Verification

Lecture 25

Bernd Finkbeiner

Exam info

- Main exam: Oct 9, 2013, 9am
- Backup exam: Nov 25, 2013, 10am

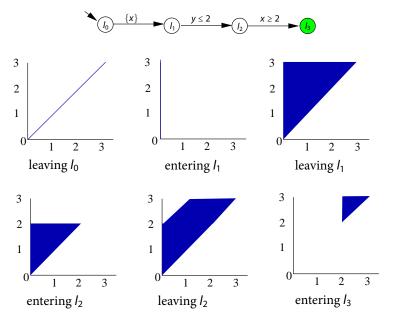
Plan for today

- Timed model checking
 - Regions
 - Zones

Zones

- Clock constraints are <u>conjunctions</u> of atomic constraints
 - x < c and x y < c for $< \in \{<, \le, =, \ge, >\}$
 - restrict to TA with only conjunctive clock constraints
 - and (as before) assume no difference clock constraints
- A <u>clock zone</u> is the set of clock valuations that satisfy a clock constraint
 - a clock zone for g is the maximal set of clock valuations satisfying g
- Clock zone of g: [[g]] = { $\eta \in Eval(C) \mid \eta \models g$ }
 - ▶ use *z*, *z*′ and so on to range over zones
- The state zone of $s = \langle \ell, \eta \rangle \in TS(TA)$ is $\langle \ell, z \rangle$ with $\eta \in z$

Zones: intuition



Successor and reset zones

• z' is the successor (clock) zone of z, denoted $z' = z^{\uparrow}$, if:

$$\flat \ z^{\uparrow} = \{ \eta + d \mid \eta \in z, d \in \mathbb{R}_{>0} \}$$

- z' is the zone obtained from z by resetting clocks D, if:
 - reset D in $z = \{ reset D$ in $\eta \mid \eta \in z \}$

Zone graph

For non-Zeno TA let:

$$ZG(TA, \Phi) = (S, Act, \rightarrow, I, AP', L')$$
 with

- $S = Loc \times Zone(C)$ and $I = \{ \langle \ell, z_0 \rangle \mid \ell \in Loc_0 \}$
- $L'(\langle \ell, z \rangle) = L(\ell) \cup \{g \mid g \in z\}$
- → consists of two types of edges:
 - Discrete transitions: $\langle \ell, z \rangle \xrightarrow{\alpha} \langle \ell', \text{reset } D \text{ in } (z \land g) \land inv(\ell') \rangle$ if $\ell \xrightarrow{g:\alpha,D} \ell'$, and
 - Delay transitions: $\langle \ell, z \rangle \xrightarrow{\tau} \langle \ell, z^{\uparrow} \land inv(\ell) \rangle$.

Correctness

For timed automaton *TA* and any initial state $\langle \ell, \eta_0 \rangle$:

Soundness:

$$\underbrace{\langle \ell, \underbrace{\{\eta_0\}}_{z_0} \rangle \to^* \langle \ell', z' \rangle}_{\text{in } ZG(TA)} \quad \text{implies} \quad \underbrace{\langle \ell, \eta_0 \rangle \to^* \langle \ell', \eta' \rangle}_{\text{in } TS(TA)} \text{ for all } \eta' \in z'$$

Completeness:

$$\underbrace{\langle \ell, \eta_0 \rangle \to^* \langle \ell', \eta' \rangle}_{\text{in } TS(TA)} \quad \text{implies} \quad \underbrace{\langle \ell, \{ \eta_0 \} \rangle \to^* \langle \ell', z' \rangle}_{\text{in } ZG(TA)} \text{ for some } z' \text{ with } \eta'$$

Zone normalization

- To obtain a finite representation, the zones are <u>normalized</u>:
- For zone *z*, $norm(z) = \{ \eta \mid \eta \cong \eta', \eta' \in z \}$
 - where \cong is the clock equivalence
- There can only be finitely many normalized zones
- $\langle \ell, z \rangle \rightarrow_{norm} \langle \ell', norm(z') \rangle$ if $\langle \ell, z \rangle \rightarrow \langle \ell', z' \rangle$

Forward reachability algorithm

Passed := \emptyset : // explored states so far Wait := { (ℓ_0, z_0) }; // states to be explored while Wait $\pm \emptyset$ // still states to go **do** select and remove (ℓ, z) from Wait; if $(\ell = \text{goal} \land z \cap z_{\text{goal}} \neq \emptyset)$ then return "reachable"! fi; if $\neg(\exists (\ell, z') \in \text{Passed}, z \subseteq z') // \text{no "super"state explored yet}$ then add (ℓ, z) to Passed // (ℓ, z) is a new state foreach (ℓ', z') with $(\ell, z) \rightarrow_{norm} (\ell', z')$ **do** add (ℓ', z') to Wait; // add symbolic successors fi od

return "not reachable"!

