
Verification

Lecture 22

Bernd Finkbeiner



Plan for today

▸ Timed model checking

2



REVIEW: Timed CTL

Syntax of TCTL state-formulas over AP and set C:

Φ ∶∶= true ∣ a ∣ g ∣ Φ ∧ Φ ∣ ¬Φ ∣ Eφ ∣ Aφ

where a ∈ AP, g ∈ ACC(C) and φ is a path-formula defined by:

φ ∶∶= ΦUJΦ

where J ⊆ R≥0 is an interval whose bounds are naturals

Forms of J: [n,m], (n,m], [n,m) or (n,m) for n,m ∈ N and n ≤ m

for right-open intervals,m =∞ is also allowed

3



REVIEW: Semantics of TCTL

For state s = ⟨ℓ, η⟩ in TS(TA) the satisfaction relation ⊧ is defined by:

s ⊧ true

s ⊧ a iff a ∈ L(ℓ)
s ⊧ g iff η ⊧ g

s ⊧ ¬Φ iff not s ⊧ Φ

s ⊧ Φ ∧ Ψ iff (s ⊧ Φ) and (s ⊧ Ψ)

s ⊧ Eφ iff π ⊧ φ for some π ∈ Pathsdiv(s)
s ⊧ Aφ iff π ⊧ φ for all π ∈ Pathsdiv(s)

path quantification over time-divergent paths only

4



REVIEW: Semantics of TCTL

For time-divergent path π ∈ s0
d0⇒ s1

d1⇒ . . .:

π ⊧ ΦUJ Ψ

iff

∃ i ≥ 0. si+d ⊧ Ψ for some d ∈ [0, di]with ∑i−1
k=0 dk + d ∈ J

and

∀j ≤ i. sj+d′ ⊧ Φ ∨Ψ for every d′ ∈ [0, dj]with ∑j−1
k=0

dk + d′ ≤ ∑i−1
k=0 dk + d

5



TCTL-semantics for timed automata

▸ Let TA be a timed automaton with clocks C and locations Loc

▸ For TCTL-state-formulaΦ, the satisfaction set Sat(Φ) is defined
by:

Sat(Φ) = { s ∈ Loc × Eval(C) ∣ s ⊧ Φ }

▸ TA satisfies TCTL-formulaΦ iffΦ holds in all initial states of TA:

TA ⊧ Φ if and only if ∀ℓ0 ∈ Loc0. ⟨ℓ0, η0⟩ ⊧ Φ

where η0(x) = 0 for all x ∈ C

6



Timed CTL versus CTL

▸ Due to ignoring time-convergent paths in TCTL semantics,

possibly:

TS(TA) ⊧TCTL Aφ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TCTL semantics

but TS(TA) /⊧CTL Aφ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CTL semantics

▸ CTL semantics considers all paths, timed CTL only

time-divergent paths

▸ ForΦ = AG (on Ð→ AFoff) and the light switch

TS(Switch) ⊧TCTL Φ whereas TS(TA) /⊧CTL Φ

▸ there are time-convergent paths on which location on is never

left

7



Characterizing timelock

▸ TCTL semantics is also well-defined for TAwith timelock

▸ A state is timelock-free if and only if it satisfies EG true
▸ some time-divergent path satisfies G true, i.e., there is ≥ 1

time-divergent path
▸ note: for fair CTL, the states in which a fair path starts also

satisfy EG true

▸ TA is timelock-free iff ∀s ∈ Reach(TS(TA)): s ⊧ EG true

▸ Timelocks can thus be checked by model checking

8



TCTL model checking

▸ TCTL model-checking problem: TA ⊧ Φ for non-Zeno TA

TA ⊧ Φ
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

timed automaton

iff TS(TA) ⊧ Φ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
infinite state graph

▸ Idea: consider a finite region graph RG(TA)
▸ Transform TCTL formulaΦ into an ‘‘equivalent’’ CTL-formula Φ̂

▸ Then: TA ⊧TCTL Φ iff RG(TA)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

finite state graph

⊧CTL Φ̂

9



Eliminating timing parameters: TCTL◇

▸ Eliminate all intervals J ≠ [0,∞) from TCTL formulas
▸ introduce a fresh clock, z say, that does not occur in TA
▸ s ⊧ E F J

Φ iff reset z in s ⊧ F (z ∈ J ∧ Φ)

