula that is $T_{\mathbb{Z}}$-equivalent to F.
Thus, $T_{\mathbb{Z}}$ does not admit QE.

Augmented theory $\widehat{T_{\mathbb{Z}}}$

$\widehat{\Sigma_{\mathbb{Z}}}: \Sigma_{\mathbb{Z}}$ with countable number of unary divisibility predicates
$k \mid \cdot \quad$ for $k \in \mathbb{Z}^{+}$
Intended interpretations:
$k \mid x$ holds iff k divides x without any remainder
Example:

$$
x>1 \wedge y>1 \wedge 2 \mid x+y
$$

is satisfiable (choose $x=2, y=2$).

$$
\neg(2 \mid x) \wedge 4 \mid x
$$

is not satisfiable.
Axioms of $\widehat{T_{\mathbb{Z}}}$: axioms of $T_{\mathbb{Z}}$ with additional countable set of axioms

$$
\forall x . k \mid x \leftrightarrow \exists y . x=k y \quad \text { for } k \in \mathbb{Z}^{+}
$$

$\widehat{T_{\mathbb{Z}}}$ admits QE (Cooper's method)

Algorithm: Given $\widehat{\Sigma_{\mathbb{Z}}}$-formula $\exists x . F[x]$, where F is quantifier-free, construct quantifier-free $\widehat{\Sigma_{\mathbb{Z}}}$-formula that is equivalent to $\exists x . F[x]$.

1. Put $F[x]$ into Negation Normal Form (NNF).
2. Normalize literals: $s<t, k \mid t$, or $\neg(k \mid t)$
3. Put x in $s<t$ on one side: $h x<t$ or $s<h x$
4. Replace $h x$ with x^{\prime} without a factor
5. Replace $F\left[x^{\prime}\right]$ by $\vee F[j]$ for finitely many j.

Step 1: NNF

Put $F[x]$ into NNF $F_{1}[x]$, that is, $\exists x . F_{1}[x]$ has negations only in literals (only \wedge, v) and $\widehat{T_{\mathbb{Z}}}$-equivalent to $\exists x . F[x]$

To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law }
$$

Step 2: Normalize literals

Normalize literals: $s<t, k \mid t$, or $\neg(k \mid t)$
Replace (left to right)

$$
\begin{aligned}
s=t & \Leftrightarrow s<t+1 \wedge t<s+1 \\
\neg(s=t) & \Leftrightarrow s<t \vee t<s \\
\neg(s<t) & \Leftrightarrow t<s+1
\end{aligned}
$$

The output $\exists x . F_{2}[x]$ contains only literals of form

$$
s<t, \quad k \mid t, \quad \text { or } \quad \neg(k \mid t),
$$

where s, t are $\widehat{T_{\mathbb{Z}}}$-terms and $k \in \mathbb{Z}^{+}$.

Step 3: Put x on one side

Put x in $s<t$ on one side: $h x<t$ or $s<h x$
Collect terms containing x so that literals have the form

$$
h x<t, \quad t<h x, \quad k \mid h x+t, \quad \text { or } \quad \neg(k \mid h x+t),
$$

where t is a term and $h, k \in \mathbb{Z}^{+}$. The output is the formula $\exists x . F_{3}[x]$,

Step 4: Eliminate coefficients

Replace $h x$ with x^{\prime} without a factor

Let

$$
\delta^{\prime}=\operatorname{lcm}\left\{h: h \text { is a coefficient of } x \text { in } F_{3}[x]\right\},
$$

where Icm is the least common multiple. Multiply atoms in $F_{3}[x]$ by constants so that δ^{\prime} is the coefficient of x everywhere:

$$
\begin{array}{rlrl}
h x<t & \Leftrightarrow \delta^{\prime} x<h^{\prime} t & \text { where } \quad h^{\prime} h=\delta^{\prime} \\
t<h x & \Leftrightarrow h^{\prime} t<\delta^{\prime} x & & \text { where }
\end{array} h^{\prime} h=\delta^{\prime} .
$$

The result $\exists x . F_{3}^{\prime}[x]$, in which all occurrences of x in $F_{3}^{\prime}[x]$ are in terms $\delta^{\prime} x$.

Replace $\delta^{\prime} x$ terms in F_{3}^{\prime} with a fresh variable x^{\prime} to form

$$
F_{3}^{\prime \prime}: F_{3}\left\{\delta^{\prime} x \mapsto x^{\prime}\right\}
$$

Finally, construct

$$
\exists x^{\prime} \cdot \underbrace{F_{3}^{\prime \prime}\left[x^{\prime}\right] \wedge \delta^{\prime} \mid x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

$\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ is equivalent to $\exists x . F[x]$ and each literal of $F_{4}\left[x^{\prime}\right]$ has one of the forms:

$$
\begin{aligned}
& \text { (A) } x^{\prime}<a \\
& \text { (B) } b<x^{\prime} \\
& \text { (C) } h \mid x^{\prime}+c \\
& \text { (D) } \neg\left(k \mid x^{\prime}+d\right)
\end{aligned}
$$

where a, b, c, d are terms that do not contain x, and $h, k \in \mathbb{Z}^{+}$.

