Verification

Lecture 18

Bernd Finkbeiner

Plan for today

- CTL*
- Bisimulation
- Computing bisimulation quotients
- Simulation

Bisimulation vs. CTL* and CTL equivalence

Let $T S$ be a finite state graph and s, s^{\prime} states in $T S$
 The following statements are equivalent:
 (1) $s \sim_{T s} s^{\prime}$
 (2) s and s^{\prime} are CTL-equivalent, i.e., $s \equiv_{C T L} s^{\prime}$
 (3) s and s^{\prime} are $C T L^{*}$-equivalent, i.e., $s \equiv_{c T L^{*}} s^{\prime}$

this is proven in three steps: $\equiv_{C T L} \subseteq \sim \subseteq \equiv_{C T L *} \subseteq \equiv_{C T L}$
important: equivalence is also obtained for any sub-logic containing \neg, \wedge and X

The importance of this result

- CTL and CTL* equivalence coincide
- despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
- and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
- $T S_{1} \vDash \Phi$ and $T S_{2} \not \vDash \Phi$ implies $T S_{1} \nsim T S_{2}$
- You even do not need to use an until-operator!
- To check $T S \vDash \Phi$, it suffices to check $T S / \sim \vDash \Phi$

Computing bisimulation quotients

Computing bisimulation quotients

A partition $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$ of S is a set of nonempty $\left(B_{i} \neq \varnothing\right)$ and pairwise disjoint blocks B_{i} that decompose $S\left(S=\biguplus_{i=1, \ldots k} B_{i}\right)$. A partition defines an equivalence relation ~
$\left(\left(q, q^{\prime}\right) \in \sim \Leftrightarrow \exists B_{i} \in \Pi . q, q^{\prime} \in B_{i}\right)$.
Likewise, an equivalence relation \sim defines a partition $\Pi=S / \sim$. A nonempty union $C=\biguplus_{i \in \epsilon} B_{i}$ of blocks is called a superblock.

A block B_{i} of a partition Π is called stable w.r.t. a set B if either $B_{i} \cap \operatorname{Pre}(B)=\varnothing$, or $B_{i} \subseteq \operatorname{Pre}(B)$.

$$
(\operatorname{Pre}(B)=\{q \in S \mid \operatorname{Post}(q) \cap B \neq \varnothing\})
$$

A partition Π is called stable w.r.t. a set B if all blocks of Π are.

Lemma 1. A partition Π with consistently labeled blocks is stable with respect to all of its (super)blocks if, and only if, it defines a bisimulation relation.

Partition refinement

For two partitions $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$ and $\Pi^{\prime}=\left\{B_{1}^{\prime}, \ldots, B_{j}^{\prime}\right\}$ of S, we say that Π is finer than Π^{\prime} iff every block of Π^{\prime} is a superblock of Π.

For a given partition $\Pi=\left\{B_{1}, \ldots, B_{k}\right\}$, we call a (super)block C of Π a splitter of a block $B_{i} /$ the partition Π if B_{i} / Π is not stable w.r.t. C.
Refine $\left(B_{i}, C\right)$ denotes $\left\{B_{i}\right\}$ if B_{i} is stable w.r.t. C, and $\left\{B_{i} \cap \operatorname{Pre}(C), B_{i} \backslash \operatorname{Pre}(C)\right\}$ if C is a splitter of C.
Refine $(\Pi, C)=\biguplus_{i=1, \ldots, k} \operatorname{Refine}\left(B_{i}, C\right)$.
Lemma 2. Refine (Π, C) is finer than Π.

An algorithm for bisimulation quotienting

Input: Transition system $(S, A c t, \rightarrow, I, A P, L)$
Output: Bisimulation quotient

1. $\Pi=S / \sim_{A P} \quad\left(q, q^{\prime}\right) \in \sim_{A P} \Leftrightarrow L(q)=L\left(q^{\prime}\right)$
2. while some block $B \in \Pi$ is a splitter of Π loop invariant: Π is coarser
2.1 pick a block B that is a splitter of Π than S / \sim TS
$2.2 \Pi=\operatorname{Refine}(\Pi, B)$
3. return Π

Example

1. $\Pi=S / \sim_{A P}$
2. while some block $B \in \Pi$ is a splitter of Π
2.1 pick a block B that is a splitter of Π
2.2 Π = Refine (Π, B)
3. return Π

