Verification

Lecture 28

Martin Zimmermann

Plan for today

- Deductive verification
- First-order logic
- First-order theories

Review: Annotations

```
@pre 0\leql^u< |a|
@post rv\leftrightarrow\existsi.l\leqi\lequ^a[i]=e
bool LinearSearch(int[] a, int l, int u, int e) {
    for @ L:I\leqi^(\forallj. I sj<i->a[j] #e)
        (int i:= I; i\lequ; i:= i+1) {
        if (a[i]=e) return true;
    }
    return false;
}
```


Review: Basic paths

```
@pre \(0 \leq 1 \wedge u<|a|\)
@post \(r v \leftrightarrow \exists i . l \leq i \leq u \wedge a[i]=e\)
bool LinearSearch(int[] \(a\), int \(l\), int \(u\), int e) \{
    for @ \(L: I \leq i \wedge(\forall j . I \leq j<i \rightarrow a[j] \neq e)\)
        (int \(i:=I ; i \leq u ; i:=i+1)\{\)
        if \((a[i]=e)\) return true;
    \}
    return false;
\}
```


Review: Verification conditions

$$
\text { (2) } \quad \text { @L:F:I } \begin{aligned}
& S_{1}: \text { assume } i \leq u \\
& S_{2}: \text { assume } a[i]=e \\
& S_{3}: r v:=\text { true } \\
& \text { @post } G: r v \leftrightarrow \exists i . I \leq i \leq u \wedge a[i]=e \\
& \hline
\end{aligned}
$$

The VC of basic path (2) is

$$
F \rightarrow w p\left(G, S_{1} ; S_{2} ; S_{3}\right)
$$

We compute

$$
\begin{aligned}
& w p\left(G, S_{1} ; S_{2} ; S_{3}\right) \\
& \Leftrightarrow w p\left(w p(r v \leftrightarrow \exists i . I \leq i \leq u \wedge a[i]=e, r v:=\operatorname{true}), S_{1} ; S_{2}\right) \\
& \Leftrightarrow \quad w p\left(\exists i . I \leq i \leq u \wedge a[i]=e, S_{1} ; S_{2}\right) \\
& \Leftrightarrow \quad w p\left(w p(\exists i . I \leq i \leq u \wedge a[i]=e, \text { assume } a[i]=e), S_{1}\right) \\
& \Leftrightarrow \quad w p(a[i]=e \rightarrow \exists i . I \leq i \leq u \wedge a[i]=e, \text { assume } i \leq u) \\
& \Leftrightarrow \quad i \leq u \rightarrow(a[i]=e \rightarrow \exists i . I \leq i \leq u \wedge a[i]=e)
\end{aligned}
$$

Review: Theorem (Verification Conditions)

If for every basic path

$$
\begin{aligned}
& \text { @ } L_{1}: F \\
& \\
& S_{1} \\
& \vdots \\
& S_{n} \\
& @ L_{j}: G
\end{aligned}
$$

of program P, the verification condition

$$
\{F\} S_{1} ; \ldots ; S_{n}\{G\}
$$

is valid, then the annotatons are P-inductive, and therefore P-invariant.
If there is a P-invariant annotation, then P is partially correct.

First-order Logic

Propositional Logic (PL)

PL Syntax

Atom truth symbols T ("true") and \perp ("false") propositional variables $P, Q, R, P_{1}, Q_{1}, R_{1}, \cdots$
Literal atom α or its negation $\neg \alpha$
Formula literal or application of a logical connective to formulae F, F_{1}, F_{2}

$\neg F$	"not"	(negation)
$F_{1} \wedge F_{2}$	"and"	(conjunction)
$F_{1} \vee F_{2}$	"or"	(disjunction)
$F_{1} \rightarrow F_{2}$	"implies"	(implication)
$F_{1} \leftrightarrow F_{2}$	"if and only if"	(iff)

PL Semantics

Formula F + Interpretation $/=$ Truth value (true, false)
Interpretation

$$
I:\{P \mapsto \text { true }, Q \mapsto \text { false }, \cdots\}
$$

Evaluation of F under I :

F	$\neg F$	
0	1	where 0 corresponds to value false
1	0	1

F_{1}	F_{2}	$F_{1} \wedge F_{2}$	$F_{1} \vee F_{2}$	$F_{1} \rightarrow F_{2}$	$F_{1} \leftrightarrow F_{2}$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Satisfiability and Validity

F is satisfiable iff there exists an interpretation $/$ such that $I \vDash F$.
F is valid iff for all interpretations $I, I \vDash F$.

$$
F \text { is valid iff } \neg F \text { is unsatisfiable }
$$

Satisifability and validity are decidable (truth tables, BDDs, DPLL, ...)
Example $\quad F: P \wedge Q \rightarrow P \vee \neg Q$

$P Q$	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1
0	1	0	0	0
1	0	0	1	1
1	1	1	0	1

Thus F is valid.

