Verification

Lecture 21

Bernd Finkbeiner

Plan for today

- Stutter trace equivalence
- Stutter bisimulation

Motivation

- Bisimulation, simulation and trace equivalence are strong
- each transition $s \rightarrow s^{\prime}$ must be matched by a transition of a related state
- for comparing models at different abstraction levels, this is too fine
- consider e.g., modeling an abstract action by a sequence of concrete actions
- Idea: allow for sequences of "invisible" actions
- each transition $s \rightarrow s^{\prime}$ must be matched by a path fragment of a related state
- matching means: ending in a state related to s^{\prime}, and all previous states invisible
- Abstraction of such internal computations yields coarser quotients
- but: what kind of properties are preserved?
- but: how to treat infinite internal computations?

Stutter equivalence

- $s \rightarrow s^{\prime}$ in transition system $T S$ is a stutter step if $L(s)=L\left(s^{\prime}\right)$
- stutter steps do not affect the state labels of successor states
- Paths π_{1} and π_{2} are stutter equivalent, denoted $\pi_{1} \cong \pi_{2}$:
- if there exists an infinite sequence $A_{0} A_{1} A_{2} \ldots$ with $A_{i} \subseteq A P$ and
- natural numbers $n_{0}, n_{1}, n_{2}, \ldots, m_{0}, m_{1}, m_{2}, \ldots \geq 1$ such that:

$$
\begin{aligned}
\operatorname{trace}\left(\pi_{1}\right) & =\underbrace{A_{0} \ldots A_{0}}_{n_{0} \text {-times }} \underbrace{A_{1} \ldots A_{1}}_{n_{1} \text {-times }} \underbrace{A_{2} \ldots A_{2}}_{n_{2} \text {-times }} \ldots \\
\operatorname{trace}\left(\pi_{2}\right) & =\underbrace{\underbrace{A_{1} \ldots, A_{1}}_{m_{1}}}_{m_{0}, \ldots, A_{0}} \underbrace{A_{2} \ldots A_{2}}_{m_{2} \text {-times }} \ldots
\end{aligned}
$$

$\pi_{1} \cong \pi_{2}$ if their traces only differ in their stutter steps
i.e., if both their traces are of the form $A_{0}^{+} A_{1}^{+} A_{2}^{+} \ldots$ for $A_{i} \subseteq A P$

Stutter-trace equivalence

Transition systems $T S_{i}$ over $A P, i=1,2$, are stutter-trace equivalent:

$$
\begin{gathered}
T S_{1} \cong T S_{2} \quad \text { if and only if } \quad T S_{1} \sqsubseteq T S_{2} \text { and } T S_{2} \sqsubseteq T S_{1} \\
\text { where } \sqsubseteq \text { is defined by: }
\end{gathered}
$$

$T S_{1} \sqsubseteq T S_{2} \quad$ iff $\quad \forall \sigma_{1} \in \operatorname{Traces}\left(T S_{1}\right)\left(\exists \sigma_{2} \in \operatorname{Traces}\left(T S_{2}\right) . \sigma_{1} \cong \sigma_{2}\right)$
clearly: $\operatorname{Traces}\left(T S_{1}\right)=\operatorname{Traces}\left(T S_{2}\right)$ implies $T S_{1} \cong T S_{2}$, but not always the reverse

Example

The X operator

Stutter equivalence does not preserve the validity of next-formulas:

$$
\sigma_{1}=A B B B \ldots \text { and } \sigma_{2}=A A A B B B B \ldots \text { for } A, B \subseteq A P \text { and } A \neq B
$$

Then for $b \in B \backslash A$:

$$
\sigma_{1} \cong \sigma_{2} \quad \text { but } \quad \sigma_{1} \vDash X b \quad \text { and } \quad \sigma_{2} \not \models X b .
$$

\Rightarrow a logical characterization of \cong can only be obtained by omitting X in fact, it turns out that this is the only modal operator that is not preserved by $\cong!$

Stutter trace and $\mathrm{LTL}_{\bigcirc \bigcirc}$ equivalence

> For traces σ_{1} and σ_{2} over $2^{A P}$ it holds: $\sigma_{1} \cong \sigma_{2} \Rightarrow\left(\sigma_{1} \vDash \varphi\right.$ if and only if $\left.\sigma_{2} \vDash \varphi\right)$ \quad for any $\mathrm{LTL}_{\backslash \bigcirc}$ formula φ over $A P$
$\mathrm{LTL}_{\backslash \bigcirc}$ denotes the class of LTL formulas without the next step operator \bigcirc

