
Verification

Lecture 21

Bernd Finkbeiner



Plan for today

▸ Stutter trace equivalence

▸ Stutter bisimulation

2



Motivation

▸ Bisimulation, simulation and trace equivalence are strong
▸ each transition s→ s′ must be matched by a transition of a

related state
▸ for comparing models at different abstraction levels, this is too

fine
▸ consider e.g., modeling an abstract action by a sequence of

concrete actions

▸ Idea: allow for sequences of ‘‘invisible’’ actions
▸ each transition s→ s′ must be matched by a path fragment of a

related state
▸ matching means: ending in a state related to s′, and all previous

states invisible

▸ Abstraction of such internal computations yields coarser
quotients

▸ but: what kind of properties are preserved?
▸ but: how to treat infinite internal computations?

3



Stutter equivalence

▸ s→ s′ in transition system TS is a stutter step if L(s) = L(s′)
▸ stutter steps do not affect the state labels of successor states

▸ Paths π1 and π2 are stutter equivalent, denoted π1 ≅ π2:
▸ if there exists an infinite sequence A0A1A2 . . . with Ai ⊆ AP and
▸ natural numbers n0 , n1 , n2 , . . .,m0 ,m1 ,m2 , . . . ≥ 1 such that:

trace(π1) = A0 . . .A0
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n0-times

A1 . . .A1
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n1-times

A2 . . .A2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n2-times

. . .

trace(π2) = A0 , . . . ,A0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m0-times

A1 . . .A1
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
m1-times

A2 . . .A2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
m2-times

. . .

π1 ≅ π2 if their traces only differ in their stutter steps

i.e., if both their traces are of the form A+0A
+

1A
+

2 . . . for Ai ⊆ AP

4



Stutter-trace equivalence

Transition systems TSi over AP, i=1, 2, are stutter-trace equivalent:

TS1 ≅ TS2 if and only if TS1 ⊑ TS2 and TS2 ⊑ TS1

where ⊑ is defined by:

TS1 ⊑ TS2 iff ∀σ1 ∈ Traces(TS1) (∃σ2 ∈ Traces(TS2). σ1 ≅ σ2 )

clearly: Traces(TS1) = Traces(TS2) implies TS1 ≅ TS2, but not always the

reverse

5



Example

s1 {a}

TS1

s0 {a}

s2 ∅

t0 {a}

TS2

t1 ∅

u0 {a}

TS3

u1 ∅

u2 {a}

6



The X operator

Stutter equivalence does not preserve the validity of next-formulas:

σ1 = ABBB . . . and σ2 = AAABBBB . . . for A, B ⊆ AP and A ≠ B

Then for b ∈ B ∖ A:

σ1 ≅ σ2 but σ1 ⊧ Xb and σ2 /⊧ Xb.

⇒ a logical characterization of ≅ can only be obtained by omitting X

in fact, it turns out that this is the only modal operator that is not

preserved by ≅ !

7



Stutter trace and LTL∖◯ equivalence

For traces σ1 and σ2 over 2
AP it holds:

σ1 ≅ σ2 ⇒ (σ1 ⊧ φ if and only if σ2 ⊧ φ)

for any LTL∖◯ formula φ over AP

LTL∖◯ denotes the class of LTL formulas without the next step operator◯

8



Stutter trace and LTL∖◯ equivalence

For transition systems TS1, TS2 over AP (without terminal states):

(a) TS1 ≅ TS2 implies TS1 ≡LTL∖◯
TS2

(b) if TS1 ⊑ TS2 then for any LTL∖◯ formula φ: TS2 ⊧ φ implies TS1 ⊧ φ

9



Stutter insensitivity

▸ LT property P is stutter-insensitive if [σ]≅ ⊆ P, for any σ ∈ P
▸ P is stutter insensitive if it is closed under stutter equivalence

▸ For any stutter-insensitive LT property P:

TS1 ≅ TS2 implies TS1 ⊧ P iff TS2 ⊧ P

▸ Moreover: TS1 ⊑ TS2 and TS2 ⊧ P implies TS1 ⊧ P

▸ For any LTL∖◯ formula φ, LT propertyWords(φ) is stutter
insensitive

▸ but: some stutter insensitive LT properties cannot be expressed

in LTL∖◯
▸ for LTL formula φ withWords(φ) stutter insensitive:

there exists ψ ∈ LTL∖◯ such that ψ ≡LTL φ

10



Stutter bisimulation

s1 ≈ s2
↓

s1 ≈ u1
↓

s1 ≈ s2 s1 ≈ u2
↓ can be completed to ↓
s′1 ⋮
(with s1 /≈ s′1) ↓

s1 ≈ un
↓ ↓
s′1 ≈ s′2

11



Stutter bisimulation

Let TS = (S,Act,→, I,AP, L) be a transition system andR ⊆ S × S
R is a stutter-bisimulation for TS if for all (s1, s2) ∈R:

