Verification

Lecture 19

Bernd Finkbeiner

Plan for today

Simulation equivalence

REVIEW: Bisimulation

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be transition systems A <u>bisimulation</u> for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

1. $\forall s_1 \in I_1 \exists s_2 \in I_2$. $(s_1, s_2) \in \mathcal{R}$ and $\forall s_2 \in I_2 \exists s_1 \in I_1$. $(s_1, s_2) \in \mathcal{R}$

2. for all states $s_1 \in S_1$, $s_2 \in S_2$ with $(s_1, s_2) \in \mathcal{R}$ it holds:

2.1 $L_1(s_1) = L_2(s_2)$

2.2 if $s'_1 \in Post(s_1)$ then there exists $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$

2.3 if $s'_2 \in Post(s_2)$ then there exists $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$

 TS_1 and TS_2 are bisimilar, denoted $TS_1 \sim TS_2$, if there exists a bisimulation for (TS_1, TS_2)

REVIEW: Bisimulation on states

 $\mathcal{R} \subseteq S \times S$ is a <u>bisimulation</u> on *TS* if for any $(q_1, q_2) \in \mathcal{R}$:

- $L(q_1) = L(q_2)$
- if $q'_1 \in Post(q_1)$ then there exists an $q'_2 \in Post(q_2)$ with $(q'_1, q'_2) \in \mathcal{R}$
- if $q'_2 \in Post(q_2)$ then there exists an $q'_1 \in Post(q_1)$ with $(q'_1, q'_2) \in \mathcal{R}$

 q_1 and q_2 are bisimilar, $q_1 \sim_{TS} q_2$, if $(q_1, q_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

$$q_1 \sim_{TS} q_2$$
 if and only if $TS_{q_1} \sim TS_{q_2}$

REVIEW: Bisimulation vs. CTL* and CTL equivalence

Let *TS* be a <u>finite</u> state graph and *s*, *s'* states in *TS* The following statements are equivalent: (1) $s \sim_{TS} s'$ (2) *s* and *s'* are CTL-equivalent, i.e., $s \equiv_{CTL} s'$ (3) *s* and *s'* are CTL*-equivalent, i.e., $s \equiv_{CTL*} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$

important: equivalence is also obtained for any sub-logic containing \neg , \land and X

REVIEW: Simulation order

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be two transition systems over AP. A <u>simulation</u> for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall q_1 \in I_1 \exists q_2 \in I_2. (q_1, q_2) \in \mathcal{R}$
- 2. for all $(q_1, q_2) \in \mathcal{R}$ it holds:
 - **2.1** $L_1(q_1) = L_2(q_2)$
 - 2.2 if $q'_1 \in Post(q_1)$ then there exists $q'_2 \in Post(q_2)$ with $(q'_1, q'_2) \in \mathcal{R}$

$TS_1 \leq TS_2$ iff there exists a simulation \mathcal{R} for (TS_1, TS_2)

REVIEW: Similar but not bisimilar

 $TS_{left} \simeq TS_{right}$ but $TS_{left} \neq TS_{right}$

Simulation quotient

For $TS = (S, Act, \rightarrow, I, AP, L)$ and simulation equivalence $\simeq \subseteq S \times S$ let $TS/\simeq = (S', \{\tau\}, \rightarrow', I', AP, L'),$ the <u>quotient</u> of *TS* under \simeq

where

S' = S/≃= { [s]_≃ | s ∈ S } and I' = { [s]_≃ | s ∈ I }
→' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_{≃} \xrightarrow{\tau} [s']_{≃}}$$

lemma: $TS \simeq TS/\simeq$; proof not straightforward!

