Verification

Lecture 20

Bernd Finkbeiner

Plan for today

- Timed automata
- UPPAAL

(more on simulation tomorrow.)

Time-critical systems

- Timing issues are of crucial importance for many systems, e.g.,
 - landing gear controller of an airplane, railway crossing, robot controllers
 - steel production controllers, communication protocols
- In time-critical systems correctness depends on:
 - not only on the logical result of the computation, but
 - also on the time at which the results are produced
- How to model timing issues:
 - discrete-time or continuous-time?

A discrete time domain

- Time has a <u>discrete</u> nature, i.e., time is advanced by discrete steps
 - time is modelled by naturals; actions can only happen at natural time values
 - a specific tick action is used to model the advance of one time unit
 - ⇒ delay between any two events is always a multiple of the minimal delay of one time unit
- Properties can be expressed in traditional temporal logic
 - the next-operator "measures" time
 - two time units after being red, the light is green: $G(red \Rightarrow XX green)$
 - within two time units after red, the light is green:

 $G(red \Rightarrow (green \lor X green \lor X X green))$

Main application area: synchronous systems, e.g., hardware

A discrete-time coffee machine

A discrete time domain

- Main advantage: conceptual simplicity
 - state graphs systems equipped with a "tick" transition suffice
 - standard temporal logics can be used
 - ⇒ traditional model-checking algorithms suffice
- Main limitations:
 - (minimal) delay between any pair of actions is a multiple of an <u>a</u> priori fixed minimal delay
 - ⇒ difficult (or impossible) to determine this in practice
 - ⇒ limits modeling accuracy
 - ⇒ inadequate for asynchronous systems. e.g., distributed systems

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state within π time-units?

Approach

- Restrict expressivity of the property language
 - e.g., only allow reference to natural time units

 \implies Timed CTL

Model timed systems <u>symbolically</u> rather than explicitly

→ Timed Automata

- Consider a <u>finite quotient</u> of the infinite state space on-demand
 - i.e., using an equivalence that depends on the property and the timed automaton

→ Region Automata

- a program graph with <u>locations</u> and <u>edges</u>
- a location is labeled with the valid <u>atomic propositions</u>
- taking an edge is instantaneous, i.e, consumes no time

- equipped with real-valued clocks x, y, z, ...
- clocks advance implicitly, all at the same speed
- logical constraints on clocks can be used as guards of actions

- clocks can be <u>reset</u> when taking an edge
- assumption:

all clocks are zero when entering the initial location initially

- guards indicate when an edge may be taken
- a location invariant specifies the amount of time that may be spent in a location
 - before a location invariant becomes invalid, an edge must be taken

A real-time coffee machine

Clock constraints

<u>Clock constraints</u> over set C of clocks are defined by:

 $g ::= \text{ true } \left| x < c \right| x - y < c \left| x \le c \right| x - y \le c \left| \neg g \right| g \land g$

- where $c \in \mathbb{N}$ and clocks $x, y \in C$
- rational constants would do; neither reals nor addition of clocks!
- let CC(C) denote the set of clock constraints over C
- ▶ shorthands: $x \ge c$ denotes $\neg (x < c)$ and $x \in [c_1, c_2)$ or $c_1 \le x < c_2$ denotes $\neg (x < c_1) \& (x < c_2)$

► Atomic clock constraints do not contain true, ¬ and ∧

- let ACC(C) denote the set of atomic clock constraints over C
- Simplification: In the following, we assume constraints are diagonal-free, i.e., do neither contain x − y ≤ c nor x − y < c.</p>

Timed automaton

A timed automaton is a tuple

$$TA = (Loc, Act, C, \sim, Loc_0, inv, AP, L)$$
 where:

- Loc is a finite set of locations.
- $Loc_0 \subseteq Loc$ is a set of initial locations
- C is a finite set of clocks
- $L: Loc \rightarrow 2^{AP}$ is a labeling function for the locations
- $\Rightarrow \subseteq Loc \times CC(C) \times Act \times 2^{C} \times Loc$ is a transition relation, and
- $inv : Loc \rightarrow CC(C)$ is an invariant-assignment function

Intuitive interpretation

- Edge $\ell \xrightarrow{g:\alpha,C'} \ell'$ means:
 - action α is enabled once guard g holds
 - when moving from location ℓ to ℓ' , any clock in C' will be reset to zero
- $inv(\ell)$ constrains the amount of time that may be spent in location ℓ
 - the location ℓ must be left before the invariant $inv(\ell)$ becomes invalid

