
Veri�cation

Lecture 29

Martin Zimmermann

1



Plan for today

▸ Deductive veri�cation
▸ First-order theories
▸ Quanti�er Elimination
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Review: First-Order Theories

First-order theory T de�ned by

▸ Signature Σ - set of constant, function, and predicate symbols

▸ Set of axioms AT - set of closed (no free variables) Σ-formulae

Σ-formula constructed of constants, functions, and predicate

symbols from Σ, and variables, logical connectives, and quanti�ers

The symbols of Σ are just symbols without prior meaning— the

axioms of T provide their meaning

A Σ-formula F is valid in theory T (T-valid, also T ⊧ F),

if every interpretation I that satis�es the axioms of T ,

i.e. I ⊧ A for every A ∈ AT (T-interpretation)
also satis�es F,

i.e. I ⊧ F
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A Σ-formula F is satis�able in T (T-satis�able), if there is a

T-interpretation (i.e. satis�es all the axioms of T ) that satis�es F

Two formulae F1 and F2 are equivalent in T (T-equivalent), if

T ⊧ F1 ↔ F2,

i.e. if for every T-interpretation I, I ⊧ F1 i� I ⊧ F2

A fragment of theory T is a syntactically-restricted subset of

formulae of the theory.

Example: quanti�er-free segment of theory T is the set of

quanti�er-free formulae in T .

A theory T is decidable if T ⊧ F (T-validity) is decidable for every

Σ-formula F,

i.e., there is an algorithm that always terminate with “yes”,

if F is T-valid, and “no”, if F is T-invalid.

A fragment of T is decidable if T ⊧ F is decidable for every

Σ-formula F in the fragment.
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Theory of Equality TE
Signature

Σ= ∶ {=, a, b, c,⋯, f , g, h,⋯, p, q, r,⋯}
consists of

▸ =, a binary predicate, interpreted by axioms.
▸ all constant, function, and predicate symbols.

Axioms of TE

1. ∀x. x = x (re�exivity)

2. ∀x, y. x = y → y = x (symmetry)

3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)

4. for each positive integer n and n-ary function symbol f ,

∀x1 , . . . , xn, y1 , . . . , yn . ⋀i xi = yi → f(x1 , . . . , xn) = f(y1 , . . . , yn)
(congruence)

5. for each positive integer n and n-ary predicate symbol p,

∀x1 , . . . , xn, y1 , . . . , yn . ⋀i xi = yi → (p(x1 , . . . , xn)↔ p(y1 , . . . , yn))
(equivalence)

Congruence and Equivalence are axiom schemata. For example,

Congruence for binary function f2 for n = 2:
∀x1 , x2 , y1 , y2 . x1 = y1 ∧ x2 = y2 → f2(x1 , x2) = f2(y1 , y2) 5



TE is undecidable.

The quanti�er-free fragment of TE is decidable.

Very e�cient algorithm.
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Natural Numbers and Integers

Natural numbers N = {0, 1, 2,⋯}
Integers Z = {⋯,−2,−1, 0, 1, 2,⋯}

Three variations:

▸ Peano arithmetic TPA: natural numbers with addition and

multiplication

▸ Presburger arithmetic TN: natural numbers with addition

▸ Theory of integers TZ: integers with +,−, >
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1. Peano Arithmetic TPA (�rst-order arithmetic)

ΣPA ∶ {0, 1, +, ⋅, =}

The axioms:

1. ∀x. ¬(x + 1 = 0) (zero)

2. ∀x, y. x + 1 = y + 1 → x = y (successor)

3. F[0] ∧ (∀x. F[x] → F[x + 1]) → ∀x. F[x] (induction)

4. ∀x. x + 0 = x (plus zero)

5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)

6. ∀x. x ⋅ 0 = 0 (times zero)

7. ∀x, y. x ⋅ (y + 1) = x ⋅ y + x (times successor)

Line 3 is an axiom schema.

