

Lecture 18

Bernd Finkbeiner

Plan for today

- CTL*
- Bisimulation
 - Computing bisimulation quotients
- Simulation

Bisimulation vs. CTL* and CTL equivalence

Let *TS* be a <u>finite</u> state graph and *s*, *s'* states in *TS* The following statements are equivalent: (1) $s \sim_{TS} s'$ (2) *s* and *s'* are CTL-equivalent, i.e., $s \equiv_{CTL} s'$ (3) *s* and *s'* are CTL*-equivalent, i.e., $s \equiv_{CTL*} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$

important: equivalence is also obtained for any sub-logic containing \neg , \land and X

The importance of this result

- CTL and CTL* equivalence coincide
 - despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
 - and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
 - $TS_1 \models \Phi$ and $TS_2 \notin \Phi$ implies $TS_1 \not \vdash TS_2$
- You even do not need to use an until-operator!
- To check $TS \models \Phi$, it suffices to check $TS / \sim \models \Phi$

Computing bisimulation quotients

Computing bisimulation quotients

A partition $\Pi = \{B_1, \ldots, B_k\}$ of *S* is a set of nonempty $(B_i \neq \emptyset)$ and pairwise disjoint blocks B_i that decompose S ($S = \bigcup_{i=1,\ldots,k} B_i$). A partition defines an equivalence relation ~ $((q, q') \in \sim \Leftrightarrow \exists B_i \in \Pi. q, q' \in B_i)$. Likewise, an equivalence relation ~ defines a partition $\Pi = S/\sim$. A nonempty union $C = \bigcup_{i \in I} B_i$ of blocks is called a superblock.

A block B_i of a partition Π is called <u>stable</u> w.r.t. a set B if either $B_i \cap Pre(B) = \emptyset$, or $B_i \subseteq Pre(B)$.

 $(Pre(B) = \{q \in S \mid Post(q) \cap B \neq \emptyset\})$

A partition Π is called <u>stable</u> w.r.t. a set *B* if all blocks of Π are.

Lemma 1. A partition Π with consistently labeled blocks is stable with respect to all of its (super)blocks if, and only if, it defines a bisimulation relation.

Partition refinement

For two partitions $\Pi = \{B_1, ..., B_k\}$ and $\Pi' = \{B'_1, ..., B'_j\}$ of S, we say that Π is finer than Π' iff every block of Π' is a superblock of Π .

For a given partition $\Pi = \{B_1, \ldots, B_k\}$, we call a (super)block *C* of Π a <u>splitter</u> of a block B_i / the partition Π if B_i / Π is not stable w.r.t. *C*. Refine (B_i, C) denotes $\{B_i\}$ if B_i is stable w.r.t. *C*, and $\{B_i \cap Pre(C), B_i \setminus Pre(C)\}$ if *C* is a splitter of *C*. Refine $(\Pi, C) = \bigcup_{i=1,\ldots,k}$ Refine (B_i, C) .

Lemma 2. Refine(Π , *C*) is finer than Π .

An algorithm for bisimulation quotienting

Input: Transition system $(S, Act, \rightarrow, I, AP, L)$ **Output:** Bisimulation quotient

1. $\Pi = S/\sim_{AP} \qquad (q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$

2. while some block $B \in \Pi$ is a splitter of Π loop invariant: Π is coarser

2.1 pick a block *B* that is a splitter of Π than $S/_{TS}$

2.2
$$\Pi$$
 = Refine(Π , *B*)

3. return Π

1. $\Pi = S/\sim_{AP}$

2. while some block
$$B \in \Pi$$
 is a splitter of Π

- 2.1 pick a block *B* that is a splitter of Π
- **2.2** $\Pi = \operatorname{Refine}(\Pi, B)$
- 3. return Π

$$(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$$

1. $\Pi = S/\sim_{AP}$

2. while some block
$$B \in \Pi$$
 is a splitter of Π

- 2.1 pick a block *B* that is a splitter of Π
- **2.2** $\Pi = \operatorname{Refine}(\Pi, B)$
- 3. return Π

$$(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$$

1. $\Pi = S/\sim_{AP}$

2. while some block
$$B \in \Pi$$
 is a splitter of Π

- 2.1 pick a block *B* that is a splitter of Π
- **2.2** $\Pi = \operatorname{Refine}(\Pi, B)$
- 3. return Π

$$(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$$

1. $\Pi = S/\sim_{AP}$

2. while some block
$$B \in \Pi$$
 is a splitter of Π

- 2.1 pick a block *B* that is a splitter of Π
- **2.2** $\Pi = \operatorname{Refine}(\Pi, B)$
- 3. return Π

$$(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$$

1. $\Pi = S/\sim_{AP}$

2. while some block
$$B \in \Pi$$
 is a splitter of Π

- 2.1 pick a block *B* that is a splitter of Π
- **2.2** $\Pi = \operatorname{Refine}(\Pi, B)$
- 3. return Π

$$(q,q') \in \sim_{AP} \Leftrightarrow L(q) = L(q')$$

Correctness and termination

1. $\Pi = S/\sim_{AP}$

2. while some block $B \in \Pi$ is a splitter of Π

$$(q,q') { \in } { \sim_{AP}} \Leftrightarrow L(q) = L(q')$$

loop invariant: Π is coarser than S/\sim_{TS}

- 2.1 pick a block *B* that is a splitter of Π
- 2.2 $\Pi = \operatorname{Refine}(\Pi, B)$
- 3. return Π

Lemma 3. The algorithm terminates.