Guards versus location invariants

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

Guards versus location invariants

Arbitrary clock differences

time --->

Composing timed automata

Let $TA_i = (Loc_i, Act_i, C_i, \rightsquigarrow_i, Loc_{0,i}, inv_i, AP, L_i)$ and H an action-set $TA_1 \parallel_H TA_2 = (Loc, Act_1 \cup Act_2, C, \rightsquigarrow, Loc_0, inv, AP, L)$ where:

- $Loc = Loc_1 \times Loc_2$ and $Loc_0 = Loc_{0,1} \times Loc_{0,2}$ and $C = C_1 \cup C_2$
- $inv(\langle \ell_1, \ell_2 \rangle) = inv_1(\ell_1) \land inv_2(\ell_2)$ and $L(\langle \ell_1, \ell_2 \rangle) = L_1(\ell_1) \cup L_2(\ell_2)$
- ▶ → is defined by the inference rules:

for
$$\alpha \in H$$

$$\frac{\ell_1 \stackrel{g_1:\alpha,D_1}{\sim} \ell'_1 \wedge \ell_2 \stackrel{g_2:\alpha,D_2}{\sim} \ell'_2}{\langle \ell_1, \ell_2 \rangle \stackrel{g_1 \wedge g_2:\alpha,D_1 \cup D_2}{\sim} \langle \ell'_1, \ell'_2 \rangle}$$

for
$$\alpha \notin H$$
: $\frac{\ell_1 \stackrel{g:\alpha,D}{\rightsquigarrow_1} \ell'_1}{\langle \ell_1, \ell_2 \rangle \stackrel{g:\alpha,D}{\rightsquigarrow} \langle \ell'_1, \ell_2 \rangle}$ and $\frac{\ell_2 \stackrel{g:\alpha,D}{\rightsquigarrow_2} \ell'_2}{\langle \ell_1, \ell_2 \rangle \stackrel{g:\alpha,D}{\rightsquigarrow} \langle \ell_1, \ell'_2 \rangle}$

Clock valuations

- A <u>clock valuation</u> v for set C of clocks is a function $v : C \longrightarrow \mathbb{R}_{\geq 0}$
 - ▶ assigning to each clock $x \in C$ its current value v(x)
- Clock valuation v+d for $d \in \mathbb{R}_{\geq 0}$ is defined by:
 - (v+d)(x) = v(x) + d for all clocks $x \in C$
- Clock valuation reset x in v for clock x is defined by:

$$(\operatorname{reset} x \operatorname{in} v)(y) = \begin{cases} v(y) & \text{if } y \neq x \\ 0 & \text{if } y = x. \end{cases}$$

• reset x in (reset y in v) is abbreviated by reset x, y in v

Timed automaton semantics

For timed automaton $TA = (Loc, Act, C, \rightsquigarrow, Loc_0, inv, AP, L)$: Transition system $TS(TA) = (S, Act', \rightarrow, I, AP', L')$ where:

- $S = Loc \times val(C)$, state $s = \langle \ell, v \rangle$ for location ℓ and clock valuation v
- $Act' = Act \cup \mathbb{R}_{\geq 0}$, (discrete) actions and time passage actions
- ► $I = \{ \langle \ell_0, v_0 \rangle \mid \ell_0 \in Loc_0 \land v_0(x) = 0 \text{ for all } x \in C \}$
- $AP' = AP \cup ACC(C)$
- ► $L'(\langle \ell, v \rangle) = L(\ell) \cup \{g \in ACC(C) \mid v \vDash g\}$
- \blacktriangleright \rightarrow is the transition relation defined on the next slide

Timed automaton semantics

The transition relation \rightarrow is defined by the following two rules:

- Discrete transition: $\langle \ell, v \rangle \xrightarrow{d} \langle \ell', v' \rangle$ if all following conditions hold:
 - there is an edge labeled $(g : \alpha, D)$ from location ℓ to ℓ' such that:
 - g is satisfied by v, i.e., $v \models g$
 - v' = v with all clocks in D reset to 0, i.e., v' = reset D in v
 - v' fulfills the invariant of location ℓ' , i.e., $v' \models inv(\ell')$
- **Delay** transition: $\langle \ell, v \rangle \xrightarrow{\alpha} \langle \ell, v+d \rangle$ for positive real d
 - if for any $0 \le d' \le d$ the invariant of ℓ holds for v+d', i.e. $v+d' \vDash inv(\ell)$

