Verification

Lecture 2

Bernd Finkbeiner

Review: Model checking

Review: Transition systems

A <u>transition system</u> *TS* is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- $\longrightarrow \subseteq S \times Act \times S$ is a transition relation
- I ⊆ S is a set of initial states
- AP is a set of atomic propositions
- $L: S \rightarrow 2^{AP}$ is a labeling function

S and Act are either finite or countably infinite

```
Notation: s \xrightarrow{\alpha} s' instead of (s, \alpha, s') \in \longrightarrow
```

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

Statements over states

- a ∈ AP
- $\neg \Phi \text{ and } \Phi \land \Psi$
- Εφ
- Α φ
- Statements over paths
 - X Φ the next state fulfills Φ
 - $\Phi \cup \Psi$ Φ holds until a Ψ -state is reached
- \Rightarrow note that X and U alternate with A and E
 - ► AX X Φ and A EX $\Phi \notin$ CTL, but AX AX Φ and AX EX $\Phi \in$ CTL

Alternative syntax: $E \approx \exists, A \approx \forall, X \approx \bigcirc, G \approx \Box, F \approx \diamondsuit$.

 $\begin{array}{c} \text{atomic proposition} \\ \text{negation and conjunction} \\ \text{there } \underline{\text{exists}} \text{ a path fulfilling } \varphi \\ \underline{\text{all}} \text{ paths fulfill } \varphi \end{array}$

Derived operators

potentially Φ :	EFΦ	=	$E(true U \Phi)$	
inevitably Φ:	AFΦ	=	A (true U Φ)	
potentially always Φ :	EGΦ	:=	$\neg AF \neg \Phi$	
invariantly Φ :	AGΦ	=	$\neg EF \neg \Phi$	
weak until:	$E(\PhiW\Psi)$	=	$\neg A \left((\Phi \land \neg \Psi) U (\neg \Phi \land \neg \Psi) \right)$	
	$A(\Phi W \Psi)$	=	$\neg E \left((\Phi \land \neg \Psi) U (\neg \Phi \land \neg \Psi) \right)$	

the boolean connectives are derived as usual

Visualization of semantics

AF red

AG <mark>red</mark>

A (yellow U red)

Semantics of CTL state-formulas

Defined by a relation \models such that

 $\textbf{s} \vDash \Phi$ if and only if formula Φ holds in state s

s ⊨ a	iff	$a \in L(s)$
-------	-----	--------------

$$s \models \neg \Phi$$
 iff $\neg (s \models \Phi)$

$$s \vDash \Phi \land \Psi \quad \text{iff} \ (s \vDash \Phi) \land (s \vDash \Psi)$$

- $s \models \mathbf{E} \varphi$ iff $\pi \models \varphi$ for some path π that starts in s
- $s \models A \varphi$ iff $\pi \models \varphi$ for all paths π that start in s

Semantics of CTL path-formulas

Defined by a relation \models such that

 $\pi \vDash \varphi$ if and only if path π satisfies φ

 $\pi \vDash \mathsf{X} \Phi \qquad \text{iff } \pi[\mathsf{1}] \vDash \Phi$

 $\pi \vDash \Phi \, \mathsf{U} \, \Psi \quad \text{ iff } \big(\, \exists \, j \geq \mathsf{0}. \, \pi[j] \vDash \Psi \ \land \ \big(\, \forall \, \mathsf{0} \leq k < j. \, \pi[k] \vDash \Phi \big) \big)$

where $\pi[i]$ denotes the state s_i in the path π

Transition system semantics

For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

 $TS \models \Phi$ if and only if $\forall s_0 \in I. s_0 \models \Phi$

- this is equivalent to $I \subseteq Sat(\Phi)$
- Note: It is possible that both $TS \notin \Phi$ and $TS \notin \neg \Phi$
 - (because of several initial states, e.g. $s_0 \models EG \Phi$ and $s'_0 \notin EG \Phi$)

CTL equivalence

CTL-formulas Φ and Ψ (over *AP*) are <u>equivalent</u>, denoted $\Phi \equiv \Psi$ if and only if $Sat(\Phi) = Sat(\Psi)$ for all transition systems *TS* over *AP*

$$\Phi \equiv \Psi \quad \text{iff} \quad (TS \vDash \Phi \quad \text{if and only if} \quad TS \vDash \Psi)$$

Duality laws

 $\begin{array}{rcl} \mathsf{A}\mathsf{X}\,\Phi &\equiv \neg\mathsf{E}\mathsf{X}\,\neg\Phi \\ \\ \mathsf{E}\mathsf{X}\,\Phi &\equiv \neg\mathsf{A}\mathsf{X}\,\neg\Phi \\ \\ \mathsf{A}\mathsf{F}\,\Phi &\equiv \neg\mathsf{E}\,\mathsf{G}\,\neg\Phi \\ \\ \\ \mathsf{E}\mathsf{F}\,\Phi &\equiv \neg\mathsf{A}\,\mathsf{G}\,\neg\Phi \\ \\ \mathsf{A}\,(\Phi\,\mathsf{U}\,\Psi) &\equiv \neg\mathsf{E}\,((\Phi\,\wedge\,\neg\Psi)\,\mathsf{W}\,(\neg\Phi\,\wedge\,\neg\Psi)) \end{array}$

Expansion laws

 $A(\Phi \cup \Psi) \equiv \Psi \lor (\Phi \land AXA(\Phi \cup \Psi))$ $AF\Phi \equiv \Phi \lor AXAF\Phi$ $AG\Phi \equiv \Phi \land AXAG\Phi$ $E(\Phi \cup \Psi) \equiv \Psi \lor (\Phi \land EXE(\Phi \cup \Psi))$ $EF\Phi \equiv \Phi \lor EXEF\Phi$ $EG\Phi \equiv \Phi \land EXEG\Phi$

Distributive laws

$$AG(\Phi \land \Psi) \equiv AG\Phi \land AG\Psi$$
$$EF(\Phi \lor \Psi) \equiv EF\Phi \lor EF\Psi$$

note that EG $(\Phi \land \Psi) \notin EG \Phi \land EG \Psi$ and AF $(\Phi \lor \Psi) \notin AF \Phi \lor AF \Psi$

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

$$\Phi ::= \mathsf{true} \left| a \right| \Phi_1 \land \Phi_2 \left| \neg \Phi \right| \mathsf{EX} \Phi \left| \mathsf{E} (\Phi_1 \mathsf{U} \Phi_2) \right| \mathsf{EG} \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF

Model checking CTL

- How to check whether state graph *TS* satisfies CTL formula $\widehat{\Phi}$?
 - convert the formula $\widehat{\Phi}$ into the equivalent Φ in ENF
 - compute <u>recursively</u> the set $Sat(\Phi) = \{ q \in S \mid q \models \Phi \}$
 - $TS \models \Phi$ if and only if each initial state of TS belongs to $Sat(\Phi)$
- Recursive bottom-up computation of $Sat(\Phi)$:
 - consider the parse-tree of Φ
 - start to compute Sat(a_i), for all leaves in the tree
 - then go one level up in the tree and determine Sat(·) for these nodes

e.g.,:
$$Sat(\underbrace{\Psi_1 \land \Psi_2}_{\text{node at level }i}) = Sat(\underbrace{\Psi_1}_{\text{level }i-1}) \cap Sat(\underbrace{\Psi_2}_{\text{level }i-1})$$

- then go one level up and determine $Sat(\cdot)$ of these nodes
- and so on..... until the root is treated, i.e., $Sat(\Phi)$ is computed

Example

