Verification

Lecture 29

Martin Zimmermann

Plan for today

- Deductive verification
- First-order theories
- Quantifier Elimination

Review: First-Order Theories

First-order theory T defined by

- Signature Σ - set of constant, function, and predicate symbols
- Set of axioms A_{T} - set of closed (no free variables) Σ-formulae
Σ-formula constructed of constants, functions, and predicate symbols from Σ, and variables, logical connectives, and quantifiers

The symbols of Σ are just symbols without prior meaning - the axioms of T provide their meaning

A Σ-formula F is valid in theory T (T-valid, also $T \vDash F$), if every interpretation / that satisfies the axioms of T,
i.e. $I \vDash A$ for every $A \in A_{T}$ (T-interpretation)
also satisfies F,
i.e. $l \vDash F$

A Σ-formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F_{1} and F_{2} are equivalent in T (T-equivalent), if $T \vDash F_{1} \leftrightarrow F_{2}$,
i.e. if for every T-interpretation $I, I \vDash F_{1}$ iff $I \vDash F_{2}$

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: quantifier-free segment of theory T is the set of quantifier-free formulae in T.

A theory T is decidable if $T \vDash F$ (T-validity) is decidable for every Σ-formula F,
i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid.
A fragment of T is decidable if $T \vDash F$ is decidable for every Σ-formula F in the fragment.

Theory of Equality T_{E}

Signature

$$
\Sigma_{=}:\{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}
$$

consists of

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Axioms of T_{E}

1. $\forall x \cdot x=x$
2. $\forall x, y . x=y \rightarrow y=x$ (symmetry)
3. $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
(transitivity)
4. for each positive integer n and n-ary function symbol f,

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \wedge_{i} x_{i}=y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

(congruence)
5. for each positive integer n and n-ary predicate symbol p,

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \wedge_{i} x_{i}=y_{i} \rightarrow\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)
$$

(equivalence)
Congruence and Equivalence are axiom schemata. For example, Congruence for binary function f_{2} for $n=2$:

$$
\forall x_{1}, x_{2}, y_{1}, y_{2} . x_{1}=y_{1} \wedge x_{2}=y_{2} \rightarrow f_{2}\left(x_{1}, x_{2}\right)=f_{2}\left(y_{1}, y_{2}\right)
$$

T_{E} is undecidable.
The quantifier-free fragment of T_{E} is decidable. Very efficient algorithm.

Natural Numbers and Integers

```
Natural numbers \(\mathbb{N}=\{0,1,2, \cdots\}\)
Integers \(\quad \mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}\)
```

Three variations:

- Peano arithmetic $T_{\text {PA }}$: natural numbers with addition and multiplication
- Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition
- Theory of integers $T_{\mathbb{Z}}$: integers with +, -, >

1. Peano Arithmetic $T_{P A}$ (first-order arithmetic)

$$
\Sigma_{\mathrm{PA}}:\{0,1,+, \cdot,=\}
$$

The axioms:

$$
\begin{aligned}
& \text { 1. } \forall x \cdot \neg(x+1=0) \\
& \text { 2. } \forall x, y \cdot x+1=y+1 \rightarrow x=y \\
& \text { 3. } F[0] \wedge(\forall x \cdot F[x] \rightarrow F[x+1]) \rightarrow \forall x \cdot F[x] \\
& \text { 4. } \forall x \cdot x+0=x \\
& \text { 5. } \forall x, y \cdot x+(y+1)=(x+y)+1 \\
& \text { 6. } \forall x \cdot x \cdot 0=0 \\
& \text { 7. } \forall x, y \cdot x \cdot(y+1)=x \cdot y+x
\end{aligned}
$$

Line 3 is an axiom schema.
Example: $3 x+5=2 y$ can be written using $\Sigma_{\text {PA }}$ as

$$
x+x+x+1+1+1+1+1=y+y
$$

We have $>$ and \geq since

$$
\begin{array}{lll}
3 x+5>2 y & \text { write as } & \exists z \cdot z \neq 0 \wedge 3 x+5=2 y+z \\
3 x+5 \geq 2 y & \text { write as } & \exists z \cdot 3 x+5=2 y+z
\end{array}
$$

