Verification

Lecture 25

Bernd Finkbeiner

Exam info

- Main exam: Oct 9, 2013, 9am
- Backup exam: Nov 25, 2013, 10am

Plan for today

- Timed model checking
- Regions
- Zones

Zones

- Clock constraints are conjunctions of atomic constraints
- $x<c$ and $x-y<c$ for $<\epsilon\{<, \leq,=, \geq,>\}$
- restrict to TA with only conjunctive clock constraints
- and (as before) assume no difference clock constraints
- A clock zone is the set of clock valuations that satisfy a clock constraint
- a clock zone for g is the maximal set of clock valuations satisfying g
- Clock zone of $g:[[g]]=\{\eta \in \operatorname{Eval}(C) \mid \eta \vDash g\}$
- use z, z^{\prime} and so on to range over zones
- The state zone of $s=\langle\ell, \eta\rangle \in T S(T A)$ is $\langle\ell, z\rangle$ with $\eta \in z$

Zones: intuition

leaving I_{0}
entering I_{2}

entering l_{1}

leaving I_{2}

leaving I_{1}

entering $/ 3$

Successor and reset zones

- z^{\prime} is the successor (clock) zone of z, denoted $z^{\prime}=z^{\uparrow}$, if:
- $z^{\uparrow}=\left\{\eta+d \mid \eta \in z, d \in \mathbb{R}_{>0}\right\}$
- z^{\prime} is the zone obtained from z by resetting clocks D, if:
- reset D in $z=\{$ reset D in $\eta \mid \eta \in z\}$

Zone graph

For non-Zeno TA let:

$$
Z G(T A, \Phi)=\left(S, A c t, \rightarrow, I, A P^{\prime}, L^{\prime}\right) \quad \text { with }
$$

- $S=\operatorname{Loc} \times \operatorname{Zone}(C)$ and $I=\left\{\left\langle\ell, z_{0}\right\rangle \mid \ell \in \operatorname{Loc} 0_{0}\right\}$
- $L^{\prime}(\langle\ell, z\rangle)=L(\ell) \cup\{g \mid g \in z\}$
- \rightarrow consists of two types of edges:
- Discrete transitions: $\langle\ell, z\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}\right.$, reset D in $\left.(z \wedge g) \wedge \operatorname{inv}\left(\ell^{\prime}\right)\right\rangle$ if $\ell \stackrel{g: \alpha, D}{\sim} \ell^{\prime}$, and
- Delay transitions: $\langle\ell, z\rangle \xrightarrow{\tau}\left\langle\ell, z^{\uparrow} \wedge \operatorname{inv}(\ell)\right\rangle$.

Correctness

For timed automaton $T A$ and any initial state $\left\langle\ell, \eta_{0}\right\rangle$:

- Soundness:
$\underbrace{\langle\ell, \underbrace{\left\{\eta_{0}\right\}}_{z_{0}}\rangle}_{\text {in } Z G(T A)} \rightarrow^{*}\left\langle\ell^{\prime}, z^{\prime}\right\rangle$ implies $\underbrace{\left\langle\ell, \eta_{0}\right\rangle \rightarrow^{*}\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle}_{\text {in } T S(T A)}$ for all $\eta^{\prime} \in z^{\prime}$
- Completeness:
$\underbrace{\left\langle\ell, \eta_{0}\right\rangle \rightarrow^{*}\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle}_{\text {in } T S(T A)}$ implies $\underbrace{\left\langle\ell,\left\{\eta_{0}\right\}\right\rangle \rightarrow^{*}\left\langle\ell^{\prime}, z^{\prime}\right\rangle}_{\text {in } Z G(T A)}$ for somez z^{\prime} with η^{\prime}

Zone normalization

- To obtain a finite representation, the zones are normalized:
- For zone $z, \operatorname{norm}(z)=\left\{\eta \mid \eta \cong \eta^{\prime}, \eta^{\prime} \in z\right\}$
- where \cong is the clock equivalence
- There can only be finitely many normalized zones
- $\langle\ell, z\rangle \rightarrow_{\text {norm }}\left\langle\ell^{\prime}, \operatorname{norm}\left(z^{\prime}\right)\right\rangle$ if $\langle\ell, z\rangle \rightarrow\left\langle\ell^{\prime}, z^{\prime}\right\rangle$

Forward reachability algorithm

```
Passed := \varnothing; // explored states so far
```



```
// states to be explored
while Wait = \varnothing
// still states to go
do select and remove ( }\ell,z)\mathrm{ from Wait;
    if (\ell=goal }\wedgez\cap\mp@subsup{z}{\mathrm{ goal }}{}\not=\varnothing)\mathrm{ then return "reachable"! fi ;
```



```
    then add (\ell,z) to Passed // (\ell,z) is a new state
    foreach }(\mp@subsup{\ell}{}{\prime},\mp@subsup{z}{}{\prime})\mathrm{ with }(\ell,z)\mp@subsup{->}{\mathrm{ norm }}{}(\mp@subsup{\ell}{}{\prime},\mp@subsup{z}{}{\prime}
    do add ( }\mp@subsup{\ell}{}{\prime},\mp@subsup{z}{}{\prime})\mathrm{ to Wait; // add symbolic successors
    fi
Od
return "not reachable"!
```


Representing zones

- Let $\mathbf{0}$ be a clock with constant value 0 ; let $C_{0}=C \cup\{\mathbf{0}\}$
- Any zone $z \in \operatorname{Zone}(C)$ can be written as:
- conjunction of constraints $x-y<n$ or $x-y \leq n$ for $n \in \mathbb{Z}, x, y \in C_{0}$
- when $x-y \leq n$ and $x-y \leq m$ take only $x-y \leq m i n(n, m)$
\Rightarrow this yields at most $\left|C_{0}\right| \cdot\left|C_{0}\right|$ constraints
- Example:

$$
x-\mathbf{0}<20 \wedge y-0 \leq 20 \wedge y-x \leq 10 \wedge x-y \leq-10 \wedge 0-z<5
$$

- Store each such constraint in a matrix
- this yields a difference bound matrix

Notation: \leq stands for $<$ or \leq.

