Verification

Lecture 24

Bernd Finkbeiner

Plan for today

- Timed model checking
 - Regions
 - Zones

REVIEW: Clock equivalence

Clock valuations η , $\eta' \in Eval(C)$ are <u>equivalent</u>, denoted $\eta \cong \eta'$, if:

(1) for any
$$x \in C$$
: $(\eta(x) > c_x) \land (\eta'(x) > c_x)$ or $(\eta(x) \le c_x) \land (\eta'(x) \le c_x)$

(2) for any $x \in C$: if $\eta(x)$, $\eta'(x) \le c_x$ then:

 $\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$ and $\operatorname{frac}(\eta(x)) = 0$ iff $\operatorname{frac}(\eta'(x)) = 0$

(3) for any $x, y \in C$: if $\eta(x), \eta'(x) \le c_x$ and $\eta(y), \eta'(y) \le c_y$, then:

 $\operatorname{frac}(\eta(x)) \leq \operatorname{frac}(\eta(y))$ iff $\operatorname{frac}(\eta'(x)) \leq \operatorname{frac}(\eta'(y))$.

$$s \cong s'$$
 iff $\ell = \ell'$ and $\eta \cong \eta'$

REVIEW: Regions

• The clock region of $\eta \in Eval(C)$, denoted $[\eta]$, is defined by:

$$[\eta] = \{ \eta' \in Eval(C) \mid \eta \cong \eta' \}$$

• The state region of $s = \langle \ell, \eta \rangle \in TS(TA)$ is defined by:

$$[s] = \langle \ell, [\eta] \rangle = \{ \langle s, \eta' \rangle \mid \eta' \in [\eta] \}$$

Preservation of atomic properties

1. For $\eta, \eta' \in Eval(C)$ such that $\eta \cong \eta'$:

 $\eta \vDash g$ if and only if $\eta' \vDash g$ for any $g \in AP' \smallsetminus AP$

2. For $s, s' \in TS(TA)$ such that $s \cong s'$:

 $s \models a$ if and only if $s' \models a$ for any $a \in AP'$

where AP' includes all atomic propositions and atomic clock constraints in TA and Φ .

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP'

Unbounded and successor regions

► Clock region $r_{\infty} = \{ \eta \in Eval(C) \mid \forall x \in C. \eta(x) > c_x \}$ is unbounded

r' is the successor (clock) region of r, denoted r' = succ(r), if either:

1.
$$r = r_{\infty}$$
 and $r = r'$, or

2.
$$r \neq r_{\infty}$$
, $r \neq r'$ and $\forall \eta \in r$:

 $\exists d \in \mathbb{R}_{>0}. \ (\eta + d \in r' \text{ and } \forall 0 \le d' \le d. \ \eta + d' \in r \cup r')$

• The successor region: $succ(\langle \ell, r \rangle) = \langle \ell, succ(r) \rangle$

Region Graph

For non-Zeno $TA = (Loc, Act, C, \rightsquigarrow, Loc_0, inv, AP, L)$ with $TS(TA) = (Q, Q_0, E, L)$ let $RG(TA, \Phi) = (Q', Q'_0, E', L')$ with

- $Q' = Q/\cong = \{ [q] \mid q \in Q \} \text{ and } Q'_0 = \{ [q] \mid q \in Q_0 \},$
- $\blacktriangleright L'(\langle \ell, r \rangle) = L(\ell) \cup \{g \in AP' \smallsetminus AP \mid r \vDash g\}$
- E' consists of two types of edges:
 - Discrete transitions: $\langle \ell, r \rangle \xrightarrow{\alpha}' \langle \ell', \text{reset } D \text{ in } r \rangle$ if $\ell \xrightarrow{g:\alpha,D} \ell'$ and $r \models g$ and reset D in $r \models inv(\ell')$;
 - ► Delay transitions: $\langle \ell, r \rangle \xrightarrow{\tau}' \langle \ell, succ(r) \rangle$ if $r \vDash inv(\ell)$ and $succ(r) \vDash inv(\ell)$

Example: simple light switch

Time convergence

For non-Zeno *TA* and $\pi = s_0 s_1 s_2 \dots$ an initial, infinite path in *TS*(*TA*):

(a) π is <u>time-convergent</u> $\Rightarrow \exists$ state region $\langle \ell, r \rangle$ such that for some *j*:

 $s_i \in \langle \ell, r \rangle$ for all $i \ge j$

(b) If \exists state region $\langle \ell, r \rangle$ with $r \neq r_{\infty}$ and an index *j* such that:

 $s_i \in \langle \ell, r \rangle$ for all $i \ge j$

then π is time-convergent

Timelock freedom

For non-Zeno TA:

TA is timelock-free iff no reachable state in RG(TA) is terminal

Example

Correctness theorem

Let $\mathit{T\!A}$ be a non-Zeno timed automaton and Φ a $\mathsf{TCTL}_{\diamondsuit}$ formula. Then:

