
Verification

Lecture 18

Bernd Finkbeiner

Plan for today

▸ CTL∗

▸ Bisimulation
▸ Computing bisimulation quotients

▸ Simulation

2

Bisimulation vs. CTL∗ and CTL equivalence

Let TS be a finite state graph and s, s′ states in TS

The following statements are equivalent:

(1) s ∼TS s′

(2) s and s′ are CTL-equivalent, i.e., s ≡CTL s
′

(3) s and s′ are CTL∗-equivalent, i.e., s ≡CTL∗ s
′

this is proven in three steps: ≡CTL ⊆ ∼ ⊆ ≡CTL∗ ⊆ ≡CTL

important: equivalence is also obtained for any sub-logic containing ¬, ∧ and X

3

The importance of this result

▸ CTL and CTL∗ equivalence coincide
▸ despite the fact that CTL∗ is more expressive than CTL

▸ Bisimilar transition systems preserve the same CTL∗ formulas
▸ and thus the same LTL formulas (and LT properties)

▸ Non-bisimilarity can be shown by a single CTL (or CTL∗)
formula

▸ TS1 ⊧ Φ and TS2 /⊧ Φ implies TS1 /∼ TS2

▸ You even do not need to use an until-operator!

▸ To check TS ⊧ Φ, it suffices to check TS/∼⊧ Φ

4

Computing bisimulation quotients

5

Computing bisimulation quotients

A partition Π = {B1, . . . , Bk} of S is a set of nonempty (Bi ≠ ∅) and
pairwise disjoint blocks Bi that decompose S (S = ⊎i=1,...k Bi).

A partition defines an equivalence relation ∼
((q, q′)∈ ∼⇔ ∃Bi ∈ Π. q, q′ ∈ Bi).
Likewise, an equivalence relation ∼ defines a partition Π = S/∼.
A nonempty union C = ⊎i∈I Bi of blocks is called a superblock.

A block Bi of a partition Π is called stable w.r.t. a set B if either

Bi ∩ Pre(B) = ∅, or Bi ⊆ Pre(B).
(Pre(B) = {q ∈ S ∣ Post(q) ∩ B ≠ ∅})

A partition Π is called stable w.r.t. a set B if all blocks of Π are.

6

Lemma 1. A partition Π with consistently labeled blocks is stable

with respect to all of its (super)blocks if, and only if, it defines a

bisimulation relation.

7

Partition refinement

For two partitions Π = {B1, . . . , Bk} and Π′ = {B′1, . . . , B
′

j} of S, we
say that Π is finer than Π′ iff every block of Π′ is a superblock of Π.

For a given partition Π = {B1, . . . , Bk}, we call a (super)block C of Π

a splitter of a block Bi / the partition Π if Bi / Π is not stable w.r.t. C.

Refine(Bi , C) denotes {Bi} if Bi is stable w.r.t. C, and
{Bi ∩ Pre(C), Bi ∖ Pre(C)} if C is a splitter of C.

Refine(Π, C) = ⊎i=1,...,kRefine(Bi , C).

Lemma 2. Refine(Π, C) is finer than Π.

8

An algorithm for bisimulation quotienting

Input: Transition system (S,Act,→, I,AP, L)
Output: Bisimulation quotient

1. Π = S/∼AP (q, q′)∈∼AP⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser

2.1 pick a block B that is a splitter of Π than S/∼TS
2.2 Π = Refine(Π, B)

3. return Π

9

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π

2.2 Π = Refine(Π, B)
3. return Π

10

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π

2.2 Π = Refine(Π, B)
3. return Π

11

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π

2.2 Π = Refine(Π, B)
3. return Π

12

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π

2.2 Π = Refine(Π, B)
3. return Π

13

Example
1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π

2.2 Π = Refine(Π, B)
3. return Π

14

Correctness and termination

1. Π = S/∼AP (q, q′)∈∼AP ⇔ L(q) = L(q′)

2. while some block B ∈ Π is a splitter of Π loop invariant: Π is coarser than S/∼TS

2.1 pick a block B that is a splitter of Π

2.2 Π = Refine(Π, B)

3. return Π

Lemma 3. The algorithm terminates.

Lemma 4. The loop invariant holds initially.

Lemma 5. The loop invariant is preserved.

Theorem. The algorithm returns the quotient S/∼TS of the coarsest
bisimulation ∼TS.

15

Simulation

16

Simulation order

Let TSi = (Si ,Acti ,→i , Ii ,AP, Li) , i=1, 2,
be two transition systems over AP.

