Verification

Lecture 22

Bernd Finkbeiner

Plan for today

- Timed model checking

REVIEW: Timed CTL

Syntax of TCTL state-formulas over $A P$ and set C :

$$
\Phi::=\operatorname{true}|a| g|\Phi \wedge \Phi| \neg \Phi|\mathrm{E} \varphi| \mathrm{A} \varphi
$$

where $a \in A P, g \in A C C(C)$ and φ is a path-formula defined by:

$$
\varphi::=\Phi U^{J} \Phi
$$

where $J \subseteq \mathbb{R}_{\geq 0}$ is an interval whose bounds are naturals
Forms of $J:[n, m],(n, m],[n, m)$ or (n, m) for $n, m \in \mathbb{N}$ and $n \leq m$
for right-open intervals, $m=\infty$ is also allowed

REVIEW: Semantics of TCTL

For state $s=\langle\ell, \eta\rangle$ in $T S(T A)$ the satisfaction relation \vDash is defined by:

$$
\begin{array}{lll}
s \vDash \text { true } & \\
s \vDash a & \text { iff } \quad a \in L(\ell) \\
s \vDash g & \text { iff } \quad \eta \vDash g \\
s \vDash \neg \Phi & \text { iff } \quad \text { not } s \vDash \Phi \\
s \vDash \Phi \wedge \Psi & \text { iff } \quad(s \vDash \Phi) \text { and }(s \vDash \Psi) \\
s \vDash \mathrm{E} \varphi & \text { iff } \quad \pi \vDash \varphi \text { for some } \pi \in \operatorname{Paths}_{\operatorname{div}}(s) \\
s \vDash \mathrm{~A} \varphi & \text { iff } \quad \pi \vDash \varphi \text { for all } \pi \in \text { Paths }_{\operatorname{div}}(s) \\
&
\end{array}
$$

REVIEW: Semantics of TCTL

For time-divergent path $\pi \in s_{0} \xrightarrow{d_{0}} s_{1} \xrightarrow{d_{1}} \ldots$:
$\pi \vDash \Phi U^{J} \Psi$
iff
$\exists i \geq 0 . s_{i}+d \vDash \Psi$ for some $d \in\left[0, d_{i}\right]$ with $\sum_{k=0}^{i-1} d_{k}+d \in J$ and
$\forall j \leq i . s_{j}+d^{\prime} \vDash \Phi \vee \Psi$ for every $d^{\prime} \in\left[0, d_{j}\right]$ with $\sum_{k=0}^{j-1} d_{k}+d^{\prime} \leq \sum_{k=0}^{i-1} d_{k}+d$

TCTL-semantics for timed automata

- Let TA be a timed automaton with clocks C and locations Loc
- For TCTL-state-formula Φ, the satisfaction set $\operatorname{Sat}(\Phi)$ is defined by:

$$
\operatorname{Sat}(\Phi)=\{s \in \operatorname{Loc} \times \operatorname{Eval}(C) \mid s \vDash \Phi\}
$$

- TA satisfies TCTL-formula Φ iff Φ holds in all initial states of TA:

$$
T A \vDash \Phi \quad \text { if and only if } \quad \forall \ell_{0} \in L o c_{0} .\left\langle\ell_{0}, \eta_{0}\right\rangle \vDash \Phi
$$

where $\eta_{0}(x)=0$ for all $x \in C$

Timed CTL versus CTL

- Due to ignoring time-convergent paths in TCTL semantics, possibly:

- CTL semantics considers all paths, timed CTL only time-divergent paths
- For $\Phi=$ AG (on \longrightarrow AF off $)$ and the light switch

$$
T S(\text { Switch }) \vDash_{\text {тстL }} \Phi \quad \text { whereas } \quad T S(T A) \not \text { キт兀 } \Phi
$$