Step 5: Eliminate x^{\prime}

Replace $F\left[x^{\prime}\right]$ by $\vee F[j]$ for finitely many j.

1. Construct
left infinite projection $F_{-\infty}\left[x^{\prime}\right]$ of $F_{4}\left[x^{\prime}\right]$ by
(A) replacing literals $x^{\prime}<a$ by \top
(B) replacing literals $b<x^{\prime}$ by \perp
idea: very small numbers satisfy (A) literals but not (B) literals
2. Let

$$
\delta=\operatorname{lcm}\left\{\begin{array}{l}
h \text { of }(C) \text { literals } h \mid x^{\prime}+c \\
k \text { of }(D) \text { literals } \neg\left(k \mid x^{\prime}+d\right)
\end{array}\right\}
$$

and B be the set of b terms appearing in (B) literals. Construct

$$
F_{5}: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{b \in B} F_{4}[b+j]
$$

F_{5} is quantifier-free and $\widehat{T_{\mathbb{Z}}}$-equivalent to F.

Intuition of Step 5

Property (Periodicity)

if $k \mid \delta$
then $k \mid n$ iff $k \mid n+\lambda \delta$ for all $\lambda \in \mathbb{Z}$
That is, $k \mid \cdot$ cannot distinguish between $k \mid n$ and $k \mid n+\lambda \delta$.
By the choice of δ (lcm of the h 's and $\left.k^{\prime} \mathrm{s}\right)$ - no \mid literal in F_{5} can distinguish between n and $n+\delta$.

$$
F_{5}: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{b \in B} F_{4}[b+j]
$$

Intuition of Step 5

left disjunct $\bigvee_{j=1}^{\delta} F_{-\infty}[j]$:
Contains only | literals
Asserts: no least $n \in \mathbb{Z}$ s.t. $F[n]$.
If there exists n satisfying $F_{-\infty}$, then every $n-\lambda \delta$, for $\lambda \in \mathbb{Z}^{+}$, also satisfies $F_{-\infty}$
right disjunct $\bigvee_{j=1}^{\delta} \bigvee_{b \in B} F_{4}[b+j]$:
If $n \in \mathbb{Z}$ is s.t. $F[n]$,
let b^{*} be the largest b in (B) such that $b<n$ is satisfied
then

$$
\exists j(1 \leq j \leq \delta) \cdot b^{*}+j \leq n \wedge F\left[b^{*}+j\right]
$$

In other words,
if there is a solution,
then one must already appear in δ interval to the right of some b

Improvement: Symmetric Elimination

In Step 5, if there are fewer
(A) literals $x^{\prime}<a$
than
(B) literals $b<x^{\prime}$.

Construct the right infinite projection $F_{+\infty}\left[x^{\prime}\right]$ from $F_{4}\left[x^{\prime}\right]$ by replacing
each (A) literal $x^{\prime}<a$ by \perp
and
each (B) literal $b<x^{\prime}$ by T.
Then right elimination.

$$
F_{5}: \bigvee_{j=1}^{\delta} F_{+\infty}[-j] \vee \bigvee_{j=1}^{\delta} \bigvee_{a \in A} F_{4}[a-j]
$$

Improvement: Eliminating Blocks of Quantifiers

$$
\exists x_{1} \cdot \cdots \exists x_{n} . F\left[x_{1}, \ldots, x_{n}\right]
$$

where F quantifier-free.
Eliminating x_{n} (left elimination) produces

$$
\begin{aligned}
G_{1}: \quad & \exists x_{1}, \cdots \exists x_{n-1} \cdot \bigvee_{j=1}^{\delta} F_{-\infty}\left[x_{1}, \ldots, x_{n-1}, j\right] \vee \\
& \bigvee_{j=1}^{\delta} \bigvee_{b \in B} F_{4}\left[x_{1}, \ldots, x_{n-1}, b+j\right]
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
G_{2}: & \bigvee_{j=1}^{\delta} \exists x_{1}, \cdots \exists x_{n-1} \cdot F_{-\infty}\left[x_{1}, \ldots, x_{n-1}, j\right] \vee \\
& \bigvee_{j=1}^{\delta} \bigvee_{b \in B} \exists x_{1} \cdot \cdots \exists x_{n-1} \cdot F_{4}\left[x_{1}, \ldots, x_{n-1}, b+j\right]
\end{aligned}
$$

Treat j as a free variable and examine only $1+|B|$ formulae

- $\exists x_{1}, \cdots \exists x_{n-1} . F_{-\infty}\left[x_{1}, \ldots, x_{n-1}, j\right]$
- $\exists x_{1}, \cdots \exists x_{n-1} . F_{4}\left[x_{1}, \ldots, x_{n-1}, b+j\right]$ for each $b \in B$