Stutter trace and $\mathrm{LTL}_{\bigcirc \bigcirc}$ equivalence

For transition systems $T S_{1}, T S_{2}$ over $A P$ (without terminal states):

$$
\text { (a) } T S_{1} \cong T S_{2} \text { implies } T S_{1} \equiv \mathrm{LTL}_{\bigcirc \bigcirc} T S_{2}
$$

(b) if $T S_{1} \sqsubseteq T S_{2}$ then for any $\mathrm{LTL}_{\backslash}$ formula $\varphi: T S_{2} \vDash \varphi$ implies $T S_{1} \vDash \varphi$

Stutter insensitivity

- LT property P is stutter-insensitive if $[\sigma] \cong \subseteq P$, for any $\sigma \in P$
- P is stutter insensitive if it is closed under stutter equivalence
- For any stutter-insensitive LT property P :

$$
T S_{1} \cong T S_{2} \quad \text { implies } \quad T S_{1} \vDash P \text { iff } T S_{2} \vDash P
$$

- Moreover: $T S_{1} \sqsubseteq T S_{2}$ and $T S_{2} \vDash P$ implies $T S_{1} \vDash P$
- For any $\mathrm{LTL}_{, ~}$ formula φ, LT property $\operatorname{Words}(\varphi)$ is stutter insensitive
- but: some stutter insensitive LT properties cannot be expressed in LTL,
- for LTL formula φ with Words (φ) stutter insensitive:

$$
\text { there exists } \psi \in \mathrm{LTL}_{\backslash \bigcirc} \text { such that } \psi \equiv \angle T L \varphi
$$

Stutter bisimulation

Stutter bisimulation

Let $T S=(S, A c t, \rightarrow, I, A P, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$ \mathcal{R} is a stutter-bisimulation for $T S$ if for all $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:

1. $L\left(s_{1}\right)=L\left(s_{2}\right)$
2. if $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ with $\left(s_{1}, s_{1}^{\prime}\right) \notin \mathcal{R}$, then there exists a finite path fragment $s_{2} u_{1} \ldots u_{n} s_{2}^{\prime}$ with $n \geq 0$ and $\left(s_{1}, u_{i}\right) \in \mathcal{R}$ and $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
3. if $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $\left(s_{1}, s_{2}^{\prime}\right) \notin \mathcal{R}$, then there exists a finite path fragment $s_{1} v_{1} \ldots v_{n} s_{1}^{\prime}$ with $n \geq 0$ and $\left(v_{i}, s_{2}\right) \in \mathcal{R}$ and $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \mathcal{R}$
s_{1}, s_{2} are stutter-bisimulation equivalent, denoted $s_{1} \approx \tau s_{2}$, if there exists a stutter bisimulation \mathcal{R} for $T S$ with $\left(s_{1}, s_{2}\right) \in \mathcal{R}$

Example

For $A P=\left\{c_{1}, c_{2}\right\}, \mathcal{R}$ inducing the following partitioning of the state space is a stutter bisimulation:
$\left\{\left\{\left\langle n_{1}, n_{2}\right\rangle,\left\langle n_{1}, w_{2}\right\rangle,\left\langle w_{1}, n_{2}\right\rangle,\left\langle w_{1}, w_{2}\right\rangle\right\},\left\{\left\langle c_{1}, n_{2}\right\rangle,\left\langle c_{1}, w_{2}\right\rangle\right\},\left\{\left\langle n_{1}, c_{2}\right\rangle,\left\langle w_{1}, c_{2}\right\rangle\right\}\right\}$
(Values of y omitted here.) In fact, this is the coarsest stutter bisimulation, i.e., \mathcal{R} equals $\approx_{\text {Ts }}$

Stutter-bisimilar transition systems

Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, I_{i}, A P, L_{i}\right), i=1,2$, be transition systems over $A P$ A stutter bisimulation for $\left(T S_{1}, T S_{2}\right)$ is a stutter bisimilation relation on $T S_{1} \oplus T S_{2}$ such that:

- $\forall s_{1} \in I_{1} .\left(\exists s_{2} \in I_{2} .\left(s_{1}, s_{2}\right) \in \mathcal{R}\right)$ and
- $\forall s_{2} \in I_{2} .\left(\exists s_{1} \in I_{1} .\left(s_{1}, s_{2}\right) \in \mathcal{R}\right)$.