A simulation for (TS1, TS2) is a binary relationR ⊆ S1 × S2 such that:

1. ∀q1 ∈ I1 ∃q2 ∈ I2. (q1, q2) ∈ R

2. for all (q1, q2) ∈ R it holds:

2.1 L1(q1) = L2(q2)

2.2 if q′1 ∈ Post(q1)
then there exists q′2 ∈ Post(q2)with (q

′

1 , q
′

2) ∈ R

TS1 ⪯ TS2 iff there exists a simulationR for (TS1 , TS2)

17

Simulation order

q1 −→ q′1 q1 −→ q′1

R can be completed to R R

q2 q2 −→ q′2

but not necessarily:

q1 q1 −→ q′1

R can be completed to R R

q2 −→ q′2 q2 −→ q′2

18

The use of simulations

▸ As a notion of correctness for refinement
▸ TS ⪯ TS′ whenever TS is obtained by deleting transitions from

TS′

▸ e.g., nondeterminism is resolved by choosing one alternative

▸ As a notion of correctness for abstraction
▸ abstract from concrete values of certain program or control

variables
▸ use instead abstract values or ignore their value completely
▸ used in e.g., software model checking of C and Java
▸ formalized by an abstraction function f that maps s onto its

abstraction f(s)

19

Abstraction function

▸ f ∶ S→ Ŝ is an abstraction function if
f(q) = f(q′) ⇒ L(q) = L(q′)

▸ S is a set of concrete states and Ŝ a set of abstract states, i.e.

∣̂S∣ << ∣S∣

▸ Abstraction functions are useful for:
▸ data abstraction: abstract from values of program or control

variables

f ∶ concrete data domain→ abstract data domain

▸ predicate abstraction: use predicates over the program

variables

f ∶ state→ valuations of the predicates

▸ localization reduction: partition program variables into visible

and invisible

f ∶ all variables→ visible variables
20

Abstract transition system

For TS = (S,Act,→, I,AP, L) and abstraction function f ∶ S→ Ŝ let:

TSf = (̂S,Act,→f , If ,AP, Lf), the abstraction of TS under f

where

▸ →f is defined by:
s α
−−→ s′

f(s) α
−−→f f(s

′)

▸ If = { f(s) ∣ s ∈ I }

▸ Lf(f(s)) = L(s); for s ∈ Ŝ ∖ f(S), labeling is undefined

R = {(s, f(s)) ∣ s ∈ S} is a simulation for (TS, TSf)

21

Simulation order on paths

Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R

t0

this can be completed to

s0 −→ s1 −→ s2 −→ s3 −→ s4

R R R R R

t0 −→ t1 −→ t2 −→ t3 −→ t4

the proof of this fact is by induction on the length of the path

22

Simulation is a pre-order

⪯ is a preorder, i.e., reflexive and transitive

23

Simulation equivalence

TS1 and TS2 are simulation equivalent, denoted TS1 ≃ TS2,

if TS1 ⪯ TS2 and TS2 ⪯ TS1

24

Similar but not bisimilar

s1 {a}

s2 ∅ s3 ∅

s4 {b} s5 { c }

t1 {a}

t2 ∅

t3 {b} t4 { c }

TSleft ≃ TSright but TSleft /∼ TSright

25

Simulation order on states

A simulation for TS = (S,Act,→, I,AP, L) is a binary relationR ⊆ S× S

such that for all (q1, q2) ∈ R:

1. L(q1) = L(q2)

2. if q′1 ∈ Post(q1)
then there exists an q′2 ∈ Post(q2)with (q

′

1, q
′

2) ∈ R

q1 is simulated by q2, denoted by q1 ⪯TS q2,

if there exists a simulationR for TSwith (q1 , q2) ∈ R

q1 ⪯TS q2 if and only if TSq1 ⪯ TSq2

q1 ≃TS q2 if and only if q1 ⪯TS q2 and q2 ⪯TS q1

26

Simulation quotient

For TS = (S,Act,→, I,AP, L) and simulation equivalence ≃ ⊆ S × S let

TS/≃ = (S′, { τ },→′, I′,AP, L′), the quotient of TS under ≃

where

▸ S′ = S/≃= { [s]≃ ∣ s ∈ S} and I′ = { [s]≃ ∣ s ∈ I }

▸ →
′ is defined by:

s α
−−→ s′

[s]≃
τ
−−→
′ [s′]≃

▸ L′([s]≃) = L(s)

lemma: TS ≃ TS/≃ ; proof not straightforward!

27