Example

1. $\Pi=S / \sim_{A P}$
2. while some block $B \in \Pi$ is a splitter of Π
2.1 pick a block B that is a splitter of Π
2.2 Π = Refine (Π, B)
3. return Π

Example

1. $\Pi=S / \sim_{A P}$
2. while some block $B \in \Pi$ is a splitter of Π
2.1 pick a block B that is a splitter of Π
2.2 Π = Refine (Π, B)
3. return Π

Example

1. $\Pi=S / \sim_{A P}$
2. while some block $B \in \Pi$ is a splitter of Π
2.1 pick a block B that is a splitter of Π
2.2 Π = Refine (Π, B)
3. return Π

Example

1. $\Pi=S / \sim_{A P}$
2. while some block $B \in \Pi$ is a splitter of Π
2.1 pick a block B that is a splitter of Π
2.2 Π = Refine (Π, B)
3. return Π

Correctness and termination

1. $\Pi=S / \sim_{A P}$

$$
\left(q, q^{\prime}\right) \in \sim_{A P} \Leftrightarrow L(q)=L\left(q^{\prime}\right)
$$

2. while some block $B \in \Pi$ is a splitter of Π

$$
\text { loop invariant: } \Pi \text { is coarser than } S / \sim_{T S}
$$

2.1 pick a block B that is a splitter of Π
$2.2 \Pi=\operatorname{Refine}(\Pi, B)$
3. return Π

Lemma 3. The algorithm terminates.
Lemma 4. The loop invariant holds initially.
Lemma 5. The loop invariant is preserved.
Theorem. The algorithm returns the quotient S / \sim TS of the coarsest bisimulation $\sim T S$.

Simulation

Simulation order

Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow i, l_{i}, A P, L_{i}\right), i=1,2$,
be two transition systems over AP.
A simulation for $\left(T S_{1}, T S_{2}\right)$ is a binary relation $\mathcal{R} \subseteq S_{1} \times S_{2}$ such that:

1. $\forall q_{1} \in I_{1} \exists q_{2} \in I_{2} .\left(q_{1}, q_{2}\right) \in \mathcal{R}$
2. for all $\left(q_{1}, q_{2}\right) \in \mathcal{R}$ it holds:
2.1 $L_{1}\left(q_{1}\right)=L_{2}\left(q_{2}\right)$
2.2 if $q_{1}^{\prime} \in \operatorname{Post}\left(q_{1}\right)$ then there exists $q_{2}^{\prime} \in \operatorname{Post}\left(q_{2}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$
$T S_{1} \leq T S_{2}$ iff there exists a simulation \mathcal{R} for $\left(T S_{1}, T S_{2}\right)$

Simulation order

q_{1}	\rightarrow	q_{1}^{\prime}		q_{1}	\rightarrow
\mathcal{R}			q_{1}^{\prime}		
q_{2}				can be completed to	\mathcal{R}
		\mathcal{R}			
		q_{2}	\rightarrow	q_{2}^{\prime}	

but not necessarily:

$$
\begin{array}{lllll}
q_{1} & & q_{1} & \rightarrow & q_{1}^{\prime} \\
\mathcal{R} & \text { can be completed to } & \mathcal{R} & & \mathcal{R} \\
q_{2} \rightarrow q_{2}^{\prime} & & q_{2} & \rightarrow & q_{2}^{\prime}
\end{array}
$$

The use of simulations

- As a notion of correctness for refinement
- $T S \leq T S^{\prime}$ whenever $T S$ is obtained by deleting transitions from TS'
- e.g., nondeterminism is resolved by choosing one alternative
- As a notion of correctness for abstraction
- abstract from concrete values of certain program or control variables
- use instead abstract values or ignore their value completely
- used in e.g., software model checking of C and Java
- formalized by an abstraction function f that maps s onto its abstraction $f(s)$

Abstraction function

- $f: S \rightarrow \widehat{S}$ is an abstraction function if

$$
f(q)=f\left(q^{\prime}\right) \Rightarrow L(q)=L\left(q^{\prime}\right)
$$

- S is a set of concrete states and \widehat{S} a set of abstract states, i.e. $|\widehat{S}| \ll|S|$
- Abstraction functions are useful for:
- data abstraction: abstract from values of program or control variables

$$
f: \text { concrete data domain } \rightarrow \text { abstract data domain }
$$