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax

variables $\quad x, y, z, \cdots$
constants $\quad a, b, c, \cdots$
functions $\quad f, g, h, \cdots$
terms variables, constants or
n-ary function applied to n terms as arguments

$$
a, x, f(a), g(x, b), f(g(x, g(b)))
$$

predicates p, q, r, \cdots
atom $\quad T, \perp$, or an n-ary predicate applied to n terms
literal
atom or its negation

$$
p(f(x), g(x, f(x))), \quad \neg p(f(x), g(x, f(x)))
$$

Note: 0-ary functions: constant 0 -ary predicates: P, Q, R, \ldots

Quantifiers

existential quantifier $\exists x . F[x]$
"there exists an x such that $F[x]$ "
universal quantifier $\quad \forall x . F[x]$
"for all $x, F[x]$ "
FOL formula literal, application of logical connectives
$(\neg, \vee, \wedge, \rightarrow, \leftrightarrow)$ to formulae,
or application of a quantifier to a formula

Example: FOL formula

$$
\forall x \cdot \underbrace{p(f(x), x) \rightarrow(\exists y \cdot \underbrace{p(f(g(x, y)), g(x, y))}_{G})) \wedge q(x, f(x))}_{F}
$$

The scope of $\forall x$ is F.
The scope of $\exists y$ is G.
The formula reads:
"for all x , if $p(f(x), x)$
then there exists a y such that $p(f(g(x, y)), g(x, y))$ and $q(x, f(x))^{\prime \prime}$

FOL Semantics

An interpretation I: $\left(D_{l}, \alpha_{l}\right)$ consists of:

- Domain D_{l} non-empty set of values or objects cardinality $\left|D_{l}\right| \quad$ finite (eg, 52 cards), countably infinite (eg, integers), or uncountably infinite (eg, reals)
- Assignment α_{l}
- each variable x assigned value $x_{l} \in D_{I}$
- each n-ary function f assigned

$$
f_{l}: D_{l}^{n} \rightarrow D_{l}
$$

In particular, each constant a (0 -ary function) assigned value $a_{l} \in D_{l}$

- each n-ary predicate p assigned

$$
p_{l}: D_{l}^{n} \rightarrow\{\text { true, false }\}
$$

In particular, each propositional variable P (0 -ary predicate) assigned truth value (true, false)

Example:

$$
F: p(f(x, y), z) \rightarrow p(y, g(z, x))
$$

Interpretation I: $\left(D_{l}, \alpha_{l}\right)$

$$
\begin{aligned}
& D_{l}=\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\} \quad \text { integers } \\
& \alpha_{l}:\{f \mapsto+, g \mapsto-, p \mapsto>\}
\end{aligned}
$$

Therefore, we can write

$$
F_{1}: x+y>z \rightarrow y>z-x
$$

(This is the way we'll write it in the future!)
Also

$$
\alpha_{l}:\{x \mapsto 13, y \mapsto 42, z \mapsto 1\}
$$

Thus

$$
F_{I}: 13+42>1 \rightarrow 42>1-13
$$

Compute the truth value of F under I

$$
\begin{aligned}
& \text { 1. I } \vDash x+y>z \text { since } 13+42>1 \\
& \text { 2. I } I f y>z-x \text { since } 42>1-13 \\
& \text { 3. } I \vDash F \quad \text { by } 1,2 \text {, and } \rightarrow
\end{aligned}
$$

F is true under I

Semantics: Quantifiers

x variable.
x-variant of interpretation $/$ is an interpretation $J:\left(D_{J}, \alpha_{J}\right)$ such that

- $D_{l}=D_{J}$
- $\alpha_{l}[y]=\alpha_{J}[y]$ for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x
Denote $J: I \triangleleft\{x \mapsto v\}$ the x-variant of I in which $\alpha\rfloor[x]=v$ for some $v \in D_{l}$. Then

- $I \vDash \forall x$. $F \quad$ iff for all $v \in D_{l}, I \triangleleft\{x \mapsto v\} \vDash F$
$\bullet I \vDash \exists x . F \quad$ iff there exists $\mathrm{v} \in D_{l}$ s.t. $I \triangleleft\{x \mapsto \mathrm{v}\} \vDash F$

Example

For \mathbb{Q}, the set of rational numbers, consider

$$
F: \forall x . \exists y .2 \times y=x
$$

Compute the value of $F_{l}(F$ under $I)$:
Let

$$
\begin{array}{ll}
J_{1}: I \triangleleft\{x \mapsto v\} & J_{2}: J_{1} \triangleleft\left\{y \mapsto \frac{v}{2}\right\} \\
x \text {-variant of } l & y \text {-variant of } J_{1}
\end{array}
$$

for $v \in \mathbb{Q}$.
Then

1. $J_{2} \vDash 2 \times y=x$
since $2 \times \frac{v}{2}=v$
2. $J_{1} \vDash \exists y .2 \times y=x$
3. $I \vDash \forall x . \exists y .2 \times y=x \quad$ since $v \in \mathbb{Q}$ is arbitrary

Satisfiability and Validity

F is satisfiable iff there exists $/$ s.t. $I \vDash F$
F is valid iff for all $I, I \vDash F$
F is valid iff $\neg F$ is unsatisfiable

- FOL is undecidable (Turing \& Church)

There does not exist an algorithm for deciding if a FOL formula F is valid, i.e. always halt and says "yes" if F is valid or say "no" if F is invalid.