Notation: $T S_{1} \oplus T S_{2}=\left(S_{1} \dot{\cup} S_{2}, A c t_{1} \cup A c t_{2}, \rightarrow_{1} \cup \rightarrow_{2}, I_{1} \cup I_{2}, A P\right.$,

$$
\left.L: s \mapsto L_{i}(s) \text { for } s \in S_{i}\right)
$$

$T S_{1}$ and $T S_{2}$ are stutter-bisimulation equivalent (stutter-bisimilar, for short), denoted $T S_{1} \approx T S_{2}$, if there exists a stutter bisimulation for $\left(T S_{1}, T S_{2}\right)$

Stutter bisimulation quotient

For $T S=(S, A c t, \rightarrow, I, A P, L)$ and stutter bisimulation $\approx T S \subseteq S \times S$ let $T S / \approx^{\text {div }}=\left(S^{\prime},\{\tau\}, \rightarrow^{\prime}, I^{\prime}, A P, L^{\prime}\right), \quad$ be the quotient of $T S$ under $\approx s$ where

- $S^{\prime}=S / \approx s=\left\{[q]_{\approx_{s}} \mid q \in S\right\}$ with $[q]_{\approx s}=\left\{q^{\prime} \in S \mid q \approx s q^{\prime}\right\}$
- $I^{\prime}=\left\{[q]_{\sim_{s}} \mid q \in I\right\}$
- \rightarrow^{\prime} is defined by:

$$
\frac{s \xrightarrow{\alpha} s^{\prime} \text { and } s \not \approx s^{\prime}}{[s]_{\approx} \xrightarrow{\tau}\left[s^{\prime}\right]_{\approx}}
$$

- $L^{\prime}\left([q]_{\approx s}\right)=L(q)$
note that (a) no self-loops occur in $T S / \approx_{s}$ and (b) $T S \approx_{s} T S / \approx_{s}$

Stutter trace and stutter bisimulation

For transition systems $T S_{1}$ and $T S_{2}$ over $A P$:

- Known fact: $T S_{1} \sim T S_{2}$ implies $\operatorname{Traces}\left(T S_{1}\right)=\operatorname{Traces}\left(T S_{2}\right)$
- But not: $T S_{1} \approx T S_{2}$ implies $T S_{1} \cong T S_{2}$!
- So:
- bisimilar transition systems are trace equivalent
- but stutter-bisimilar transition systems are not always stutter trace-equivalent!
- Why? Stutter paths!
- stutter bisimulation does not impose any constraint on such paths
- but \cong requires the existence of a stutter equivalent trace

Stutter trace and stutter bisimulation are incomparable

Stutter bisimulation does not preserve LTL $_{\text {○ }}$

$T S_{\text {left }} \approx T S_{\text {right }} \quad$ but $\quad T S_{\text {left }} \neq \diamond a$ and $T S_{\text {right }} \vDash \diamond a$

```
stutter-trace inclusion:
    TS \sqsubseteqTS [ iff }\quad\forall\mp@subsup{\sigma}{1}{}\in\operatorname{Traces}(T\mp@subsup{S}{1}{})\exists\mp@subsup{\sigma}{2}{}\in\operatorname{Traces}(T\mp@subsup{S}{2}{}).\mp@subsup{\sigma}{1}{}\cong\mp@subsup{\sigma}{2}{
stutter-trace equivalence:
```



```
stutter-bisimulation equivalence:
    TS }\approxT\mp@subsup{S}{2}{}\quad\mathrm{ iff there exists a stutter-bisimulation for (TS 
stutter-bisimulation equivalence with divergence:
    TS % div TS iff there exists a divergence-sensitive
    stutter bisimulation for ( }T\mp@subsup{S}{1}{},T\mp@subsup{S}{2}{}
```


Divergence sensitivity

- Stutter paths are paths that only consist of stutter steps
- no restrictions are imposed on such paths by stutter bisimulation
\Rightarrow stutter trace-equivalence (\cong) and stutter bisimulation (\approx) are incomparable
$\Rightarrow \approx$ and LTL $_{\text {, } \bigcirc \text { equivalence are incomparable }}$
- Stutter paths diverge: they never leave an equivalence class
- Remedy: only relate divergent states or non-divergent states
- divergent state = a state that has a stutter path
\Rightarrow relate states only if they either both have stutter paths or none of them
- This yields divergence-sensitive stutter bisimulation ($\approx^{\text {div }}$)
$\Rightarrow \approx$ div is strictly finer than $\cong($ and $\approx)$
$\Rightarrow \approx$ div and $C T L^{*} \times$ equivalence coincide