Time divergence

- Let for any t < d, for fixed $d \in \mathbb{R}_{>0}$, clock valuation $\eta + t \models inv(\ell)$
- A possible execution fragment starting from the location ℓ is:

$$\langle \ell, \eta \rangle \xrightarrow{d_1} \langle \ell, \eta + d_1 \rangle \xrightarrow{d_2} \langle \ell, \eta + d_1 + d_2 \rangle \xrightarrow{d_3} \langle \ell, \eta + d_1 + d_2 + d_3 \rangle \xrightarrow{d_4} \dots$$

- where $d_i > 0$ and the infinite sequence $d_1 + d_2 + ...$ converges towards d
- such path fragments are called <u>time-convergent</u>
- \Rightarrow time advances only up to a certain value
- Time-convergent execution fragments are unrealistic and ignored
 - much like unfair paths (as we will see later on)

Time divergence

- Infinite path fragment π is <u>time-divergent</u> if *ExecTime*(π) = ∞
- The function *ExecTime* : $Act \cup \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ is defined as:

$$ExecTime(\tau) = \begin{cases} 0 & \text{if } \tau \in Act \\ d & \text{if } \tau = d \in \mathbb{R}_{>0} \end{cases}$$

• For infinite execution fragment $\rho = s_0 \xrightarrow{\tau_1} s_1 \xrightarrow{\tau_2} s_2 \dots$ in TS(TA) let:

ExecTime
$$(\rho) = \sum_{i=0}^{\infty} ExecTime(\tau_i)$$

- for path fragment π in TS(TA) induced by ρ:
 ExecTime(π) = ExecTime(ρ)
- For state *s* in *TS*(*TA*):

 $Paths_{div}(s) = \{ \pi \in Paths(s) \mid \pi \text{ is time-divergent } \}$

Example: light switch

The path π in *TS*(*Switch*) in which on- and of-periods of one minute alternate:

 $\pi = \langle off, 0 \rangle \langle off, 1 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 1 \rangle \langle off, 2 \rangle \langle on, 0 \rangle \langle on, 1 \rangle \langle off, 1 \rangle \dots$

is time-divergent as $ExecTime(\pi) = 1 + 1 + 1 + ... = \infty$. The path:

$$\pi' = \langle off, 0 \rangle \langle off, 1/2 \rangle \langle off, 3/4 \rangle \langle off, 7/8 \rangle \langle off, 15/16 \rangle \dots$$

is <u>time-convergent</u>, since *ExecTime* $(\pi') = \sum_{i\geq 1} \left(\frac{1}{2}\right)^i = 1 < \infty$

Timelock

- ▶ State $s \in TS(TA)$ contains a <u>timelock</u> if $Paths_{div}(s) = \emptyset$
 - there is no behavior in s where time can progress ad infinitum
 - clearly: any terminal state contains a timelock (but also non-terminal states may contain a timelock)
 - terminal location does not necessarily yield a state with timelock (e.g., inv = true)
- TA is <u>timelock-free</u> if no state in Reach(TS(TA)) contains a timelock
- Timelocks are considered as modeling flaws that should be avoided

Zenoness

- A TA that performs infinitely many actions in finite time is Zeno
- Path π in *TS*(*TA*) is <u>Zeno</u> if:
 - it is time-convergent, and
 - ▶ infinitely many actions $\alpha \in Act$ are executed along π
- TA is <u>non-Zeno</u> if there does not exist an initial Zeno path in TS(TA)
 - any π in TS(TA) is time-divergent or
 - is time-convergent with nearly all (i.e., all except for finitely many) transitions being delay transitions
- Zeno paths are considered as modeling flaws that should be avoided

A sufficient criterion for Non-Zenoness

Let *TA* with set *C* of clocks such that for every control cycle:

$$\ell_0 \overset{g_1:\alpha_1,C_1}{\rightsquigarrow} \ell_1 \overset{g_2:\alpha_2,C_2}{\rightsquigarrow} \dots \overset{g_n:\alpha_n,C_n}{\rightsquigarrow} \ell_r$$

there exists a clock $x \in C$ such that:

- 1. $x \in C_i$ for some $0 < i \le n$, and
- 2. there exists a constant $c \in \mathbb{N}_{>0}$ such that for all clock evaluations η :

 $\eta(x) < c$ implies ($\eta \neq g_j$ or $\eta \neq inv(\ell_j)$), for some $0 < j \le n$

Then: TA is non-Zeno

Timelock, time-divergence and Zenoness

 A timed automaton is only considered an adequate model of a time-critical system if it is:

non-Zeno and timelock-free

 Time-convergent paths will be explicitly excluded from the analysis.