1. L(s1) = L(s2)
2. if s′1 ∈ Post(s1)with (s1, s

′

1) /∈R, then there exists a finite path

fragment s2 u1 . . . un s
′

2 with n ≥ 0 and (s1, ui) ∈R and

(s′1, s
′

2) ∈R
3. if s′2 ∈ Post(s2)with (s1, s

′

2) /∈R, then there exists a finite path

fragment s1 v1 . . . vn s
′

1 with n ≥ 0 and (vi , s2) ∈R and

(s′1, s
′

2) ∈R

s1 , s2 are stutter-bisimulation equivalent, denoted s1 ≈TS s2, if there exists a stutter

bisimulationR for TSwith (s1 , s2) ∈ R

12



Example

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

For AP = {c1 , c2},R inducing the following partitioning of the state space

is a stutter bisimulation:

{{⟨n1 , n2⟩, ⟨n1 ,w2⟩, ⟨w1 , n2⟩, ⟨w1 ,w2⟩}, {⟨c1 , n2⟩, ⟨c1 ,w2⟩}, {⟨n1 , c2⟩, ⟨w1 , c2⟩}}

(Values of y omitted here.) In fact, this is the coarsest stutter bisimulation,

i.e.,R equals ≈TS 13



Stutter-bisimilar transition systems

Let TSi = (Si ,Acti ,→i , Ii, AP, Li), i = 1, 2, be transition systems over AP

A stutter bisimulation for (TS1, TS2) is a stutter bisimilation relation

on TS1 ⊕ TS2 such that:

▸ ∀s1 ∈ I1. (∃s2 ∈ I2. (s1, s2) ∈R) and
▸ ∀s2 ∈ I2. (∃s1 ∈ I1. (s1, s2) ∈R).

Notation: TS1 ⊕ TS2 = (S1
.
∪ S2,Act1 ∪ Act2,→1 ∪→2, I1 ∪ I2,AP,

L ∶ s↦ Li(s) for s ∈ Si)

TS1 and TS2 are stutter-bisimulation equivalent (stutter-bisimilar, for

short), denoted TS1 ≈ TS2, if there exists a stutter bisimulation for (TS1 , TS2)

14



Stutter bisimulation quotient

For TS = (S,Act,→, I,AP, L) and stutter bisimulation ≈TS ⊆ S × S let

TS/≈div = (S′, { τ },→′, I′,AP, L′), be the quotient of TS under ≈S

where

▸ S′ = S/≈S = { [q]≈S ∣ q ∈ S}with [q]≈S = {q
′
∈ S ∣ q ≈S q′ }

▸ I′ = { [q]≈S ∣ q ∈ I }

▸ →′ is defined by:
s α−−→ s′ and s /≈ s′

[s]≈ τ−−→′ [s′]≈
▸ L′([q]≈S) = L(q)

note that (a) no self-loops occur in TS/≈S and (b) TS ≈S TS/≈S

15



Stutter trace and stutter bisimulation

For transition systems TS1 and TS2 over AP:

▸ Known fact: TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)
▸ But not: TS1 ≈ TS2 implies TS1 ≅ TS2!

▸ So:
▸ bisimilar transition systems are trace equivalent
▸ but stutter-bisimilar transition systems are not always stutter

trace-equivalent!

▸ Why? Stutter paths!
▸ stutter bisimulation does not impose any constraint on such

paths
▸ but ≅ requires the existence of a stutter equivalent trace

16



Stutter trace and stutter bisimulation are incomparable

∼
=

6≈
6∼=

≈

17



Stutter bisimulation does not preserve LTL∖◯

t0

∅

t1

{a}

s0

∅

s1

{a}

TSleft ≈ TSright but TSleft /⊧◇a and TSright ⊧◇a

18



stutter-trace inclusion:

TS1 ⊑ TS2 iff ∀σ1 ∈ Traces(TS1) ∃σ2 ∈ Traces(TS2). σ1 ≅ σ2

stutter-trace equivalence:

TS1 ≅ TS2 iff TS1 ⊑ TS2 and TS2 ⊑ TS1

stutter-bisimulation equivalence:

TS1 ≈ TS2 iff there exists a stutter-bisimulation for (TS1 , TS2)

stutter-bisimulation equivalence with divergence:

TS1 ≈
div TS2 iff there exists a divergence-sensitive

stutter bisimulation for (TS1 , TS2)

19



Divergence sensitivity

▸ Stutter paths are paths that only consist of stutter steps
▸ no restrictions are imposed on such paths by stutter

bisimulation

⇒ stutter trace-equivalence (≅ ) and stutter bisimulation (≈) are

incomparable

⇒ ≈ and LTL∖◯ equivalence are incomparable

▸ Stutter paths diverge: they never leave an equivalence class

▸ Remedy: only relate divergent states or non-divergent states
▸ divergent state = a state that has a stutter path

⇒ relate states only if they either both have stutter paths or none

of them

▸ This yields divergence-sensitive stutter bisimulation (≈div)

⇒ ≈
div is strictly finer than ≅ (and ≈)

⇒ ≈
div and CTL∗∖X equivalence coincide

20



Divergence sensitivity

Let TS be a transition system andR an equivalence relation on S

▸ s isR-divergent if there exists an infinite path fragment

s s1 s2 . . . ∈ Paths(s) such that (s, sj) ∈R for all j > 0
▸ s isR-divergent if there is an infinite path starting in s that only

visits [s]R
▸ R is divergence sensitive if for any (s1, s2) ∈R:

s1 isR-divergent implies s2 isR-divergent

▸ R is divergence-sensitive if in any [s]R either all or none of the

states areR-divergent

21



Divergence-sensitive stutter bisimulation

s1, s2 in TS are divergent stutter-bisimilar, denoted s1 ≈
div
TS s2, if:

∃ divergent-sensitive stutter bisimulationR on TS such that (s1, s2) ∈R

≈
div
TS is an equivalence, the coarsest divergence-sensitive stutter

bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

22



Quotient transition system under ≈div

For TS = (S,Act,→, I,AP, L) and divergent-sensitive stutter

bisimulation ≈div ⊆ S × S,

TS/≈div = (S′, { τ },→′, I′,AP, L′) is the quotient of TS under ≈div

where

▸ S′, I′ and L′ are defined as usual (for eq. classes [s]div under ≈div)
▸ →′ is defined by:

s α−−→ s′ ∧ s /≈div s′

[s]div
τ−−→ ′div [s

′]div
and

s is ≈div-divergent

[s]div
τ−−→ ′div [s]div

note that TS ≈div TS/≈div

23



Example

s3

∅

s2

{a}

s0

{a}

s1

{a}

TS

[s3]≈S

∅

[s0]≈S

{a}

TS/≈S

[s3]≈div
S

∅

[s2]≈div
S

{a}

[s0]div

{a}

TS/≈divS

24



≈div on paths

For infinite path fragments πi = s0,i s1,i s2,i . . ., i = 1, 2, in TS:

π1 ≈
div
TS π2

if and only if there exists an infinite sequence of indexes

0 = j0 < j1 < j2 < . . . and 0 = k0 < k1 < k2 < . . .

with:

sj,1 ≈
div
TS sk,2 for all jr−1 ≤ j < jr and kr−1 ≤ k < kr with r = 1, 2, . . ..

25



Comparing paths by ≈div

Let TS = (S,Act,→, I,AP, L), s, t ∈ S. Then:

s ≈divTS t implies ∀π1 ∈ Paths(s). (∃π2 ∈ Paths(t). π1 ≈divTS π2)

26



Stutter equivalence versus ≈div

Let TS1 and TS2 be transition systems over AP. Then:

TS1 ≈
div TS2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
stutter-bisimulation equivalence

with divergence

implies TS1 ≅ TS2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

stutter-trace equivalence

whereas the reverse implication does not hold in general

27



CTL∗
∖X
equivalence and ≈div

For finite transition systems TSwithout terminal states, and s1, s2 in TS:

s1 ≈
div
TS s2 iff s1 ≡CTL∗∖X

s2 iff s1 ≡CTL∖X s2

divergent-sensitive stutter bisimulation coincides with CTL∖X and CTL∗∖X
equivalence

28



Comparative semantics

LTL∖◯ equivalence

bisimulation equivalence
TS1 ∼ TS2

stutter bisimulation equivalence
divergence sensitive

TS1 ≈÷ TS2

trace equivalence
Traces(T1) = Traces(TS2)

stutter trace-equivalence
TS1 ≅ TS2

Traces(T1) ⊆ Traces(TS2)
trace inclusion

stutter trace inclusion
TS1 ⊑ TS2

CTL∗∖X equivalence

CTL∗ equivalence LTL equivalence

29