Divergence sensitivity

Let $T S$ be a transition system and \mathcal{R} an equivalence relation on S

- s is $\underline{\mathcal{R} \text {-divergent }}$ if there exists an infinite path fragment $s s_{1} s_{2} \ldots \in \operatorname{Paths}(s)$ such that $\left(s, s_{j}\right) \in \mathcal{R}$ for all $j>0$
- s is \mathcal{R}-divergent if there is an infinite path starting in s that only visits $[s]_{\mathcal{R}}$
- \mathcal{R} is divergence sensitive if for any $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:
s_{1} is \mathcal{R}-divergent implies s_{2} is \mathcal{R}-divergent
- \mathcal{R} is divergence-sensitive if in any $[s]_{\mathcal{R}}$ either all or none of the states are \mathcal{R}-divergent

Divergence-sensitive stutter bisimulation

s_{1}, s_{2} in $T S$ are divergent stutter-bisimilar, denoted $s_{1} \approx{ }_{T S}^{\text {div }} s_{2}$, if:
\exists divergent-sensitive stutter bisimulation \mathcal{R} on $T S$ such that $\left(s_{1}, s_{2}\right) \in \mathcal{R}$
$\approx_{T S}^{\text {div }}$ is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS
and the union of all divergence-sensitive stutter bisimulations for TS

Quotient transition system under $\approx^{\text {div }}$

For $T S=(S, A c t, \rightarrow, I, A P, L)$ and divergent-sensitive stutter bisimulation $\approx^{d i v} \subseteq S \times S$,

$$
T S / \approx^{\text {div }}=\left(S^{\prime},\{\tau\}, \rightarrow^{\prime}, I^{\prime}, A P, L^{\prime}\right) \text { is the quotient of } T S \text { under } \approx^{\text {div }}
$$

where

- S^{\prime}, I^{\prime} and L^{\prime} are defined as usual (for eq. classes $[s]_{\text {div }}$ under $\approx^{\text {div }}$)
- \rightarrow^{\prime} is defined by:

$$
\frac{s \xrightarrow{\alpha} s^{\prime} \wedge s \not \not^{\text {div }} s^{\prime}}{[s]_{\text {div }} \xrightarrow{\tau}{ }_{\text {div }}^{\prime}\left[s^{\prime}\right]_{\text {div }}} \quad \text { and } \quad \frac{s \text { is } \approx^{\text {div }} \text {-divergent }}{[s]_{\text {div }} \xrightarrow{\tau}{ }_{\text {div }}^{\prime}[s]_{\text {div }}}
$$

note that $T S \approx^{\text {div }} T S / \approx^{\text {div }}$

Example

$$
T S
$$

$T S / \approx s$
$T S / \approx_{S}^{\text {div }}$

$\approx^{d i v}$ on paths

For infinite path fragments $\pi_{i}=s_{0, i} s_{1, i} s_{2, i} \ldots, i=1,2$, in $T S$:

$$
\pi_{1} \approx_{T S}^{\operatorname{div}} \pi_{2}
$$

if and only if there exists an infinite sequence of indexes

$$
0=j_{0}<j_{1}<j_{2}<\ldots \quad \text { and } \quad 0=k_{0}<k_{1}<k_{2}<\ldots
$$

with:

$$
s_{j, 1} \approx_{T S}^{\text {div }} s_{k, 2} \text { for all } j_{r-1} \leq j<j_{r} \text { and } k_{r-1} \leq k<k_{r} \text { with } r=1,2, \ldots .
$$

Comparing paths by \approx div

Let $T S=(S, A c t, \rightarrow, I, A P, L), s, t \in S$. Then:
$s \approx_{T S}^{d i v} t$ implies $\forall \pi_{1} \in \operatorname{Paths}(s) .\left(\exists \pi_{2} \in \operatorname{Paths}(t) . \pi_{1} \approx_{T S}^{d i v} \pi_{2}\right)$

Stutter equivalence versus $\approx d i v$

Let $T S_{1}$ and $T S_{2}$ be transition systems over $A P$. Then:

stutter-bisimulation equivalence stutter-trace equivalence with divergence
whereas the reverse implication does not hold in general

$C T L_{* x}^{*}$ equivalence and \approx div

For finite transition systems $T S$ without terminal states, and s_{1}, s_{2} in $T S$:

$$
s_{1} \approx_{T s}^{d i v} s_{2} \quad \text { iff } \quad s_{1} \equiv \mathrm{CTL}_{1 \times}^{*} s_{2} \text { iff } s_{1} \equiv \mathrm{CTL}_{\backslash x} s_{2}
$$

divergent-sensitive stutter bisimulation coincides with $\mathrm{CTL}_{, ~}$ and $\mathrm{CTL}_{\times x}^{*}$ equivalence

Comparative semantics