Example: 3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y
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We have > and ≥ since
3x + 5 > 2y write as ∃z. z ≠ 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z. 3x + 5 = 2y + z

Example:

▸ Pythagorean Theorem is TPA-valid

∃x, y, z. x ≠ 0 ∧ y ≠ 0 ∧ z ≠ 0 ∧ xx + yy = zz

▸ Fermat’s Last Theorem is TPA-invalid (AndrewWiles, 1994)

∃n. n > 2 → ∃x, y, z. x ≠ 0 ∧ y ≠ 0 ∧ z ≠ 0 ∧ xn + yn = zn

Remark (Gödel’s �rst incompleteness theorem)

Peano arithmetic TPA does not capture true arithmetic:

There exist closed ΣPA-formulae representing valid propositions of

number theory that are not TPA-valid.

The reason: TPA actually admits nonstandard interpretations

Satis�ability and validity in TPA is undecidable.

Restricted theory – no multiplication
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2. Presburger Arithmetic TN

ΣN ∶ {0, 1, +, =} no multiplication!

Axioms TN:

1. ∀x. ¬(x + 1 = 0) (zero)

2. ∀x, y. x + 1 = y + 1 → x = y (successor)

3. F[0] ∧ (∀x. F[x] → F[x + 1]) → ∀x. F[x] (induction)

4. ∀x. x + 0 = x (plus zero)

5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)

3 is an axiom schema.

TN-satis�ability and TN-validity are decidable

(Presburger, 1929)
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3. Theory of Integers TZ

ΣZ ∶ {. . . ,−2,−1, 0, 1, 2, . . . ,−3⋅,−2⋅, 2⋅, 3⋅, . . . , +, −, =, >}
where

▸ . . . ,−2,−1, 0, 1, 2, . . . are constants

▸ . . . ,−3⋅,−2⋅, 2⋅, 3⋅, . . . are unary functions

(intended 2 ⋅ x is 2x)

▸ +,−, =, >

TZ and TN have the same expressiveness

● Every TZ-formula can be reduced to ΣN-formula.

Example: Consider the TZ-formula

F0 ∶ ∀w, x. ∃y, z. x + 2y − z − 13 > −3w + 5

Introduce two variables, vp and vn (range over the nonnegative

integers) for each variable v (range over the integers) of F0 11



F1 ∶
∀wp,wn , xp, xn . ∃yp , yn, zp, zn.

(xp − xn) + 2(yp − yn) − (zp − zn) − 13 > −3(wp −wn) + 5

Eliminate − by moving to the other side of >

F2 ∶
∀wp ,wn, xp, xn . ∃yp , yn , zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 13 + 3wn + 5

Eliminate >

F3 ∶

∀wp,wn , xp, xn. ∃yp , yn, zp, zn. ∃u.

¬(u = 0) ∧
xp + yp + yp + zn +wp +wp +wp

= xn + yn + yn + zp +wn +wn +wn + u

+1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

+1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 .

which is a TN-formula equivalent to F0. 12



● Every TN-formula can be reduced to ΣZ-formula.

Example: To decide the TN-validity of the TN-formula

∀x. ∃y. x = y + 1

decide the TZ-validity of the TZ-formula

∀x. x ≥ 0 → ∃y. y ≥ 0 ∧ x = y + 1 ,

where t1 ≥ t2 expands to t1 = t2 ∨ t1 > t2

TZ-satis�ability and TN-validity is decidable
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Rationals and Reals

Σ = {0, 1, +, −, ⋅, =, ≥}

▸ Theory of Reals TR (with multiplication)

x2 = 2 ⇒ x = ±
√
2

▸ Theory of Rationals TQ (no multiplication)

2x®
x+x

= 7 ⇒ x =
7

2

Note: Strict inequality OK

∀x, y. ∃z. x + y > z

rewrite as

∀x, y. ∃z. ¬(x + y = z) ∧ x + y ≥ z
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1. Theory of Reals TR

ΣR ∶ {0, 1, +, −, ⋅, =, ≥}
with multiplication.

Example:

∀a, b, c. b2 − 4ac ≥ 0 ↔ ∃x. ax2 + bx + c = 0

is TR-valid.

TR is decidable (Tarski, 1930)

High time complexity
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2. Theory of Rationals TQ

ΣQ ∶ {0, 1, +, −, =, ≥}
without multiplication.