- there are time-convergent paths on which location on is never left

Characterizing timelock

- TCTL semantics is also well-defined for TA with timelock
- A state is timelock-free if and only if it satisfies E G true
- some time-divergent path satisfies G true, i.e., there is ≥ 1 time-divergent path
- note: for fair CTL, the states in which a fair path starts also satisfy EG true
- TA is timelock-free iff $\forall s \in \operatorname{Reach}(T S(T A)): s \vDash E G$ true
- Timelocks can thus be checked by model checking

TCTL model checking

- TCTL model-checking problem: $T A \vDash \Phi$ for non-Zeno $T A$

- Idea: consider a finite region graph $R G(T A)$
- Transform TCTL formula Φ into an "equivalent" CTL-formula $\widehat{\Phi}$
- Then: $T A \vDash_{\text {TCTL }} \Phi$ iff $R G(T A) \vDash_{\text {ctL }} \widehat{\Phi}$
finite state graph

Eliminating timing parameters: TCTL_{\diamond}

- Eliminate all intervals $J \neq[0, \infty)$ from TCTL formulas
- introduce a fresh clock, z say, that does not occur in TA
- $s \vDash E F^{\jmath} \Phi$ iff reset z in $s \vDash F(z \in J \wedge \Phi)$
- Formally: for any state s of $T S(T A)$ it holds:

$$
\begin{aligned}
& s \vDash E \Phi U^{J} \Psi \quad \text { iff } \underbrace{s\{z:=0\}}_{\text {state in } T(T A A \oplus z)} \vDash \mathrm{E}((\Phi \vee \Psi) \cup(z \in J) \wedge \Psi) \\
& s \vDash A \Phi U^{J} \Psi \text { iff } \underbrace{s\{z:=0\}}_{\text {state in } T(T A \oplus z)} \vDash \mathrm{A}((\Phi \vee \Psi) \cup(z \in J) \wedge \Psi)
\end{aligned}
$$

- where $T A \oplus z$ is $T A$ (over C) extended with $z \notin C$

Clock equivalence

Impose an equivalence, denoted \cong, on the clock valuations such that:
(A) Equivalent clock valuations satisfy the same clock constraints g in $T A$ and Φ :

$$
\eta \cong \eta^{\prime} \Rightarrow\left(\eta \vDash g \quad \text { iff } \quad \eta^{\prime} \vDash g\right)
$$

- no diagonal clock constraints are considered
- all the constraints in $T A$ and Φ are thus either of the form $x \leq c$ or $x<c$
(B) Time-divergent paths originating from equivalent states are equivalent
- this property guarantees that equivalent states satisfy the same path formulas
(C) The number of equivalence classes under \cong is finite

First observation

- $\eta \vDash x<c$ whenever $\eta(x)<c$, or equivalently, $\lfloor\eta(x)\rfloor<c$ - $\lfloor d\rfloor=\max \{c \in \mathbb{N} \mid c \leq d\}$ and $\operatorname{frac}(d)=d-\lfloor d\rfloor$
- $\eta \vDash x \leq c$ whenever $\lfloor\eta(x)\rfloor<c$ or $\lfloor\eta(x)\rfloor=c$ and $\operatorname{frac}(\eta(x))=0$
$\Rightarrow \eta \vDash g$ only depends on $\lfloor\eta(x)\rfloor$, and whether $\operatorname{frac}(\eta(x))=0$
- Initial suggestion: clock valuations η and η^{\prime} are equivalent if:

$$
\lfloor\eta(x)\rfloor=\left\lfloor\eta^{\prime}(x)\right\rfloor \quad \text { and } \quad \operatorname{frac}(\eta(x))=0 \text { iff } \operatorname{frac}\left(\eta^{\prime}(x)\right)=0
$$

