Verification

Lecture 21

Bernd Finkbeiner

Plan for today

- Stutter trace equivalence
- Stutter bisimulation

Motivation

- Bisimulation, simulation and trace equivalence are strong
 - each transition $s \rightarrow s'$ must be matched by a transition of a related state
 - for comparing models at different abstraction levels, this is too fine
 - consider e.g., modeling an abstract action by a sequence of concrete actions
- Idea: allow for sequences of "invisible" actions
 - each transition $s \rightarrow s'$ must be matched by a path fragment of a related state
 - matching means: ending in a state related to s', and all previous states invisible
- Abstraction of such internal computations yields coarser quotients
 - but: what kind of properties are preserved?
 - but: how to treat infinite internal computations?

Stutter equivalence

▶ $s \rightarrow s'$ in transition system *TS* is a <u>stutter step</u> if L(s) = L(s')

- stutter steps do not affect the state labels of successor states
- Paths π_1 and π_2 are stutter equivalent, denoted $\pi_1 \cong \pi_2$:
 - if there exists an infinite sequence $A_0A_1A_2...$ with $A_i \subseteq AP$ and
 - ▶ natural numbers $n_0, n_1, n_2, ..., m_0, m_1, m_2, ... \ge 1$ such that:

$$trace(\pi_1) = \underbrace{A_0 \dots A_0}_{n_0 \text{-times}} \underbrace{A_1 \dots A_1}_{n_1 \text{-times}} \underbrace{A_2 \dots A_2}_{n_2 \text{-times}} \dots$$
$$trace(\pi_2) = \underbrace{A_0, \dots, A_0}_{m_0 \text{-times}} \underbrace{A_1 \dots A_1}_{m_1 \text{-times}} \underbrace{A_2 \dots A_2}_{m_2 \text{-times}} \dots$$

 $\pi_1 \cong \pi_2$ if their traces only differ in their stutter steps i.e., if both their traces are of the form $A_0^+ A_1^+ A_2^+ \dots$ for $A_i \subseteq AP$

Stutter-trace equivalence

Transition systems *TS_i* over *AP*, *i*=1, 2, are stutter-trace equivalent:

 $TS_1 \cong TS_2$ if and only if $TS_1 \equiv TS_2$ and $TS_2 \equiv TS_1$

where \sqsubseteq is defined by:

 $TS_1 \subseteq TS_2$ iff $\forall \sigma_1 \in Traces(TS_1) \ (\exists \sigma_2 \in Traces(TS_2). \ \sigma_1 \cong \sigma_2)$

clearly: $Traces(TS_1) = Traces(TS_2)$ implies $TS_1 \cong TS_2$, but not always the reverse

Example

The X operator

Stutter equivalence does not preserve the validity of next-formulas:

 $\sigma_1 = ABBB...$ and $\sigma_2 = AAABBBB...$ for $A, B \subseteq AP$ and $A \neq B$

Then for $b \in B \setminus A$:

 $\sigma_1 \cong \sigma_2$ but $\sigma_1 \models Xb$ and $\sigma_2 \notin Xb$.

⇒ a logical characterization of \cong can only be obtained by omitting X in fact, it turns out that this is the only modal operator that is not preserved by \cong !

Stutter trace and $LTL_{\circ O}$ equivalence

For traces σ_1 and σ_2 over 2^{AP} it holds: $\sigma_1 \cong \sigma_2 \implies (\sigma_1 \vDash \varphi \text{ if and only if } \sigma_2 \vDash \varphi)$ for any LTL_{\O} formula φ over AP

 $LTL_{ imes O}$ denotes the class of LTL formulas without the next step operator \bigcirc

Stutter trace and $LTL_{\circ O}$ equivalence

For transition systems TS_1 , TS_2 over AP (without terminal states): (a) $TS_1 \cong TS_2$ implies $TS_1 \equiv_{LTL_{\setminus \bigcirc}} TS_2$ (b) if $TS_1 \equiv TS_2$ then for any $LTL_{\setminus \bigcirc}$ formula φ : $TS_2 \models \varphi$ implies $TS_1 \models \varphi$

Stutter insensitivity

- ▶ LT property *P* is <u>stutter-insensitive</u> if $[\sigma]_{\cong} \subseteq P$, for any $\sigma \in P$
 - P is stutter insensitive if it is closed under stutter equivalence
- For any stutter-insensitive LT property P:

 $TS_1 \cong TS_2$ implies $TS_1 \models P$ iff $TS_2 \models P$

- Moreover: $TS_1 \subseteq TS_2$ and $TS_2 \models P$ implies $TS_1 \models P$
- For any LTL_O formula φ, LT property Words(φ) is stutter insensitive
 - but: some stutter insensitive LT properties cannot be expressed in $\text{LTL}_{\diagdown \bigcirc}$
 - for LTL formula φ with $Words(\varphi)$ stutter insensitive:

there exists $\psi \in LTL_{\square}$ such that $\psi \equiv_{LTL} \varphi$

Stutter bisimulation

Stutter bisimulation

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and $\mathcal{R} \subseteq S \times S$ \mathcal{R} is a <u>stutter-bisimulation</u> for *TS* if for all $(s_1, s_2) \in \mathcal{R}$:

