Verification

Lecture 2

Bernd Finkbeiner

UNIVERSITÄT
DES
SAARLANDES

Review: Model checking

Review: Transition systems

A transition system $T S$ is a tuple $(S, A c t, \rightarrow, I, A P, L)$ where

- S is a set of states
- Act is a set of actions
- $\longrightarrow \subseteq S \times$ Act $\times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- $A P$ is a set of atomic propositions
- $L: S \rightarrow 2^{A P}$ is a labeling function
S and Act are either finite or countably infinite Notation: $s \xrightarrow{\alpha} s^{\prime}$ instead of $\left(s, \alpha, s^{\prime}\right) \in \longrightarrow$

Computation tree logic

modal logic over infinite trees [Clarke \& Emerson 1981]

- Statements over states
- $a \in A P$
- $\neg \Phi$ and $\Phi \wedge \Psi$
- $\mathrm{E} \varphi$
- $\mathrm{A} \varphi$

> atomic proposition negation and conjunction there exists a path fulfilling φ all paths fulfill φ

- Statements over paths
- X Φ
the next state fulfills Φ
- $\Phi \cup \Psi$
Φ holds until a Ψ-state is reached
\Rightarrow note that X and U alternate with A and E
- AXX Φ and $A E X ~ \Phi \notin C T L$, but AXAX Φ and $A X E X ~ \Phi \in C T L$

Alternative syntax: $\mathrm{E} \approx \exists, \mathrm{A} \approx \forall, \mathrm{X} \approx \mathrm{O}, \mathrm{G} \approx \square, \mathrm{F} \approx \diamond$.

Derived operators

$$
\begin{array}{lll}
\text { potentially } \Phi: & \mathrm{EF} \Phi & =\mathrm{E}(\operatorname{true} \mathrm{U} \Phi) \\
\text { inevitably } \Phi: & \mathrm{AF} \Phi & =\mathrm{A}(\operatorname{true} \mathrm{U} \Phi) \\
\text { potentially always } \Phi: & \mathrm{EG} \Phi & :=\neg \mathrm{AF} \neg \Phi \\
\text { invariantly } \Phi: & \mathrm{AG} \Phi & =\neg \mathrm{EF} \neg \Phi \\
\text { weak until: } & \mathrm{E}(\Phi \mathrm{~W} \Psi) & =\neg \mathrm{A}((\Phi \wedge \neg \Psi) \mathrm{U}(\neg \Phi \wedge \neg \Psi)) \\
& \mathrm{A}(\Phi \mathrm{~W} \Psi) & =\neg \mathrm{E}((\Phi \wedge \neg \Psi) \mathrm{U}(\neg \Phi \wedge \neg \Psi))
\end{array}
$$

the boolean connectives are derived as usual

Visualization of semantics

EF red

AF red

EG red

AGred

E (yellow U red)

A (yellow U red)

Semantics of CTL state-formulas

Defined by a relation \vDash such that

$$
s \vDash \Phi \text { if and only if formula } \Phi \text { holds in state s }
$$

$$
\begin{array}{ll}
s \vDash a & \text { iff } a \in L(s) \\
s \vDash \neg \Phi & \text { iff } \neg(s \vDash \Phi) \\
s \vDash \Phi \wedge \Psi & \text { iff }(s \vDash \Phi) \wedge(s \vDash \Psi) \\
s \vDash \mathrm{E} \varphi & \text { iff } \pi \vDash \varphi \text { for some path } \pi \text { that starts in } s \\
s \vDash \mathrm{~A} \varphi & \text { iff } \pi \vDash \varphi \text { for all paths } \pi \text { that start in } s
\end{array}
$$

Semantics of CTL path-formulas

Defined by a relation \vDash such that

$$
\pi \vDash \varphi \text { if and only if path } \pi \text { satisfies } \varphi
$$

$$
\begin{array}{ll}
\pi \vDash X \Phi & \text { iff } \pi[1] \vDash \Phi \\
\pi \vDash \Phi \cup \Psi & \text { iff }(\exists j \geq 0 . \pi[j] \vDash \Psi \wedge(\forall 0 \leq k<j . \pi[k] \vDash \Phi))
\end{array}
$$

where $\pi[i]$ denotes the state s_{i} in the path π

Transition system semantics

- For CTL-state-formula Φ, the satisfaction set $\operatorname{Sat}(\Phi)$ is defined by:

$$
\operatorname{Sat}(\Phi)=\{s \in S \mid s \vDash \Phi\}
$$

- TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$
T S \vDash \Phi \quad \text { if and only if } \quad \forall s_{0} \in I . s_{0} \vDash \Phi
$$

- this is equivalent to $I \subseteq \operatorname{Sat}(\Phi)$
- Note: It is possible that both $T S \neq \Phi$ and $T S \nLeftarrow \neg \Phi$
- (because of several initial states, e.g. $s_{0} \vDash \mathrm{EG} \Phi$ and $\left.s_{0}^{\prime} \neq \mathrm{EG} \Phi\right)$