Example:

- Pythagorean Theorem is $T_{\text {PA }}$-valid

$$
\exists x, y, z . x \neq 0 \wedge y \neq 0 \wedge z \neq 0 \wedge x x+y y=z z
$$

- Fermat's Last Theorem is $T_{\text {PA }}$-invalid (Andrew Wiles, 1994)

$$
\exists n . n>2 \rightarrow \exists x, y, z . x \neq 0 \wedge y \neq 0 \wedge z \neq 0 \wedge x^{n}+y^{n}=z^{n}
$$

Remark (Gödel's first incompleteness theorem) Peano arithmetic $T_{P A}$ does not capture true arithmetic:
There exist closed $\Sigma_{P A}$-formulae representing valid propositions of number theory that are not $T_{P A}$-valid.
The reason: $T_{P A}$ actually admits nonstandard interpretations

> | Satisfiability and validity in $T_{P A}$ is undecidable. |
| :--- |
| Restricted theory - no multiplication |

2. Presburger Arithmetic $T_{\mathbb{N}}$
$\Sigma_{\mathbb{N}}:\{0,1,+,=\} \quad$ no multiplication!
Axioms $T_{\mathbb{N}}$:

$$
\begin{aligned}
& \text { 1. } \forall x \cdot \neg(x+1=0) \\
& \text { 2. } \forall x, y \cdot x+1=y+1 \rightarrow x=y \\
& \text { 3. } F[0] \wedge(\forall x \cdot F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x] \\
& \text { 4. } \forall x \cdot x+0=x \\
& \text { 5. } \forall x, y \cdot x+(y+1)=(x+y)+1
\end{aligned}
$$

3 is an axiom schema.

> | $T_{\mathbb{N}}$-satisfiability and $T_{\mathbb{N}}$-validity are decidable |
| :--- |
| (Presburger, 1929) |

3. Theory of Integers $T_{\mathbb{Z}}$

$\Sigma_{\mathbb{Z}}:\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots,+,-,=,>\}$
where

- ..., $-2,-1,0,1,2, \ldots$ are constants
- ..., $-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots$ are unary functions (intended $2 \cdot x$ is $2 x$)
- +, -, =, >

$$
T_{\mathbb{Z}} \text { and } T_{\mathbb{N}} \text { have the same expressiveness }
$$

- Every $T_{\mathbb{Z}}$-formula can be reduced to $\Sigma_{\mathbb{N}}$-formula.

Example: Consider the $T_{\mathbb{Z}}$-formula
$F_{0}: \forall w, x . \exists y, z . x+2 y-z-13>-3 w+5$
Introduce two variables, v_{p} and v_{n} (range over the nonnegative integers) for each variable v (range over the integers) of F_{0}

$$
\begin{aligned}
& F_{1}: \quad \forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n} . \\
& \quad\left(x_{p}-x_{n}\right)+2\left(y_{p}-y_{n}\right)-\left(z_{p}-z_{n}\right)-13>-3\left(w_{p}-w_{n}\right)+5
\end{aligned}
$$

Eliminate - by moving to the other side of >

$$
\begin{aligned}
& F_{2}: \quad \forall w_{p}, w_{n}, x_{p}, x_{n} \cdot \exists y_{p}, y_{n}, z_{p}, z_{n} . \\
& \quad x_{p}+2 y_{p}+z_{n}+3 w_{p}>x_{n}+2 y_{n}+z_{p}+13+3 w_{n}+5
\end{aligned}
$$

Eliminate >

$$
\begin{gathered}
\forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n} . \exists u . \\
\neg(u=0) \wedge \\
F_{3}: \quad x_{p}+y_{p}+y_{p}+z_{n}+w_{p}+w_{p}+w_{p} \\
= \\
= \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
+1+1+1+1+1+1+1+1+1+1+1+1+1+1 \\
n
\end{gathered}+1+1 .
$$

which is a $T_{\mathbb{N}}$-formula equivalent to F_{0}.

- Every $T_{\mathbb{N}}$-formula can be reduced to $\Sigma_{\mathbb{Z}}$-formula.