- 1. $L(s_1) = L(s_2)$
- 2. if $s'_1 \in Post(s_1)$ with $(s_1, s'_1) \notin \mathcal{R}$, then there exists a finite path fragment $s_2 u_1 \ldots u_n s'_2$ with $n \ge 0$ and $(s_1, u_i) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$
- 3. if $s'_2 \in Post(s_2)$ with $(s_1, s'_2) \notin \mathcal{R}$, then there exists a finite path fragment $s_1 v_1 \ldots v_n s'_1$ with $n \ge 0$ and $(v_i, s_2) \in \mathcal{R}$ and $(s'_1, s'_2) \in \mathcal{R}$

 s_1, s_2 are <u>stutter-bisimulation equivalent</u>, denoted $s_1 \approx_{TS} s_2$, if there exists a stutter bisimulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$

Example

For $AP = \{c_1, c_2\}$, \mathcal{R} inducing the following partitioning of the state space is a stutter bisimulation:

 $\{\{\langle n_1, n_2 \rangle, \langle n_1, w_2 \rangle, \langle w_1, n_2 \rangle, \langle w_1, w_2 \rangle\}, \{\langle c_1, n_2 \rangle, \langle c_1, w_2 \rangle\}, \{\langle n_1, c_2 \rangle, \langle w_1, c_2 \rangle\}\}$

(Values of y omitted here.) In fact, this is the coarsest stutter bisimulation, i.e., \mathcal{R} equals \approx_{75}

Stutter-bisimilar transition systems

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i = 1, 2, be transition systems over AP A <u>stutter bisimulation</u> for (TS_1, TS_2) is a stutter bisimilation relation on $TS_1 \oplus TS_2$ such that:

- ▶ $\forall s_1 \in I_1. (\exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R})$ and
- ► $\forall s_2 \in I_2$. $(\exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R})$.

Notation:
$$TS_1 \oplus TS_2 = (S_1 \cup S_2, Act_1 \cup Act_2, \rightarrow_1 \cup \rightarrow_2, I_1 \cup I_2, AP, L: s \mapsto L_i(s) \text{ for } s \in S_i)$$

 TS_1 and TS_2 are stutter-bisimulation equivalent (stutter-bisimilar, for short), denoted $TS_1 \approx TS_2$, if there exists a stutter bisimulation for (TS_1, TS_2)

Stutter bisimulation quotient

For $TS = (S, Act, \rightarrow, I, AP, L)$ and stutter bisimulation $\approx_{TS} \subseteq S \times S$ let $TS/\approx^{div} = (S', \{\tau\}, \rightarrow', I', AP, L'),$ be the <u>quotient</u> of TS under \approx_S

where

S' = S/≈_S = { [q]_{≈_S} | q ∈ S } with [q]_{≈_S} = { q' ∈ S | q ≈_S q' }
I' = { [q]_{≈_S} | q ∈ I }
→' is defined by: $\frac{s \xrightarrow{\alpha} s' \text{ and } s \notin s'}{[s]_{≈} \xrightarrow{\tau}' [s']_{≈}}$ L'([q]_{≈_S}) = L(q)

note that (a) no self-loops occur in TS/\approx_S and (b) $TS \approx_S TS/\approx_S$

Stutter trace and stutter bisimulation

For transition systems TS_1 and TS_2 over AP:

- Known fact: $TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$
- But <u>not</u>: $TS_1 \approx TS_2$ implies $TS_1 \cong TS_2$!
- So:
 - bisimilar transition systems are trace equivalent
 - but stutter-bisimilar transition systems are not always stutter trace-equivalent!
- Why? Stutter paths!
 - stutter bisimulation does not impose any constraint on such paths
 - **but** \cong requires the existence of a stutter equivalent trace

Stutter trace and stutter bisimulation are incomparable

Stutter bisimulation does not preserve LTL_{\odot}

$TS_{left} \approx TS_{right}$ but $TS_{left} \neq \Diamond a$ and $TS_{right} \models \Diamond a$

$\frac{\text{stutter-trace inclus}}{TS_1 \subseteq TS_2}$	s <mark>ion:</mark> iff	$\forall \sigma_1 \in Traces(TS_1) \exists \sigma_2 \in Traces(TS_2). \sigma_1 \cong \sigma_2$
$\frac{\text{stutter-trace equiv}}{TS_1} \cong TS_2$	r <mark>alence:</mark> iff	$TS_1 \subseteq TS_2$ and $TS_2 \subseteq TS_1$
stutter-bisimulation equivalence: $TS_1 \approx TS_2$ iffthere exists a stutter-bisimulation for (TS_1, TS_2)		
stutter-bisimulation equivalence with divergence:		
$TS_1 \approx^{div} TS_2$	iff	there exists a divergence-sensitive stutter bisimulation for (TS_1, TS_2)

