Verification

Lecture 16

Bernd Finkbeiner

Plan for today

- LTL bounded model checking
- Expressiveness of LTL vs. CTL

REVIEW: Bounded model checking

Search for counterexamples of bounded length

There exists a counterexample of length k to the invariant AGp iff the following formula is satisfiable:
$f_{l}\left(\vec{v}_{0}\right) \wedge f_{\rightarrow}\left(\vec{v}_{0}, \vec{v}_{1}\right) \wedge f_{\rightarrow}\left(\vec{v}_{1}, \vec{v}_{2}\right) \wedge \ldots f_{\rightarrow}\left(\vec{v}_{k-2}, \vec{v}_{k-1}\right) \wedge\left(\neg p_{0} \vee \neg p_{1} \vee \ldots \vee \neg p_{k-1}\right)$

Bounded LTL model checking

Automata-based approach:

- Translate LTL formula $\neg \varphi$ to Büchi automaton
- Build product with transition system
- Encode all paths that start in initial state and are k steps long
- Require that path contains loop with accepting state

$$
f_{l}\left(\vec{v}_{0}\right) \wedge \bigwedge_{i=0}^{k-2} f_{\rightarrow}\left(\vec{v}_{i}, \vec{v}_{i+1}\right) \wedge \bigvee_{i=0}^{k-1}\left(\left(\vec{v}_{i}=\vec{v}_{k}\right) \wedge \bigvee_{j=i}^{k-1} f_{F}\left(\vec{v}_{j}\right)\right)
$$

Formula size: $O\left(k \cdot|T S| \cdot 2^{|\varphi|}\right)$

Fixpoint-based translation

$$
\psi_{T S} \wedge \psi_{\text {loop }} \wedge[\psi]_{0}
$$

- $\psi_{T S}=f_{l}\left(\vec{v}_{0}\right) \wedge \bigwedge_{i=0}^{k-2} f_{\rightarrow}\left(\vec{v}_{i}, \vec{v}_{i+1}\right)$
- $\psi_{\text {loop }}$: loop constraint, ensures the existence of exactly one loop
- $[\varphi]_{0}$: fixpoint formula, ensures that LTL formula holds

Formula size: $O(k \cdot(|T S|+|\varphi|))$

Loop constraint

- $\psi_{\text {loop }}=$ AtLeastOneLoop \wedge AtMostOneLoop
- AtLeastOneLoop $=\bigwedge_{i=0}^{k-2}\left(I_{i} \Rightarrow\left(\vec{v}_{i}=\vec{v}_{k-1}\right)\right) \wedge \bigvee_{i=0}^{k-2} I_{i}$
- AtMostOneLoop $=\wedge_{i=0}^{k-2}\left(\right.$ SmallerExists $\left._{i} \Rightarrow \neg l_{i}\right)$
- SmallerExists ${ }_{0}=$ false
- SmallerExists $_{i+1}=$ SmallerExists $_{i} \vee l_{i}$ for $0 \leq i<k-1$.

Fixpoint formula
Let φ be in PNF.