Example: To decide the $T_{\mathbb{N}}$-validity of the $T_{\mathbb{N}}$-formula

$$
\forall x . \exists y \cdot x=y+1
$$

decide the $T_{\mathbb{Z}}$-validity of the $T_{\mathbb{Z}}$-formula

$$
\forall x . x \geq 0 \rightarrow \exists y \cdot y \geq 0 \wedge x=y+1
$$

where $t_{1} \geq t_{2}$ expands to $t_{1}=t_{2} \vee t_{1}>t_{2}$

$$
T_{\mathbb{Z}} \text {-satisfiability and } T_{\mathbb{N}} \text {-validity is decidable }
$$

Rationals and Reals

$$
\Sigma=\{0,1,+,-, \cdot,=, \geq\}
$$

- Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$
x^{2}=2 \quad \Rightarrow \quad x= \pm \sqrt{2}
$$

- Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$
\underbrace{2 x}_{x+x}=7 \quad \Rightarrow \quad x=\frac{7}{2}
$$

Note: Strict inequality OK

$$
\forall x, y . \exists z . x+y>z
$$

rewrite as

$$
\forall x, y . \exists z . \neg(x+y=z) \wedge x+y \geq z
$$

1. Theory of Reals $T_{\mathbb{R}}$

$$
\Sigma_{\mathbb{R}}:\{0,1,+,-, \cdot,=, \geq\}
$$

with multiplication.
Example:

$$
\forall a, b, c . b^{2}-4 a c \geq 0 \leftrightarrow \exists x \cdot a x^{2}+b x+c=0
$$

is $T_{\mathbb{R}}$-valid.
$T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity
2. Theory of Rationals $T_{\mathbb{Q}}$

$$
\Sigma_{\mathbb{Q}}:\{0,1,+,-,=, \geq\}
$$

without multiplication.
Rational coefficients are simple to express in $T_{\mathbb{Q}}$
Example: Rewrite

$$
\frac{1}{2} x+\frac{2}{3} y \geq 4
$$

as the $\Sigma_{\mathbb{Q}}$-formula

$$
3 x+4 y \geq 24
$$

$T_{\mathbb{Q}}$ is decidable
Quantifier-free fragment of $T_{\mathbb{Q}}$ is efficiently decidable

Recursive Data Structures (RDS)

1. RDS theory of LISP-like lists, $T_{\text {cons }}$

$$
\Sigma_{\text {cons }}:\{\text { cons, car, cdr, atom, }=\}
$$

where
cons (a, b) - list constructed by concatenating a and b
$\operatorname{car}(x) \quad$ - left projector of $x: \operatorname{car}(\operatorname{cons}(a, b))=a$
$\operatorname{cdr}(x) \quad-$ right projector of $x: \operatorname{cdr}(\operatorname{cons}(a, b))=b$
atom (x) - true iff x is a single-element list

Axioms:

1. The axioms of reflexivity, symmetry, and transitivity of $=$
2. Congruence axioms

$$
\begin{aligned}
& \forall x_{1}, x_{2}, y_{1}, y_{2} \cdot x_{1}=x_{2} \wedge y_{1}=y_{2} \rightarrow \operatorname{cons}\left(x_{1}, y_{1}\right)=\operatorname{cons}\left(x_{2}, y_{2}\right) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{car}(x)=\operatorname{car}(y) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{cdr}(x)=\operatorname{cdr}(y)
\end{aligned}
$$

3. Congruence axiom for atom

$$
\forall x, y . x=y \rightarrow(\operatorname{atom}(x) \leftrightarrow \operatorname{atom}(y))
$$

4. $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
5. $\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$
6. $\forall x . \neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x$
7. $\forall x, y$. $\neg \operatorname{atom}(\operatorname{cons}(x, y))$
(left projection)
(right projection)
(construction)
(atom)
$T_{\text {cons }}$ is undecidable Quantifier-free fragment of $T_{\text {cons }}$ is efficiently decidable
8. Lists + equality

$$
T_{\text {cons }}^{=}=T_{\mathrm{E}} \cup T_{\text {cons }}
$$

Signature: $\quad \Sigma_{\mathrm{E}} \cup \Sigma_{\text {cons }}$
(this includes uninterpreted constants, functions, and predicates)
Axioms: union of the axioms of T_{E} and $T_{\text {cons }}$