Divergence sensitivity

- <u>Stutter paths</u> are paths that only consist of stutter steps
 - no restrictions are imposed on such paths by stutter bisimulation
 - ⇒ stutter trace-equivalence (\cong) and stutter bisimulation (\approx) are incomparable
 - $\Rightarrow \approx$ and LTL_{\O} equivalence are incomparable
- Stutter paths <u>diverge</u>: they never leave an equivalence class
- Remedy: only relate <u>divergent</u> states or <u>non-divergent</u> states
 - divergent state = a state that has a stutter path
 - ⇒ relate states only if they either both have stutter paths or none of them
- ► This yields <u>divergence-sensitive stutter bisimulation</u> (≈^{div})
 - $\Rightarrow \approx^{div}$ is strictly finer than \cong (and \approx)
 - $\Rightarrow \approx^{div}$ and CTL^{*}_X equivalence coincide

Divergence sensitivity

Let TS be a transition system and \mathcal{R} an equivalence relation on S

- *s* is $\frac{\mathcal{R}$ -divergent} if there exists an infinite path fragment
 - $s s_1 s_2 \ldots \in Paths(s)$ such that $(s, s_j) \in \mathcal{R}$ for all j > 0
 - s is *R*-divergent if there is an infinite path starting in s that only visits [s]_{*R*}
- \mathcal{R} is <u>divergence sensitive</u> if for any $(s_1, s_2) \in \mathcal{R}$:

 s_1 is \mathcal{R} -divergent implies s_2 is \mathcal{R} -divergent

R is divergence-sensitive if in any [s]_R either all or none of the states are *R*-divergent

Divergence-sensitive stutter bisimulation

 s_1, s_2 in TS are divergent stutter-bisimilar, denoted $s_1 \approx_{TS}^{div} s_2$, if:

 \exists divergent-sensitive stutter bisimulation \mathcal{R} on TS such that $(s_1, s_2) \in \mathcal{R}$

\approx_{TS}^{div} is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

Quotient transition system under ~ div

For $TS = (S, Act, \rightarrow, I, AP, L)$ and divergent-sensitive stutter bisimulation $\approx^{div} \subseteq S \times S$,

 $TS/\approx^{div} = (S', \{\tau\}, \rightarrow', I', AP, L')$ is the <u>quotient</u> of TS under \approx^{div}

where

- ► S', I' and L' are defined as usual (for eq. classes $[s]_{div}$ under \approx^{div})
- \rightarrow is defined by:

$$\frac{s \stackrel{\alpha}{\longrightarrow} s' \land s \not\approx^{div} s'}{[s]_{div} \stackrel{\tau}{\longrightarrow} '_{div} [s']_{div}} \quad \text{and} \quad \frac{s \text{ is } \approx^{div} \text{-divergent}}{[s]_{div} \stackrel{\tau}{\longrightarrow} '_{div} [s]_{div}}$$

note that $TS \approx^{div} TS / \approx^{div}$

Example

≈^{div} on paths

For infinite path fragments $\pi_i = s_{0,i} s_{1,i} s_{2,i} \dots, i = 1, 2$, in *TS*:

 $\pi_1 \approx_{TS}^{div} \pi_2$

if and only if there exists an infinite sequence of indexes

$$0 = j_0 < j_1 < j_2 < \dots$$
 and $0 = k_0 < k_1 < k_2 < \dots$

with:

$$s_{j,1} \approx_{TS}^{div} s_{k,2}$$
 for all $j_{r-1} \le j < j_r$ and $k_{r-1} \le k < k_r$ with $r = 1, 2, ...$

Comparing paths by \approx^{div}

Let
$$TS = (S, Act, \rightarrow, I, AP, L), s, t \in S$$
. Then:
 $s \approx_{\tau_S}^{div} t \text{ implies } \forall \pi_1 \in Paths(s). (\exists \pi_2 \in Paths(t). \pi_1 \approx_{\tau_S}^{div} \pi_2)$

Stutter equivalence versus ≈^{div}

CTL^*_{x} equivalence and \approx^{div}

For finite transition systems *TS* without terminal states, and s_1 , s_2 in *TS*: $s_1 \approx_{TS}^{div} s_2$ iff $s_1 \equiv_{CTL_{XX}^*} s_2$ iff $s_1 \equiv_{CTL_{XX}} s_2$

divergent-sensitive stutter bisimulation coincides with $\text{CTL}_{\smallsetminus x}$ and $\text{CTL}_{\smallsetminus x}^*$ equivalence

Comparative semantics