CTL equivalence

CTL-formulas Φ and Ψ (over $A P$) are equivalent, denoted $\Phi \equiv \Psi$ if and only if $\operatorname{Sat}(\Phi)=\operatorname{Sat}(\Psi)$ for all transition systems TS over AP

$$
\Phi \equiv \Psi \quad \text { iff } \quad(T S \vDash \Phi \quad \text { if and only if } \quad T S \vDash \Psi)
$$

Duality laws

$$
\begin{aligned}
\mathrm{AX} \Phi & \equiv \neg \mathrm{EX} \neg \Phi \\
\mathrm{EX} \Phi & \equiv \neg \mathrm{AX} \neg \Phi \\
\mathrm{AF} \Phi & \equiv \neg \mathrm{EG} \neg \Phi \\
\mathrm{EF} \Phi & \equiv \neg \mathrm{AG} \neg \Phi \\
\mathrm{~A}(\Phi \cup \Psi) & \equiv \neg \mathrm{E}((\Phi \wedge \neg \Psi) \mathrm{W}(\neg \Phi \wedge \neg \Psi))
\end{aligned}
$$

Expansion laws

$$
\begin{aligned}
\mathrm{A}(\Phi \cup \Psi) & \equiv \Psi \vee(\Phi \wedge \mathrm{AXA}(\Phi \cup \Psi)) \\
\mathrm{AF} \Phi & \equiv \Phi \vee \mathrm{AXAF} \Phi \\
\mathrm{AG} \Phi & \equiv \Phi \wedge \mathrm{AXAG} \Phi \\
\mathrm{E}(\Phi \cup \Psi) & \equiv \Psi \vee(\Phi \wedge \mathrm{EXE}(\Phi \cup \Psi)) \\
\mathrm{EF} \Phi & \equiv \Phi \vee \mathrm{EXEF} \Phi \\
\mathrm{EG} \Phi & \equiv \Phi \wedge \mathrm{EXEG} \Phi
\end{aligned}
$$

Distributive laws

$$
\begin{aligned}
\mathrm{AG}(\Phi \wedge \Psi) & \equiv \mathrm{AG} \Phi \wedge \mathrm{AG} \Psi \\
\mathrm{EF}(\Phi \vee \Psi) & \equiv \mathrm{EF} \Phi \vee \mathrm{EF} \Psi
\end{aligned}
$$

note that $\mathrm{EG}(\Phi \wedge \Psi) \not \equiv \mathrm{EG} \Phi \wedge \mathrm{EG} \Psi$ and $\mathrm{AF}(\Phi \vee \Psi) \not \equiv \mathrm{AF} \Phi \vee \mathrm{AF} \Psi$

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

$$
\Phi::=\text { true }|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \mathrm{EX} \Phi\left|\mathrm{E}\left(\Phi_{1} \cup \Phi_{2}\right)\right| \mathrm{EG} \Phi
$$

For each CTL formula, there exists an equivalent CTL formula in ENF

$$
\begin{array}{ll}
\mathrm{AX} \Phi & \equiv \neg \mathrm{EX} \neg \Phi \\
\mathrm{~A}(\Phi \cup \Psi) & \equiv \neg \mathrm{E}(\neg \Psi \mathrm{U}(\neg \Phi \wedge \neg \Psi)) \wedge \neg \mathrm{EG} \neg \Psi
\end{array}
$$

Model checking CTL

- How to check whether state graph TS satisfies CTL formula $\widehat{\Phi}$?
- convert the formula $\widehat{\Phi}$ into the equivalent Φ in ENF
- compute recursively the set $\operatorname{Sat}(\Phi)=\{q \in S \mid q \vDash \Phi\}$
- TS $\vDash \Phi$ if and only if each initial state of $T S$ belongs to $\operatorname{Sat}(\Phi)$
- Recursive bottom-up computation of Sat(Φ):
- consider the parse-tree of Φ
- start to compute $\operatorname{Sat}\left(a_{i}\right)$, for all leaves in the tree
- then go one level up in the tree and determine $\operatorname{Sat}(\cdot)$ for these nodes

$$
\text { e.g.,: Sat }(\underbrace{\Psi_{1} \wedge \Psi_{2}}_{\text {node at level } i})=\operatorname{Sat}(\underbrace{\Psi_{1}}_{\begin{array}{c}
\text { node at } \\
\text { level } i-1
\end{array}}) \cap \operatorname{Sat}(\underbrace{\Psi_{2}}_{\begin{array}{c}
\text { node at } \\
\text { level } i-1
\end{array}})
$$

- then go one level up and determine $\operatorname{Sat}(\cdot)$ of these nodes
- and so on....... until the root is treated, i.e., $\operatorname{Sat}(\Phi)$ is computed

Example

$$
\Phi=\underbrace{\mathrm{EX} a}_{\Psi} \wedge \underbrace{\mathrm{E}(b \cup \underbrace{\mathrm{EG} \neg c)}_{\Psi^{\prime \prime}}}_{\Psi^{\prime \prime}} .
$$