$$
\begin{aligned}
- & {[p]_{i}=p_{i} \text { for } i<k-1 } \\
& {[p]_{i}=\bigvee_{j=0}^{k-2}\left(I_{j} \wedge p_{j}\right) \text { for } i=k-1 } \\
, & {[\neg p]_{i}=\neg p_{i} \text { for } i<k-1 } \\
& {[\neg p]_{i}=\bigvee_{j=0}^{k-2}\left(I_{j} \wedge \neg p_{j}\right) \text { for } i=k-1 } \\
- & {\left[\bigcirc \varphi^{\prime}\right]_{i}=\left[\varphi^{\prime}\right]_{i+1} \text { for } i<k-2 } \\
& {\left[\bigcirc \varphi^{\prime}\right]_{i}=\bigvee_{j=0}^{k-2}\left(I_{j} \wedge\left[\varphi^{\prime}\right]\right) \text { for } i=k-2 } \\
- & {\left[\varphi_{1} \cup \varphi_{2}\right]_{i}=\left[\varphi_{2}\right]_{i} \vee\left(\left[\varphi_{1}\right]_{i} \wedge\left[\varphi_{1} \cup \varphi_{2}\right]_{i+1}\right) \text { for } i<k-1 } \\
& {\left[\varphi_{1} \cup \varphi_{2}\right]_{i}=\bigvee_{j=0}^{k-2}\left(I_{j} \wedge\left\langle\varphi_{1} \cup \varphi_{2}\right\rangle_{j}\right) \text { for } i=k-1 } \\
- & {\left[\varphi_{1} \mathrm{R} \varphi_{2}\right]_{i}=\left[\varphi_{2}\right]_{i} \wedge\left(\left[\varphi_{1}\right]_{i} \vee\left[\varphi_{1} \mathrm{R} \varphi_{2}\right]_{i+1}\right) \text { for } i<k-1 } \\
& {\left[\varphi_{1} \mathrm{R} \varphi_{2}\right]_{i}=\bigvee_{j=0}^{k-2}\left(l_{j} \wedge\left\langle\varphi_{1} \mathrm{R} \varphi_{2}\right\rangle_{j}\right) \text { for } i=k-1 } \\
- & \left\langle\varphi_{1} \cup \varphi_{2}\right\rangle_{i}=\left[\varphi_{2}\right]_{i} \vee\left(\left[\varphi_{1}\right]_{i} \wedge\left\langle\varphi_{1} \cup \varphi_{2}\right\rangle_{i+1} \text { for } i<k-1\right. \\
& \left\langle\varphi_{1} \cup \varphi_{2}\right\rangle_{i}=\text { false for } i=k-1 \\
- & \left\langle\varphi_{1} \mathrm{R} \varphi_{2}\right\rangle_{i}=\left[\varphi_{2}\right]_{i} \wedge\left(\left[\varphi_{1}\right]_{i} \vee\left\langle\varphi_{1} \mathrm{R} \varphi_{2}\right\rangle_{i+1} \text { for } i<k-1\right. \\
& \left\langle\varphi_{1} \mathrm{R} \varphi_{2}\right\rangle_{i}=\operatorname{true} \text { for } i=k-1
\end{aligned}
$$

The Completeness Threshold

The bound k is increased incrementally until

- a counterexample is found, or
- the problem becomes intractable due to the complexity of the SAT problem
- k reaches a precomputed threshold that guarantees that there is no counterexample
\rightarrow this threshold is called the completeness threshold CL.

The completeness threshold

- Computing $C L$ is as hard as model checking
- Idea: Compute an overapproximation of CL based on the graph structure

Basic notions:

- Diameter D: Longest shortest path between any two reachable states
- Recurrence diameter RD: Longest loop-free path between any two reachable states
- Initialized diameter D^{\prime} : Longest shortest path between some initial state and some reachable state
- Initialized recurrence diameter $R D^{\prime}$: Longest loop-free path between some initial state and some reachable state

Completeness thresholds

- For $\square p$ properties, $C T \leq D^{\prime}$.
- For $\diamond p$ properties, $C T \leq R D^{\prime}+1$.
- For general LTL properties, $C T \leq \min \left(R D^{\prime}+1, D^{\prime}+D\right)$ (where $D, D^{\prime}, R D, R D^{\prime}$ refer to the product graph)

Complexity

- k chosen as $\min \left(R D^{\prime}+1, D^{\prime}+D\right)$ is exponential in number of state variables
- Size of SAT instance is $O(k \cdot(|T S|+|\varphi|))$
- SAT is solved in exponential time
\Rightarrow double exponential in number of state variables
(Compare: BDD-based model checking is single-exponential)
- In practice, bounded model checking is very successful
- Finds shallow errors fast
- In practice, $R D, D$ are often not exponential

Expressiveness of LTL vs. CTL

Equivalence of LTL and CTL formulas

CTL-formula Φ and LTL-formula φ (both over $A P$) are equivalent, denoted $\Phi \equiv \varphi$, if for any transition system $T S$ (over AP):

$$
T S \vDash \Phi \quad \text { if and only if } \quad T S \vDash \varphi
$$

Examples (1)

CTL-formula AGAFa and LTL-formula GFa are equivalent.

Examples (2)

AFAG a is not equivalent to $\mathrm{FG} a$

Examples (3)

$$
\mathrm{F}(a \wedge \mathrm{X} a) \text { is not equivalent to } \mathrm{AF}(a \wedge \mathrm{AX} a)
$$

LTL and CTL are incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
- FGa
- $\mathrm{F}(a \wedge \mathrm{X} a)$
- Some CTL-formulas cannot be expressed in LTL, e.g.,
- AFAGa
- AF $(a \wedge \mathrm{AX} a)$
- AGEFa
\Rightarrow Cannot be expressed $=$ there does not exist an equivalent formula

Example

The CTL-formula AG EF a cannot be expressed in LTL

Comparing LTL and CTL

Let Φ be a CTL-formula, and φ the LTL-formula obtained by eliminating all path quantifiers in Φ. Then:
[Clarke \& Draghicescu]
$\Phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to Φ

Comparing LTL and CTL

The LTL-formula FG a cannot be expressed in CTL