Timed CTL

Syntax of TCTL <u>state-formulas</u> over *AP* and set *C*:

$$\Phi ::= \mathsf{true} \left| \begin{array}{c} a \end{array} \right| \left| \begin{array}{c} g \end{array} \right| \left| \begin{array}{c} \Phi \end{array} \wedge \left| \begin{array}{c} \Phi \end{array} \right| \left| \begin{array}{c} \neg \Phi \end{array} \right| \left| \begin{array}{c} \mathsf{E} \varphi \end{array} \right| \left| \begin{array}{c} \mathsf{A} \varphi \end{array} \right|$$

where $a \in AP$, $g \in ACC(C)$ and φ is a path-formula defined by:

$$\varphi ::= \Phi U^{J} \Phi$$

where $J \subseteq \mathbb{R}_{\geq 0}$ is an interval whose bounds are naturals Forms of J: [n, m], (n, m], [n, m) or (n, m) for $n, m \in \mathbb{N}$ and $n \leq m$

for right-open intervals, $m = \infty$ is also allowed

Some abbreviations

- $F^{J}\Phi = true U^{J}\Phi$
- $EG^{J}\Phi = \neg AF^{J}\neg \Phi$ and $AG^{J}\Phi = \neg EF^{J}\neg \Phi$

•
$$F \Phi = F^{[0,\infty)} \Phi$$
 and $G \Phi = G^{[0,\infty)} \Phi$

Semantics of TCTL

For state $s = \langle \ell, \eta \rangle$ in *TS*(*TA*) the satisfaction relation \vDash is defined by:

s ⊨ true		
$s \models a$	iff	$a \in L(\ell)$
$s \models g$	iff	$\eta \vDash g$
$S\vDash \neg \Phi$	iff	not $s \models \Phi$
$\mathbf{S} \vDash \Phi \ \land \ \Psi$	iff	$(s \models \Phi)$ and $(s \models \Psi)$
$s \vDash E \varphi$	iff	$\pi \vDash \varphi$ for some $\pi \in Paths_{div}(s)$
$s \vDash A \varphi$	iff	$\pi \vDash \varphi$ for all $\pi \in Paths_{div}(s)$

path quantification over time-divergent paths only

The \Rightarrow relation

• For infinite path fragments in TS(TA) performing ∞ many actions let:

$$s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} s_2 \xrightarrow{d_2} \dots$$
 with $d_0, d_1, d_2 \dots \ge 0$

denote the equivalence class containing all infinite path fragments induced by execution fragments of the form:

$$s_{0} \xrightarrow[d_{0}^{1} \dots \rightarrow d_{0}^{k_{0}}]{} s_{0} + d_{0} \xrightarrow[d_{1}^{1} \dots \rightarrow d_{1}^{k_{1}}]{} s_{1} \xrightarrow[d_{1}^{1} \dots \rightarrow d_{1}^{k_{1}}]{} s_{1} + d_{1} \xrightarrow[d_{2}^{1} \dots \rightarrow d_{2}^{k_{2}}]{} s_{2} \xrightarrow[d_{2}^{1} \dots \rightarrow d_{2}^{k_{2}^{2}}]{} s_{2} + d_{2} \xrightarrow[d_{1}^{1} \dots \rightarrow d_{2}^{k_{2}}]{} s_{2} + d_{2} \xrightarrow[d_{1} \dots \rightarrow$$

where $k_i \in \mathbb{N}$, $d_i \in \mathbb{R}_{\geq 0}$ and $\alpha_i \in Act$ such that $\sum_{j=1}^{k_i} d_i^j = d_i$. Notation: $s_i + d = \langle \ell_i, \eta_i + d \rangle$ where $s_i = \langle \ell_i, \eta_i \rangle$.

• For infinite path fragments in *TS*(*TA*) performing finitely many actions:

$$s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} s_2 \xrightarrow{d_2} \dots \xrightarrow{d_{n-1}} s_n \xrightarrow{1} s_{n+1} \xrightarrow{1} s_{n+2} \xrightarrow{1} \dots \xrightarrow{s_{35}} s_{35}$$

Semantics of TCTL

For time-divergent path $\pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} \ldots$:

 $\pi \vDash \Phi \, \mathsf{U}^{\mathsf{J}} \, \Psi$

iff

 $\exists i \ge 0. s_i + d \models \Psi$ for some $d \in [0, d_i]$ with $\sum_{k=0}^{i-1} d_k + d \in J$ and

 $\forall j \leq i. s_j + d' \models \Phi \lor \Psi$ for every $d' \in [0, d_j]$ with $\sum_{k=0}^{j-1} d_k + d' \leq \sum_{k=0}^{j-1} d_k + d$