> | $T_{\text {cons }}^{=}$is undecidable |
| :--- |
| Quantifier-free fragment of $T_{\text {cons }}^{=}$is efficiently decidable |

Theory of Arrays

1. Theory of Arrays T_{A}

Signature

$$
\Sigma_{\mathrm{A}}:\{\cdot[\cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\}
$$

where

- $a[i]$ binary function read array a at index $i\left(\right.$ "read $\left.(a, i)^{\prime}\right)$
- $a\langle i \triangleleft v\rangle$ ternary function write value v to index i of array $a($ "write (a, i, e) ")

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}
2. $\forall a, i, j . i=j \rightarrow a[i]=a[j]$
3. $\forall a, v, i, j . i=j \rightarrow a\langle i \triangleleft v\rangle[j]=v$
4. $\forall a, v, i, j . i \neq j \rightarrow a\langle i \triangleleft v\rangle[j]=a[j]$ (array congruence) (read-over-write 1) (read-over-write 2)

Note: = is only defined for array elements

$$
F: a[i]=e \rightarrow a\langle i \triangleleft e\rangle=a
$$

not T_{A}-valid, but

$$
F^{\prime}: a[i]=e \rightarrow \forall j . a\langle i \triangleleft e\rangle[j]=a[j],
$$

is T_{A}-valid.
T_{A} is undecidable
Quantifier-free fragment of T_{A} is decidable

2. Theory of Arrays $T_{\mathrm{A}}^{=}$(with extensionality)

Signature and axioms of $T_{\mathrm{A}}^{=}$are the same as T_{A}, with one additional axiom

$$
\forall a, b .(\forall i . a[i]=b[i]) \leftrightarrow a=b \quad \text { (extensionality) }
$$

Example:

$$
F: a[i]=e \rightarrow a\langle i \triangleleft e\rangle=a
$$

is $T_{\mathrm{A}}^{=}$-valid.
$T_{\mathrm{A}}^{=}$is undecidable
Quantifier-free fragment of $T_{\mathrm{A}}^{=}$is decidable

Decidability of first-order theories

Theory	full	QFF	
T_{E}	Equality	no	yes
T_{PA}	Peano arithmetic	no	no
$T_{\mathbb{N}}$	Presburger arithmetic	yes	yes
$T_{\mathbb{Z}}$	integers	yes	yes
$T_{\mathbb{R}}$	reals	yes	yes
$T_{\mathbb{Q}}$	rationals	yes	yes
$T_{\text {cons }}$	lists	no	yes
T_{A}	arrays	no	yes
$T_{\mathrm{A}}^{=}$	arrays with extensionality	no	yes

Quantifier Elimination

Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until quantifier-free formula G that is equivalent to F remains
Note: Could be enough to require that F is equisatisfiable to F^{\prime}, that is F is satisfiable iff F^{\prime} is satisfiable

A theory T admits quantifier elimination if there is an algorithm that given Σ-formula F returns a quantifier-free Σ-formula G that is T-equivalent to F.

Example

- For $\Sigma_{\mathbb{Q}}$-formula

$$
F: \exists x .2 x=y,
$$

quantifier-free $T_{\mathbb{Q}}$-equivalent $\Sigma_{\mathbb{Q}^{-}}$-formula is

$$
G: T
$$

- For $\Sigma_{\mathbb{Z}}$-formula

$$
F: \exists x .2 x=y
$$

there is no quantifier-free $T_{\mathbb{Z}}$-equivalent $\Sigma_{\mathbb{Z}}$-formula.

- Let $T_{\widehat{\mathbb{Z}}}$ be $T_{\mathbb{Z}}$ with divisibility predicates \mid. For $\Sigma_{\widehat{\mathbb{Z}}}$-formula

$$
F: \exists x .2 x=y
$$

a quantifier-free $T_{\widehat{\mathbb{Z}}}$-equivalent $\Sigma_{\widehat{\mathbb{Z}}}$-formula is $G: 2 \mid y$.