Rational coe�cients are simple to express in TQ

Example: Rewrite
1

2
x +

2

3
y ≥ 4

as the ΣQ-formula

3x + 4y ≥ 24

TQ is decidable

Quanti�er-free fragment of TQ is e�ciently decidable

16



Recursive Data Structures (RDS)
1. RDS theory of LISP-like lists, Tcons

Σcons ∶ {cons, car, cdr, atom, =}

where

cons(a, b) – list constructed by concatenating a and b

car(x) – left projector of x: car(cons(a, b)) = a
cdr(x) – right projector of x: cdr(cons(a, b)) = b
atom(x) – true i� x is a single-element list

Axioms:

1. The axioms of re�exivity, symmetry, and transitivity of =

2. Congruence axioms

∀x1 , x2 , y1 , y2 . x1 = x2 ∧ y1 = y2 → cons(x1 , y1) = cons(x2 , y2)
∀x, y. x = y → car(x) = car(y)
∀x, y. x = y → cdr(x) = cdr(y)
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3. Congruence axiom for atom

∀x, y. x = y → (atom(x) ↔ atom(y))

4. ∀x, y. car(cons(x, y)) = x (left projection)

5. ∀x, y. cdr(cons(x, y)) = y (right projection)

6. ∀x. ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

7. ∀x, y. ¬atom(cons(x, y)) (atom)

Tcons is undecidable

Quanti�er-free fragment of Tcons is e�ciently decidable
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2. Lists + equality

T=cons = TE ∪ Tcons

Signature: ΣE ∪ Σcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of TE and Tcons

T=cons is undecidable

Quanti�er-free fragment of T=cons is e�ciently decidable
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Theory of Arrays

1. Theory of Arrays TA

Signature

ΣA ∶ {⋅[⋅], ⋅⟨⋅ ◁ ⋅⟩, =}
where

▸ a[i] binary function –

read array a at index i (“read(a,i)”)

▸ a⟨i◁ v⟩ ternary function –

write value v to index i of array a (“write(a,i,e)”)

Axioms

1. the axioms of (re�exivity), (symmetry), and (transitivity) of TE

2. ∀a, i, j. i = j → a[i] = a[j] (array congruence)

3. ∀a, v, i, j. i = j → a⟨i◁ v⟩[j] = v (read-over-write 1)

4. ∀a, v, i, j. i ≠ j → a⟨i◁ v⟩[j] = a[j] (read-over-write 2)
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Note: = is only de�ned for array elements

F ∶ a[i] = e → a⟨i◁ e⟩ = a

not TA-valid, but

F′ ∶ a[i] = e → ∀j. a⟨i◁ e⟩[j] = a[j] ,

is TA-valid.

TA is undecidable

Quanti�er-free fragment of TA is decidable
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2. Theory of Arrays T=A (with extensionality)

Signature and axioms of T=A are the same as TA, with one additional

axiom

∀a, b. (∀i. a[i] = b[i]) ↔ a = b (extensionality)

Example:

F ∶ a[i] = e → a⟨i◁ e⟩ = a
is T=A -valid.

T=A is undecidable

Quanti�er-free fragment of T=A is decidable
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Decidability of �rst-order theories

Theory full QFF

TE Equality no yes

TPA Peano arithmetic no no

TN Presburger arithmetic yes yes

TZ integers yes yes

TR reals yes yes

TQ rationals yes yes

Tcons lists no yes

TA arrays no yes

T=A arrays with extensionality no yes

23



Quanti�er Elimination
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Quanti�er Elimination (QE)

Algorithm for elimination of all quanti�ers of formula F until

quanti�er-free formula G that is equivalent to F remains

Note: Could be enough to require that F is equisatis�able to F′,

that is F is satis�able i� F′ is satis�able

A theory T admits quanti�er elimination if there is an algorithm that

given Σ-formula F returns a quanti�er-free Σ-formula G that is

T-equivalent to F.
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Example

▸ For ΣQ-formula

F ∶ ∃x. 2x = y,
quanti�er-free TQ-equivalent ΣQ-formula is

G ∶ ⊺

▸ For ΣZ-formula

F ∶ ∃x. 2x = y,
there is no quanti�er-free TZ-equivalent ΣZ-formula.

▸ Let T
Ẑ
be TZ with divisibility predicates ∣.

For Σ
Ẑ
-formula

F ∶ ∃x. 2x = y,
a quanti�er-free T

Ẑ
-equivalent Σ

Ẑ
-formula is

G ∶ 2 ∣ y.
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