Universal fragment of CTL*

∀CTL^{*} state-formulas are formed according to:

$$\Phi ::= \mathsf{true} \mid \mathsf{false} \mid a \mid \neg a \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \mathsf{A}\varphi$$

where $a \in AP$ and φ is a path-formula

∀CTL* path-formulas are formed according to:

$$\varphi ::= \Phi \left| \begin{array}{c} \mathsf{X} \varphi \end{array} \right| \left| \begin{array}{c} \varphi_1 \land \varphi_2 \end{array} \right| \left| \begin{array}{c} \varphi_1 \lor \varphi_2 \end{array} \right| \left| \begin{array}{c} \varphi_1 \mathsf{U} \varphi_2 \end{array} \right| \left| \begin{array}{c} \varphi_1 \mathsf{R} \varphi_2 \end{array} \right|$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

Universal CTL* contains LTL

For every LTL formula there exists an equivalent \forall CTL^{*} formula

Proof: Bring LTL formula into positive normal form (PNF).

Simulation order and $\forall CTL^*$

Let *TS* be a finite transition system (without terminal states) and *q*, *q'* states in *TS*. The following statements are equivalent: (1) $q \leq_{TS} q'$ (2) for all $\forall CTL^*$ -formulas $\Phi: q' \models \Phi$ implies $q \models \Phi$ (3) for all $\forall CTL$ -formulas $\Phi: q' \models \Phi$ implies $q \models \Phi$

proof is carried out in three steps: (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)

Existential fragment of CTL*

∃CTL* state-formulas are formed according to:

$$\Phi ::= \text{ true } \left| \text{ false } \left| a \right| \neg a \right| \Phi_1 \land \Phi_2 \left| \Phi_1 \lor \Phi_2 \right| \exists \varphi$$

where $a \in AP$ and φ is a path-formula

∃CTL* path-formulas are formed according to:

$$\varphi ::= \Phi \left| X \varphi \right| \varphi_1 \land \varphi_2 \left| \varphi_1 \lor \varphi_2 \right| \varphi_1 \mathsf{U} \varphi_2 \left| \varphi_1 \mathsf{R} \varphi_2 \right|$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

Simulation order and $\exists CTL^*$

Let *TS* be a finite transition system (without terminal states) and *q*, *q'* states in *TS*. The following statements are equivalent: (1) $q \leq_{TS} q'$ (2) for all \exists CTL*-formulas Φ : $q \models \Phi$ implies $q' \models \Phi$ (3) for all \exists CTL-formulas Φ : $q \models \Phi$ implies $q' \models \Phi$

\simeq , \forall CTL^{*}, and \exists CTL^{*} equivalence

For finite transition system TS without terminal states:

$$\simeq_{\tau s} = \equiv_{\forall \mathsf{CTL}^*} = \equiv_{\forall \mathsf{CTL}} = \equiv_{\exists \mathsf{CTL}^*} = \equiv_{\exists \mathsf{CTL}}$$

Simulation preorder checking

Require: finite transition system $TS = (S, Act, \rightarrow, I, AP, L)$ over AP **Ensure:** simulation order \leq_{TS}

 $\mathcal{R} := \{ (q_1, q_2) \mid L(q_1) = L(q_2) \};$

```
while \mathcal{R} is not a simulation do
choose (q_1, q_2) \in \mathcal{R}
such that (q_1, q_1') \in E, but for all q_2' with (q_2, q_2') \in E, (q_1', q_2') \notin \mathcal{R};
\mathcal{R} := \mathcal{R} \setminus \{ (q_1, q_2) \}
end while
return \mathcal{R}
```

The number of iterations is bounded from above by $|S|^2$, since:

 $S \times S \supseteq \mathcal{R}_0 \not\supseteq \mathcal{R}_1 \supseteq \mathcal{R}_2 \supseteq \ldots \supseteq \mathcal{R}_n = \leq$

Checking trace equivalence

Let TS_1 and TS_2 be finite transition systems over AP. Then:

1. The problem whether

 $Traces_{fin}(TS_1) = Traces_{fin}(TS_2)$ is PSPACE-complete

2. The problem whether

 $Traces(TS_1) = Traces(TS_2)$ is PSPACE-complete

Overview implementation relations

	bisimulation equivalence	simulation order	trace equivalence
preservation of temporal-logical properties	CTL* CTL	∀CTL*/∃CTL* ∀CTL/∃CTL	LTL
checking equivalence	PTIME	PTIME	PSPACE- complete
graph minimization	PTIME	PTIME	