## Verification

Lecture 22

Bernd Finkbeiner



## Plan for today

Timed model checking

## **REVIEW: Timed CTL**

Syntax of TCTL <u>state-formulas</u> over AP and set C:

$$\Phi ::= \mathsf{true} \left| \begin{array}{c} a \end{array} \right| \left| \begin{array}{c} g \end{array} \right| \left| \begin{array}{c} \Phi \\ \wedge \end{array} \right| \left| \begin{array}{c} \neg \Phi \end{array} \right| \left| \begin{array}{c} \mathsf{E} \varphi \end{array} \right| \left| \begin{array}{c} \mathsf{A} \varphi \end{array} \right|$$

where  $a \in AP$ ,  $g \in ACC(C)$  and  $\varphi$  is a path-formula defined by:

 $\varphi ::= \Phi U^{J} \Phi$ 

where  $J \subseteq \mathbb{R}_{\geq 0}$  is an interval whose bounds are naturals Forms of J: [n, m], (n, m], [n, m) or (n, m) for  $n, m \in \mathbb{N}$  and  $n \leq m$ 

for right-open intervals,  $m = \infty$  is also allowed

## **REVIEW: Semantics of TCTL**

For state  $s = \langle \ell, \eta \rangle$  in *TS*(*TA*) the satisfaction relation  $\vDash$  is defined by:

| s ⊨ true                                |     |                                                        |
|-----------------------------------------|-----|--------------------------------------------------------|
| $s \vDash a$                            | iff | $a \in L(\ell)$                                        |
| $s \models g$                           | iff | $\eta \vDash g$                                        |
| $S\vDash \neg \Phi$                     | iff | not $s \models \Phi$                                   |
| $\mathbf{S} \vDash \Phi \ \land \ \Psi$ | iff | $(s \models \Phi)$ and $(s \models \Psi)$              |
| $s \vDash E \varphi$                    | iff | $\pi \vDash \varphi$ for some $\pi \in Paths_{div}(s)$ |
| $s \vDash A \varphi$                    | iff | $\pi \vDash \varphi$ for all $\pi \in Paths_{div}(s)$  |

path quantification over time-divergent paths only

## **REVIEW: Semantics of TCTL**

For time-divergent path  $\pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} \ldots$ :

 $\pi \vDash \Phi \mathsf{U}^{\mathsf{J}} \Psi$ 

#### iff

 $\exists i \ge 0. s_i + d \models \Psi$  for some  $d \in [0, d_i]$  with  $\sum_{k=0}^{i-1} d_k + d \in J$ and

 $\forall j \leq i. s_j + d' \models \Phi \lor \Psi$  for every  $d' \in [0, d_j]$  with  $\sum_{k=0}^{j-1} d_k + d' \leq \sum_{k=0}^{j-1} d_k + d$ 

## TCTL-semantics for timed automata

- Let *TA* be a timed automaton with clocks *C* and locations *Loc*
- For TCTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

 $Sat(\Phi) = \{ s \in Loc \times Eval(C) \mid s \models \Phi \}$ 

• TA satisfies TCTL-formula  $\Phi$  iff  $\Phi$  holds in all initial states of TA:

 $TA \models \Phi$  if and only if  $\forall \ell_0 \in Loc_0$ .  $\langle \ell_0, \eta_0 \rangle \models \Phi$ 

where  $\eta_0(x) = 0$  for all  $x \in C$ 

## Timed CTL versus CTL

Due to ignoring time-convergent paths in TCTL semantics, possibly:

$$\underbrace{TS(TA) \vDash_{\text{TCTL}} A \varphi}_{\text{TCTL semantics}} \quad \text{but} \quad \underbrace{TS(TA) \notin_{\text{CTL}} A \varphi}_{\text{CTL semantics}}$$

- CTL semantics considers all paths, timed CTL only time-divergent paths
- For  $\Phi = AG(on \longrightarrow AFoff)$  and the light switch

 $TS(Switch) \vDash_{TCTL} \Phi$  whereas  $TS(TA) \notin_{CTL} \Phi$ 

 there are time-convergent paths on which location on is never left

## Characterizing timelock

- TCTL semantics is also well-defined for TA with timelock
- A state is <u>timelock-free</u> if and only if it satisfies EG true
  - some time-divergent path satisfies G true, i.e., there is  $\geq 1$  time-divergent path
  - note: for fair CTL, the states in which a fair path starts also satisfy E G true
- *TA* is timelock-free iff  $\forall s \in Reach(TS(TA))$ :  $s \models EG$  true
- Timelocks can thus be checked by model checking

# TCTL model checking

• TCTL model-checking problem:  $TA \models \Phi$  for non-Zeno TA

$$\underbrace{TA \models \Phi}_{\text{timed automaton}} \quad \text{iff} \quad \underbrace{TS(TA) \models \Phi}_{\text{infinite state graph}}$$

- Idea: consider a finite region graph RG(TA)
- Transform TCTL formula  $\Phi$  into an "equivalent" CTL-formula  $\widehat{\Phi}$
- Then:  $TA \vDash_{\mathsf{TCTL}} \Phi$  iff  $RG(TA) \vDash_{\mathsf{CTL}} \widehat{\Phi}$

finite state graph

## Eliminating timing parameters: TCTL $_{\diamond}$

- Eliminate all intervals  $J \neq [0, \infty)$  from TCTL formulas
  - introduce a fresh clock, z say, that does not occur in TA
  - $s \models \mathsf{E} \mathsf{F}^{\mathsf{J}} \Phi$  iff reset z in  $s \models \mathsf{F} (z \in \mathsf{J} \land \Phi)$
- ► Formally: for any state *s* of *TS*(*TA*) it holds:

$$s \vDash E \Phi U^{J} \Psi$$
 iff  $\underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \vDash E((\Phi \lor \Psi) U(z \in J) \land \Psi)$ 

$$s \models A \Phi U^{J} \Psi$$
 iff  $\underbrace{s\{z := 0\}}_{\text{state in } TS(TA \oplus z)} \models A((\Phi \lor \Psi) U(z \in J) \land \Psi)$ 