- predicate abstraction: use predicates over the program variables

$$
f: \text { state } \rightarrow \text { valuations of the predicates }
$$

- localization reduction: partition program variables into visible and invisible

$$
f: \text { all variables } \rightarrow \text { visible variables }
$$

Abstract transition system

For $T S=(S, A c t, \rightarrow, I, A P, L)$ and abstraction function $f: S \rightarrow \widehat{S}$ let:

$$
T S_{f}=\left(\widehat{S}, A c t, \rightarrow_{f}, I_{f}, A P, L_{f}\right), \quad \text { the abstraction of } T S \text { under } f
$$

where

- \rightarrow_{f} is defined by: $\frac{s \xrightarrow{\alpha} s^{\prime}}{f(s) \xrightarrow{\alpha} f\left(s^{\prime}\right)}$
- $I_{f}=\{f(s) \mid s \in I\}$
- $L_{f}(f(s))=L(s)$; for $s \in \widehat{S} \backslash f(S)$, labeling is undefined

$$
\mathcal{R}=\{(s, f(s)) \mid s \in S\} \text { is a simulation for }\left(T S, T S_{f}\right)
$$

Simulation order on paths

Whenever we have:

$$
\begin{aligned}
& s_{0} \rightarrow s_{1} \rightarrow s_{2} \quad \rightarrow \quad s_{3} \quad \rightarrow \quad s_{4} \ldots \ldots \\
& \mathcal{R} \\
& t_{0}
\end{aligned}
$$

this can be completed to

$$
\begin{array}{lllllllll}
s_{0} & \rightarrow & s_{1} & \rightarrow & s_{2} & \rightarrow & s_{3} & \rightarrow & s_{4} \ldots \ldots \\
\mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} \\
t_{0} & \rightarrow & t_{1} & \rightarrow & t_{2} & \rightarrow & t_{3} & \rightarrow & t_{4} \ldots \ldots
\end{array}
$$

the proof of this fact is by induction on the length of the path

Simulation is a pre-order

\leq is a preorder, i.e., reflexive and transitive

Simulation equivalence

$T S_{1}$ and $T S_{2}$ are simulation equivalent, denoted $T S_{1} \simeq T S_{2}$, if $T S_{1} \leq T S_{2}$ and $T S_{2} \leq T S_{1}$

Similar but not bisimilar

$T S_{\text {left }} \simeq T S_{\text {right }}$ but $T S_{\text {left }} \nsim T S_{\text {right }}$

Simulation order on states

A simulation for $T S=(S, A c t, \rightarrow, I, A P, L)$ is a binary relation $\mathcal{R} \subseteq S \times S$ such that for all $\left(q_{1}, q_{2}\right) \in \mathcal{R}$:

1. $L\left(q_{1}\right)=L\left(q_{2}\right)$
2. if $q_{1}^{\prime} \in \operatorname{Post}\left(q_{1}\right)$ then there exists an $q_{2}^{\prime} \in \operatorname{Post}\left(q_{2}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$
q_{1} is simulated by q_{2}, denoted by $q_{1} \leq_{T S} q_{2}$,
if there exists a simulation \mathcal{R} for $T S$ with $\left(q_{1}, q_{2}\right) \in \mathcal{R}$

$$
q_{1} \leq_{T S} q_{2} \text { if and only if } T S_{q_{1}} \leq T S_{q_{2}}
$$

$$
q_{1} \simeq_{T S} q_{2} \text { if and only if } q_{1} \leq_{T S} q_{2} \text { and } q_{2} \leq_{T S} q_{1}
$$

Simulation quotient

For $T S=(S, A c t, \rightarrow, I, A P, L)$ and simulation equivalence $\simeq \subseteq S \times S$ let

$$
T S / \simeq=\left(S^{\prime},\{\tau\}, \rightarrow^{\prime}, I^{\prime}, A P, L^{\prime}\right), \quad \text { the quotient of } T S \text { under } \simeq
$$

where

- $S^{\prime}=S / \simeq=\left\{[s]_{\cong} \mid s \in S\right\}$ and $I^{\prime}=\left\{[s]_{\cong} \mid s \in I\right\}$
- \rightarrow^{\prime} is defined by:

$$
\frac{s \xrightarrow{\alpha} s^{\prime}}{[s]_{\underline{\longrightarrow}} \xrightarrow{\tau}\left[s^{\prime}\right]_{\underline{n}}}
$$

- $L^{\prime}\left([s]_{\sim}\right)=L(s)$

$$
\text { lemma: } T S \simeq T S / \simeq \text {; proof not straightforward! }
$$