- FOL is semi-decidable There is a procedure that always halts and says "yes" if F is valid, but may not halt if F is invalid.

Semantic Argument Method

Proof rules for propositional logic

$$
\begin{aligned}
& \frac{l \vDash \neg F}{l \neq F} \\
& \frac{l \nexists \neg F}{I \vDash F} \\
& \frac{l \vDash F \wedge G}{I \vDash F} \\
& \frac{l \nexists F \wedge G}{l \neq\left. F\right|_{\text {or }} ^{l \neq G}} \\
& \\
& \frac{l \nexists F \vee G}{l \nexists F} \\
& I \neq G \\
& \\
& \frac{l \neq F \rightarrow G}{l \vDash F} \\
& l \neq G \\
& \frac{l \vDash F \leftrightarrow G}{l \vDash F \wedge G \mid \nmid \neq F \vee G} \quad \frac{l \neq F \leftrightarrow G}{l \vDash F \wedge \neg G \mid l \vDash \neg F \wedge G} \\
& \begin{array}{l}
I \vDash F \\
I \neq F \\
\frac{I \vDash \perp}{}
\end{array}
\end{aligned}
$$

Semantic Argument Method

Proof rules for quantifiers

$$
\begin{array}{cc}
\frac{l \vDash \forall x . F}{l \triangleleft\{x \mapsto v\} \vDash F} & \frac{l \nexists \exists x . F}{l \triangleleft\{x \mapsto v\} \not \vDash F} \\
\frac{l \vDash \exists x . F}{l \triangleleft\{x \mapsto v\} \vDash F} \text { for a fresh } v \in D_{l} & \frac{l \notin \forall x . F}{l \triangleleft\{x \mapsto v\} \not \vDash F} \text { for a fresh } v \in D_{l} \\
\begin{array}{l}
J: I \triangleleft\{\cdots \mapsto \cdots\} \vDash p\left(s_{1}, \ldots, s_{n}\right) \\
\frac{K: I \triangleleft\{\cdots \mapsto \cdots\} \not \approx p\left(t_{1}, \ldots, t_{n}\right)}{l \vDash \perp}
\end{array} \text { for all } i \in\{1, \ldots, n\}, \alpha_{J}\left[s_{i}\right]=\alpha_{K}\left[t_{i}\right]
\end{array}
$$

First-order Theories

First-Order Theories

First-order theory T defined by

- Signature Σ - set of constant, function, and predicate symbols
- Set of axioms A_{T} - set of closed (no free variables) Σ-formulae
Σ-formula constructed of constants, functions, and predicate symbols from Σ, and variables, logical connectives, and quantifiers

The symbols of Σ are just symbols without prior meaning - the axioms of T provide their meaning

A Σ-formula F is valid in theory T (T-valid, also $T \vDash F$), if every interpretation / that satisfies the axioms of T,
i.e. $I \vDash A$ for every $A \in A_{T}$ (T-interpretation)
also satisfies F,
i.e. $l \vDash F$

A Σ-formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F_{1} and F_{2} are equivalent in T (T-equivalent), if $T \vDash F_{1} \leftrightarrow F_{2}$,
i.e. if for every T-interpretation $I, I \vDash F_{1}$ iff $I \vDash F_{2}$

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: quantifier-free segment of theory T is the set of quantifier-free formulae in T.

A theory T is decidable if $T \vDash F$ (T-validity) is decidable for every Σ-formula F,
i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid.
A fragment of T is decidable if $T \vDash F$ is decidable for every Σ-formula F in the fragment.

Theory of Equality T_{E}

Signature

$$
\Sigma_{=}:\{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}
$$

consists of

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Axioms of T_{E}

1. $\forall x \cdot x=x$
2. $\forall x, y . x=y \rightarrow y=x$ (symmetry)
3. $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
(transitivity)
4. for each positive integer n and n-ary function symbol f,

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \wedge_{i} x_{i}=y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

(congruence)
5. for each positive integer n and n-ary predicate symbol p,

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \wedge_{i} x_{i}=y_{i} \rightarrow\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)
$$

(equivalence)
Congruence and Equivalence are axiom schemata. For example, Congruence for binary function f_{2} for $n=2$:

$$
\forall x_{1}, x_{2}, y_{1}, y_{2} . x_{1}=y_{1} \wedge x_{2}=y_{2} \rightarrow f_{2}\left(x_{1}, x_{2}\right)=f_{2}\left(y_{1}, y_{2}\right)
$$