- Lemma 4. The loop invariant holds initially.
- Lemma 5. The loop invariant is preserved.

Theorem. The algorithm returns the quotient S/\sim_{TS} of the coarsest bisimulation \sim_{TS} .

Simulation

Simulation order

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be two transition systems over AP. A <u>simulation</u> for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall q_1 \in I_1 \exists q_2 \in I_2. (q_1, q_2) \in \mathcal{R}$
- 2. for all $(q_1, q_2) \in \mathcal{R}$ it holds:
 - **2.1** $L_1(q_1) = L_2(q_2)$
 - 2.2 if $q'_1 \in Post(q_1)$ then there exists $q'_2 \in Post(q_2)$ with $(q'_1, q'_2) \in \mathcal{R}$

$TS_1 \leq TS_2$ iff there exists a simulation \mathcal{R} for (TS_1, TS_2)

Simulation order

$q_1 \rightarrow q'_1$		q 1	\rightarrow	q_1'
${\cal R}$	can be completed to	${\mathcal R}$		\mathcal{R}
<i>q</i> ₂		q 2	\rightarrow	q '_2
at was as a set it w				

but not necessarily:

q 1				q 1	\rightarrow	q_1'
\mathcal{R}			can be completed to	\mathcal{R}		\mathcal{R}
q ₂	\rightarrow	q_2'		q ₂	\rightarrow	q_2'

The use of simulations

- As a notion of correctness for <u>refinement</u>
 - $TS \leq TS'$ whenever TS is obtained by deleting transitions from TS'
 - e.g., nondeterminism is resolved by choosing one alternative
- As a notion of correctness for <u>abstraction</u>
 - abstract from concrete values of certain program or control variables
 - use instead abstract values or ignore their value completely
 - used in e.g., software model checking of C and Java
 - formalized by an abstraction function f that maps s onto its abstraction f(s)

Abstraction function

- ► $f: S \to \widehat{S}$ is an <u>abstraction function</u> if $f(q) = f(q') \Rightarrow L(q) = L(q')$
 - S is a set of concrete states and \widehat{S} a set of abstract states, i.e. $|\widehat{S}| \ll |S|$
- Abstraction functions are useful for:
 - data abstraction: abstract from values of program or control variables

f : concrete data domain \rightarrow abstract data domain

predicate abstraction: use predicates over the program variables

f: state \rightarrow valuations of the predicates

 localization reduction: partition program variables into visible and invisible

f : all variables \rightarrow visible variables

Abstract transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and abstraction function $f : S \rightarrow \widehat{S}$ let: $TS_f = (\widehat{S}, Act, \rightarrow_f, I_f, AP, L_f)$, the <u>abstraction</u> of TS under f

where

► →_f is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{f(s) \xrightarrow{\alpha} f(s')}$$

$$I_f = \{f(s) \mid s \in I\}$$

• $L_f(f(s)) = L(s)$; for $s \in \widehat{S} \setminus f(S)$, labeling is undefined

 $\mathcal{R} = \{ (s, f(s)) \mid s \in S \} \text{ is a simulation for } (TS, TS_f)$

Simulation order on paths

Whenever we have:

 $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$ \mathcal{R} t_0

this can be completed to

the proof of this fact is by induction on the length of the path

Simulation is a pre-order

\leq is a preorder, i.e., reflexive and transitive

Simulation equivalence

 TS_1 and TS_2 are simulation equivalent, denoted $TS_1 \simeq TS_2$, if $TS_1 \leq TS_2$ and $TS_2 \leq TS_1$

Similar but not bisimilar

 $TS_{left} \simeq TS_{right}$ but $TS_{left} \neq TS_{right}$

Simulation order on states

A <u>simulation</u> for $TS = (S, Act, \rightarrow, I, AP, L)$ is a binary relation $\mathcal{R} \subseteq S \times S$ such that for all $(q_1, q_2) \in \mathcal{R}$:

- 1. $L(q_1) = L(q_2)$
- 2. if $q'_1 \in Post(q_1)$ then there exists an $q'_2 \in Post(q_2)$ with $(q'_1, q'_2) \in \mathcal{R}$

 q_1 is simulated by q_2 , denoted by $q_1 \leq_{TS} q_2$, if there exists a simulation \mathcal{R} for *TS* with $(q_1, q_2) \in \mathcal{R}$

$$q_1 \leq_{TS} q_2$$
 if and only if $TS_{q_1} \leq TS_{q_2}$

 $q_1 \simeq_{TS} q_2$ if and only if $q_1 \preceq_{TS} q_2$ and $q_2 \preceq_{TS} q_1$

Simulation quotient

For $TS = (S, Act, \rightarrow, I, AP, L)$ and simulation equivalence $\simeq \subseteq S \times S$ let $TS/\simeq = (S', \{\tau\}, \rightarrow', I', AP, L'),$ the <u>quotient</u> of *TS* under \simeq

where

S' = S/≃= { [s]_≃ | s ∈ S } and I' = { [s]_≃ | s ∈ I }
→' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_{≃} \xrightarrow{\tau} [s']_{≃}}$$

lemma: $TS \simeq TS/\simeq$; proof not straightforward!