Difference bound matrices

- Zone z over C is represented by DBM Z of cardinality $(|C|+1) \cdot(|C|+1)$
- for $C=x_{1}, \ldots, x_{n}$, let $C_{0}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ with $x_{0}=\mathbf{0}$
- $\mathbf{Z}(i, j)=(c, \leq)$ if and only if $x_{i}-x_{j} \leq c$
- Definition of \mathbf{Z} for zone z :
- for $x_{i}-x_{j} \leq c$ let $\mathbf{Z}(i, j)=(c, \leq)$
- if $x_{i}-x_{j}$ is unbounded in $z, \operatorname{set} \mathbf{Z}(i, j)=\infty$
- $\mathbf{Z}(0, i)=(\leq, 0)$ and $\mathbf{Z}(i, i)=(\leq, 0)$
- Operations on bounds:
- $(c, \leq)<\infty,(c,<)<(c, \leq)$, and $(c, \leq)<\left(c^{\prime}, \leq\right)$ if $c<c^{\prime}$
- $c+\infty=\infty,(c, \leq)+\left(c^{\prime}, \leq\right)=\left(c+c^{\prime}, \leq\right)$ and $(c,<)+\left(c^{\prime}, \leq\right)=\left(c+c^{\prime},<\right)$

Canonical DBMs

- A zone z is in canonical form if and only if:
- no constraint in z can be strengthened without reducing

$$
\llbracket z \rrbracket]=\{\eta \mid \eta \in z\}
$$

- For each zone $z: \exists$ a unique and equivalent zone in canonical form
- Represent zone z by a weighted digraph $G=(V, E, w)$ where
- $V=C_{0}$ is the set of vertices
- $\left(x_{i}, x_{j}\right) \in E$ whenever $x_{j}-x_{i} \leq c$ is a constraint in z
- $w\left(x_{i}, x_{j}\right)=(\leq, c)$ whenever $x_{j}-x_{i} \leq c$ is a constraint in z
- Zone z is in canonical form if and only if DBM \mathbf{Z} satisfies:
- $\mathbf{Z}(i, j) \leq \mathbf{Z}(i, k)+\mathbf{Z}(k, j)$ for any $x_{i}, x_{j}, x_{k} \in C_{0}$
- Compute canonical zone?
- use Floyd-Warshall's all-pairs SP algorithm (time $\mathcal{O}\left(\left|C_{0}\right|^{3}\right)$)

Minimal constraint systems

- A zone may contain redundant constraints
- e.g., in $x-y<2, y-z<5$, and $x-z<7$, constraint $x-z<7$ is redundant
- Reduce memory usage: consider minimal constraint systems
- e.g., $x-y \leq 0, y-z \leq 0, z-x \leq 0, x-\mathbf{0} \leq 3$, and $\mathbf{0}-x<-2$
- is a minimal representation of a zone in canonical form with 12 constraints
- For each zone: \exists a unique and equivalent minimal constraint system
- Determining minimal representations of canonical zones:
- $x_{i} \xrightarrow{(n, s)} x_{j}$ is redundant if an alternative path from x_{i} to x_{j} has weight at most (n, \leq)
- it suffices to consider alternative paths of length two

Main operations on DBMs (1)

- Nonemptiness: is $[[\mathbf{Z}]] \neq \varnothing$?
- search for negative cycles in the graph representation of \mathbf{Z}, or
- mark \mathbf{Z} when some upper bound is set to value < its lower bound
- Inclusion test: is $[[\mathbf{Z}]] \subseteq\left[\left[\mathbf{Z}^{\prime}\right]\right]$?
- for DBMs in canonical form, test whether $\mathbf{Z}(i, j) \leq \mathbf{Z}^{\prime}(i, j)$, for all $i, j \in C_{0}$
- Delay: determine \mathbf{Z}^{\uparrow}
- remove the upper bounds on any clock, i.e.,
- $\mathbf{Z}^{\uparrow}(i, 0)=\infty$ and $\mathbf{Z}^{\dagger}(i, j)=\mathbf{Z}(i, j)$ for $j \neq 0$

Main operations on DBMs (2)

- Conjunction: z \& $\left(x_{i}-x_{j} \leq n\right)$
- if $(n, \leq)<\mathbf{Z}(i, j)$ then $\mathbf{Z}(i, j):=(n, \leq)$ else do nothing
- put \mathbf{Z} back into canonical form (in time $\mathcal{O}\left(\left|C_{0}\right|^{2}\right)$ using that only $\mathbf{Z}(i, j)$ changed)
- Clock reset: $x_{i}:=0$
- $\mathbf{Z}(i, j):=\mathbf{Z}(0, j)$ and $\mathbf{Z}(j, i):=\mathbf{Z}(j, 0)$
- Normalization
- remove all bounds $x-y \leq m$ for which $(m, \leq)>\left(c_{x}, \leq\right)$, and
- set all bounds $x-y \leq m$ with $(m, \leq)<\left(-c_{y},<\right)$ to $\left(-c_{y},<\right)$
- put the DBM back into canonical form (Floyd-Warshall)