Representing zones

- Let **0** be a clock with constant value 0; let $C_0 = C \cup \{\mathbf{0}\}$
- Any zone $z \in Zone(C)$ can be written as:
 - ▶ conjunction of constraints x y < n or $x y \le n$ for $n \in \mathbb{Z}$, $x, y \in C_0$
 - when $x y \le n$ and $x y \le m$ take only $x y \le \min(n, m)$
 - \Rightarrow this yields at most $|C_0| \cdot |C_0|$ constraints
- Example:

 $x - \mathbf{0} < 20 \land y - \mathbf{0} \le 20 \land y - x \le 10 \land x - y \le -10 \land \mathbf{0} - z < 5$

- Store each such constraint in a matrix
 - this yields a difference bound matrix

Notation: \leq stands for < or \leq .

Difference bound matrices

- Zone z over C is represented by DBM Z of cardinality (|C|+1)·(|C|+1)
 - for $C = x_1, ..., x_n$, let $C_0 = \{x_0, x_1, ..., x_n\}$ with $x_0 = \mathbf{0}$
 - $\mathbf{Z}(i,j) = (c, \leq)$ if and only if $x_i x_j \leq c$
- Definition of Z for zone z:
 - for $x_i x_j \le c$ let $\mathbf{Z}(i,j) = (c, \le)$
 - if $x_i x_j$ is unbounded in z, set $\mathbf{Z}(i, j) = \infty$
 - $\mathbf{Z}(0,i) = (\leq, 0)$ and $\mathbf{Z}(i,i) = (\leq, 0)$
- Operations on bounds:
 - (c, ≤) < ∞, (c, <) < (c, ≤), and (c, ≤) < (c', ≤) if c < c'
 c + ∞ = ∞, (c, ≤) + (c', ≤) = (c+c', ≤) and
 (c, <) + (c', ≤) = (c+c', <)</pre>

Canonical DBMs

- A zone *z* is in <u>canonical form</u> if and only if:
 - no constraint in z can be strengthened without reducing
 [[z]] = { η | η ∈ z }
- For each zone z: ∃ a <u>unique</u> and <u>equivalent</u> zone in canonical form
- Represent zone z by a weighted digraph G = (V, E, w) where
 - $V = C_0$ is the set of vertices
 - $(x_i, x_j) \in E$ whenever $x_j x_i \leq c$ is a constraint in z
 - $w(x_i, x_j) = (\leq, c)$ whenever $x_j x_i \leq c$ is a constraint in z
- Zone z is in canonical form if and only if DBM Z satisfies:
 - $\mathbf{Z}(i,j) \leq \mathbf{Z}(i,k) + \mathbf{Z}(k,j)$ for any $x_i, x_j, x_k \in C_0$
- Compute canonical zone?
 - use <u>Floyd-Warshall</u>'s all-pairs SP algorithm (time $\mathcal{O}(|C_0|^3)$)

Minimal constraint systems

- A zone may contain redundant constraints
 - e.g., in x-y < 2, y-z < 5, and x-z < 7, constraint x-z < 7 is redundant
- Reduce memory usage: consider <u>minimal</u> constraint systems
 - e.g., $x y \le 0$, $y z \le 0$, $z x \le 0$, $x \mathbf{0} \le 3$, and $\mathbf{0} x < -2$
 - is a minimal representation of a zone in canonical form with 12 constraints
- ► For each zone: ∃ a unique and equivalent minimal constraint system
- Determining minimal representations of canonical zones:
 - ▶ $x_i \xrightarrow{(n,\leq)} x_j$ is redundant if an alternative path from x_i to x_j has weight at most (n, \leq)
 - it suffices to consider alternative paths of length two

zero cycles require a special treatment

Main operations on DBMs (1)

- ► <u>Nonemptiness</u>: is [[Z]] ≠ Ø?
 - search for negative cycles in the graph representation of Z, or
 - mark Z when some upper bound is set to value < its lower bound
- Inclusion test: is $[[\mathbf{Z}]] \subseteq [[\mathbf{Z}']]$?
 - ▶ for DBMs in canonical form, test whether $Z(i,j) \le Z'(i,j)$, for all $i, j \in C_0$
- Delay: determine Z[↑]
 - remove the upper bounds on any clock, i.e.,
 - $\mathbf{Z}^{\uparrow}(i,0) = \infty$ and $\mathbf{Z}^{\uparrow}(i,j) = \mathbf{Z}(i,j)$ for $j \neq 0$

Main operations on DBMs (2)

- Conjunction: $z \& (x_i x_j \le n)$
 - if $(n, \leq) < \mathbf{Z}(i, j)$ then $\mathbf{Z}(i, j) := (n, \leq)$ else do nothing
 - put **Z** back into canonical form (in time $O(|C_0|^2)$ using that only **Z**(*i*,*j*) changed)
- Clock reset: $x_i := 0$
 - Z(i,j) := Z(0,j) and Z(j,i) := Z(j,0)
- Normalization
 - ▶ remove all bounds $x-y \le m$ for which $(m, \le) > (c_x, \le)$, and
 - ▶ set all bounds $x-y \le m$ with $(m, \le) < (-c_y, <)$ to $(-c_y, <)$
 - put the DBM back into canonical form (Floyd-Warshall)