- Note: it is crucial that in $x<c$ and $x \leq c, c$ is a natural

Second observation

- Consider location ℓ with $\operatorname{inv}(\ell)=$ true and only outgoing transitions:
- one guarded with $x \geq 2$ (action α) and $y>1$ (action β)
- Let state $s=\langle\ell, \eta\rangle$ with $1<\eta(x)<2$ and $0<\eta(y)<1$
- α and β are disabled, only time may elapse
- Transition that is enabled next depends on $x-1<y$ or $x-1 \geq y$
- e.g., if $\operatorname{frac}(\eta(x)) \geq \operatorname{frac}(\eta(y))$, action α is enabled first
- Suggestion for strengthening of initial proposal for all $x, y \in C$ by:
$\operatorname{frac}(\eta(x)) \leq \operatorname{frac}(\eta(y)) \quad$ if and only if $\quad \operatorname{frac}\left(\eta^{\prime}(x)\right) \leq \operatorname{frac}\left(\eta^{\prime}(y)\right)$

Final observation

- So far, clock equivalence yield a denumerable though not finite quotient
- For $T A \vDash \Phi$ only the clock constraints in $T A$ and Φ are relevant
- let $c_{x} \in \mathbb{N}$ the largest constant with which x is compared in $T A$ or Φ
\Rightarrow If $\eta(x)>c_{x}$ then the actual value of x is irrelevant
- constraints on \cong so far are only relevant for clock values of $x(y)$ up to $c_{x}\left(c_{y}\right)$

Clock equivalence

Clock valuations $\eta, \eta^{\prime} \in \operatorname{Eval}(C)$ are equivalent, denoted $\eta \cong \eta^{\prime}$, if:
(1) for any $x \in C:\left(\eta(x)>c_{x}\right) \wedge\left(\eta^{\prime}(x)>c_{x}\right)$ or

$$
\left(\eta(x) \leq c_{x}\right) \wedge\left(\eta^{\prime}(x) \leq c_{x}\right)
$$

(2) for any $x \in C$: if $\eta(x), \eta^{\prime}(x) \leq c_{x}$ then:

$$
\lfloor\eta(x)\rfloor=\left\lfloor\eta^{\prime}(x)\right\rfloor \quad \text { and } \quad \operatorname{frac}(\eta(x))=0 \text { iff } \operatorname{frac}\left(\eta^{\prime}(x)\right)=0
$$

(3) for any $x, y \in C$: if $\eta(x), \eta^{\prime}(x) \leq c_{x}$ and $\eta(y), \eta^{\prime}(y) \leq c_{y}$, then:

$$
\operatorname{frac}(\eta(x)) \leq \operatorname{frac}(\eta(y)) \quad \text { iff } \quad \operatorname{frac}\left(\eta^{\prime}(x)\right) \leq \operatorname{frac}\left(\eta^{\prime}(y)\right) .
$$

$$
s \cong s^{\prime} \text { iff } \quad \ell=\ell^{\prime} \text { and } \eta \cong \eta^{\prime}
$$

Regions

- The clock region of $\eta \in \operatorname{Eval}(C)$, denoted $[\eta]$, is defined by:

$$
[\eta]=\left\{\eta^{\prime} \in \operatorname{Eval}(C) \mid \eta \cong \eta^{\prime}\right\}
$$

- The state region of $s=\langle\ell, \eta\rangle \in T S(T A)$ is defined by:

$$
[s]=\langle\ell,[\eta]\rangle=\left\{\left\langle s, \eta^{\prime}\right\rangle \mid \eta^{\prime} \in[\eta]\right\}
$$

Number of regions

The number of clock regions is bounded from below and above by:

$$
|C|!* \prod_{x \in C} c_{x} \leq|\underbrace{\operatorname{Eval}(C) / \cong}_{\text {number of regions }}| \leq|C|!* 2^{|C|-1} * \prod_{x \in C}\left(2 c_{x}+2\right)
$$

where for the upper bound it is assumed that $c_{x} \geq 1$ for any $x \in C$
the number of state regions is $|L o c|$ times larger