• where  $TA \oplus z$  is TA (over C) extended with  $z \notin C$ 

# **Clock equivalence**

Impose an equivalence, denoted  $\cong$ , on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints g in *TA* and  $\Phi$ :

$$\eta \cong \eta' \Rightarrow \begin{pmatrix} \eta \vDash g & \text{iff} & \eta' \vDash g \end{pmatrix}$$

- no diagonal clock constraints are considered
- all the constraints in *TA* and Φ are thus either of the form x ≤ c or x < c</p>
- (B) Time-divergent paths originating from equivalent states are equivalent
  - this property guarantees that equivalent states satisfy the same path formulas
- (C) The number of equivalence classes under  $\cong$  is finite

### **First observation**

- $\eta \models x < c$  whenever  $\eta(x) < c$ , or equivalently,  $\lfloor \eta(x) \rfloor < c$ •  $\lfloor d \rfloor = \max\{c \in \mathbb{N} \mid c \le d\}$  and  $frac(d) = d - \lfloor d \rfloor$
- $\eta \models x \le c$  whenever  $\lfloor \eta(x) \rfloor < c$  or  $\lfloor \eta(x) \rfloor = c$  and  $frac(\eta(x)) = 0$
- $\Rightarrow \eta \models g$  only depends on  $\lfloor \eta(x) \rfloor$ , and whether  $frac(\eta(x)) = 0$ 
  - Initial suggestion: clock valuations  $\eta$  and  $\eta'$  are equivalent if:

 $\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$  and  $frac(\eta(x)) = 0$  iff  $frac(\eta'(x)) = 0$ 

▶ Note: it is crucial that in *x* < *c* and *x* ≤ *c*, *c* is a natural

## Second observation

- Consider location l with inv(l) = true and only outgoing transitions:
  - one guarded with  $x \ge 2$  (action  $\alpha$ ) and y > 1 (action  $\beta$ )
- Let state  $s = \langle \ell, \eta \rangle$  with  $1 < \eta(x) < 2$  and  $0 < \eta(y) < 1$ 
  - $\alpha$  and  $\beta$  are disabled, only time may elapse
- ▶ Transition that is enabled next depends on x 1 < y or  $x 1 \ge y$ 
  - e.g., if  $frac(\eta(x)) \ge frac(\eta(y))$ , action  $\alpha$  is enabled first
- Suggestion for strengthening of initial proposal for all x, y ∈ C by:

 $frac(\eta(x)) \leq frac(\eta(y))$  if and only if  $frac(\eta'(x)) \leq frac(\eta'(y))$ 

# **Final observation**

- So far, clock equivalence yield a denumerable though not finite quotient
- For  $TA \models \Phi$  only the clock constraints in TA and  $\Phi$  are relevant
  - let  $c_x \in \mathbb{N}$  the <u>largest constant</u> with which x is compared in TA or  $\Phi$
- $\Rightarrow$  If  $\eta(x) > c_x$  then the actual value of x is irrelevant
  - ► constraints on  $\cong$  so far are only relevant for clock values of x(y)up to  $c_x(c_y)$

## **Clock equivalence**

Clock valuations  $\eta, \eta' \in Eval(C)$  are <u>equivalent</u>, denoted  $\eta \cong \eta'$ , if:

(1) for any 
$$x \in C$$
:  $(\eta(x) > c_x) \land (\eta'(x) > c_x)$  or  
 $(\eta(x) \le c_x) \land (\eta'(x) \le c_x)$ 

(2) for any  $x \in C$ : if  $\eta(x), \eta'(x) \leq c_x$  then:

 $\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$  and  $\operatorname{frac}(\eta(x)) = 0$  iff  $\operatorname{frac}(\eta'(x)) = 0$ 

(3) for any  $x, y \in C$ : if  $\eta(x), \eta'(x) \le c_x$  and  $\eta(y), \eta'(y) \le c_y$ , then:

 $\operatorname{frac}(\eta(x)) \leq \operatorname{frac}(\eta(y)) \quad \operatorname{iff} \quad \operatorname{frac}(\eta'(x)) \leq \operatorname{frac}(\eta'(y)).$ 

$$s \cong s'$$
 iff  $\ell = \ell'$  and  $\eta \cong \eta'$ 

#### Regions

• The <u>clock region</u> of  $\eta \in Eval(C)$ , denoted  $[\eta]$ , is defined by:

$$[\eta] = \{ \eta' \in Eval(C) \mid \eta \cong \eta' \}$$

• The state region of  $s = \langle \ell, \eta \rangle \in TS(TA)$  is defined by:

$$[s] = \langle \ell, [\eta] \rangle = \{ \langle s, \eta' \rangle \mid \eta' \in [\eta] \}$$

## Number of regions

The number of clock regions is bounded from below and above by:

$$|C|! * \prod_{x \in C} c_x \leq \left| \underbrace{Eval(C)/\cong}_{\text{number of regions}} \right| \leq |C|! * 2^{|C|-1} * \prod_{x \in C} (2c_x + 2)$$

where for the upper bound it is assumed that  $c_x \ge 1$  for any  $x \in C$ 

the number of state regions is |Loc| times larger