▸ Formally: for any state s of TS(TA) it holds:

s ⊧ EΦUJ Ψ iff s{z ∶= 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state in TS(TA⊕ z)

⊧ E ((Φ ∨Ψ)U (z ∈ J) ∧Ψ)

s ⊧ AΦUJ Ψ iff s{z ∶= 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state in TS(TA⊕ z)

⊧ A ((Φ ∨Ψ)U (z ∈ J) ∧Ψ)

▸ where TA⊕ z is TA (over C) extended with z /∈ C

10



Clock equivalence

Impose an equivalence, denoted ≅, on the clock valuations such

that:

(A) Equivalent clock valuations satisfy the same clock constraints g

in TA andΦ:

η ≅ η′ ⇒ (η ⊧ g iff η′ ⊧ g)

▸ no diagonal clock constraints are considered
▸ all the constraints in TA andΦ are thus either of the form x ≤ c

or x < c

(B) Time-divergent paths originating from equivalent states are
equivalent

▸ this property guarantees that equivalent states satisfy the same

path formulas

(C) The number of equivalence classes under ≅ is finite
11



First observation

▸ η ⊧ x < c whenever η(x) < c, or equivalently, ⌊η(x)⌋ < c
▸ ⌊d⌋ = max{ c ∈ IN ∣ c ≤ d } and frac(d) = d − ⌊d⌋

▸ η ⊧ x ≤ c whenever ⌊η(x)⌋ < c or ⌊η(x)⌋ = c and frac(η(x)) = 0

⇒ η ⊧ g only depends on ⌊η(x)⌋, and whether frac(η(x)) = 0

▸ Initial suggestion: clock valuations η and η′ are equivalent if:

⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 iff frac(η′(x)) = 0

▸ Note: it is crucial that in x < c and x ≤ c, c is a natural

12



Second observation

▸ Consider location ℓwith inv(ℓ) = true and only outgoing
transitions:

▸ one guarded with x ≥ 2 (action α) and y > 1 (action β)

▸ Let state s = ⟨ℓ, η⟩with 1 < η(x) < 2 and 0 < η(y) < 1
▸ α and β are disabled, only time may elapse

▸ Transition that is enabled next depends on x −1 < y or x −1 ≥ y
▸ e.g., if frac(η(x)) ≥ frac(η(y)), action α is enabled first

▸ Suggestion for strengthening of initial proposal for all x, y ∈ C
by:

frac(η(x)) ≤ frac(η(y)) if and only if frac(η′(x)) ≤ frac(η′(y))

13



Final observation

▸ So far, clock equivalence yield a denumerable though not

finite quotient

▸ For TA ⊧ Φ only the clock constraints in TA andΦ are relevant
▸ let cx ∈ IN the largest constant with which x is compared in TA

orΦ

⇒ If η(x) > cx then the actual value of x is irrelevant
▸ constraints on ≅ so far are only relevant for clock values of x (y)

up to cx (cy)

14



Clock equivalence

Clock valuations η, η′ ∈ Eval(C) are equivalent, denoted η ≅ η′, if:

(1) for any x ∈ C: (η(x) > cx) ∧ (η′(x) > cx) or
(η(x) ≤ cx) ∧ (η′(x) ≤ cx)

(2) for any x ∈ C: if η(x), η′(x) ≤ cx then:

⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 iff frac(η′(x)) = 0

(3) for any x, y ∈ C: if η(x), η′(x) ≤ cx and η(y), η′(y) ≤ cy , then:

frac(η(x)) ≤ frac(η(y)) iff frac(η′(x)) ≤ frac(η′(y)).

s ≅ s′ iff ℓ = ℓ′ and η ≅ η′

15



Regions

▸ The clock region of η ∈ Eval(C), denoted [η], is defined by:

[η] = { η′ ∈ Eval(C) ∣ η ≅ η′ }

▸ The state region of s = ⟨ℓ, η⟩ ∈ TS(TA) is defined by:

[s] = ⟨ℓ, [η]⟩ = { ⟨s, η′⟩ ∣ η′ ∈ [η] }

16



Number of regions

The number of clock regions is bounded from below and above by:

∣C∣! ∗∏
x∈C

cx ≤ ∣ Eval(C)/≅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

number of regions

∣ ≤ ∣C∣! ∗ 2∣C∣−1 ∗∏
x∈C

(2cx + 2)

where for the upper bound it is assumed that cx ≥ 1 for any x ∈ C

the number of state regions is ∣Loc∣ times larger

17


