Verification

Lecture 16

Bernd Finkbeiner

Plan for today

- LTL bounded model checking
- Expressiveness of LTL vs. CTL

Search for counterexamples of bounded length

There exists a counterexample of length *k* to the invariant AG *p* iff the following formula is satisfiable:

$$f_{l}(\vec{v}_{0}) \wedge f_{\rightarrow}(\vec{v}_{0},\vec{v}_{1}) \wedge f_{\rightarrow}(\vec{v}_{1},\vec{v}_{2}) \wedge \ldots + f_{\rightarrow}(\vec{v}_{k-2},\vec{v}_{k-1}) \wedge (\neg p_{0} \vee \neg p_{1} \vee \ldots \vee \neg p_{k-1})$$

Bounded LTL model checking

Automata-based approach:

- Translate LTL formula $\neg \varphi$ to Büchi automaton
- Build product with transition system
- Encode all paths that start in initial state and are k steps long
- Require that path contains loop with accepting state

$$f_{I}(\vec{v}_{0}) \wedge \bigwedge_{i=0}^{k-2} f_{\rightarrow}(\vec{v}_{i},\vec{v}_{i+1}) \wedge \bigvee_{i=0}^{k-1} \left(\left(\vec{v}_{i} = \vec{v}_{k} \right) \wedge \bigvee_{j=i}^{k-1} f_{F}(\vec{v}_{j}) \right)$$

Formula size: $O(k \cdot |TS| \cdot 2^{|\varphi|})$

Fixpoint-based translation

 ψ *TS* $\wedge \psi$ *loop* $\wedge [\psi]_0$

$$\Psi_{TS} = f_l(\vec{v}_0) \land \bigwedge_{i=0}^{k-2} f_{\rightarrow}(\vec{v}_i, \vec{v}_{i+1})$$

- ψ_{loop} : loop constraint, ensures the existence of exactly one loop
- $[\varphi]_0$: fixpoint formula, ensures that LTL formula holds

Formula size: $O(k \cdot (|TS| + |\varphi|))$

Loop constraint

- $\psi_{loop} = AtLeastOneLoop \land AtMostOneLoop$
- AtLeastOneLoop = $\bigwedge_{i=0}^{k-2} (I_i \Rightarrow (\vec{v}_i = \vec{v}_{k-1})) \land \bigvee_{i=0}^{k-2} I_i$
- AtMostOneLoop = $\bigwedge_{i=0}^{k-2} (SmallerExists_i \Rightarrow \neg I_i)$
- SmallerExists₀ = false
- SmallerExists_{*i*+1} = SmallerExists_{*i*} \lor I_i for $0 \le i < k 1$.

Fixpoint formula

Let φ be in PNF.

$$\begin{array}{l} [p]_{i} = p_{i} \text{ for } i < k - 1 \\ [p]_{i} = \bigvee_{j=0}^{k-2} (l_{j} \land p_{j}) \text{ for } i = k - 1 \\ \hline [\neg p]_{i} = \neg p_{i} \text{ for } i < k - 1 \\ [\neg p]_{i} = \bigvee_{j=0}^{k-2} (l_{j} \land \neg p_{j}) \text{ for } i = k - 1 \\ \hline [\bigcirc p']_{i} = [\varphi']_{i+1} \text{ for } i < k - 2 \\ [\bigcirc \varphi']_{i} = [\varphi']_{i=0} (l_{j} \land [\varphi']) \text{ for } i = k - 2 \\ \hline [\varphi_{1} \cup \varphi_{2}]_{i} = [\varphi_{2}]_{i} \lor ([\varphi_{1}]_{i} \land [\varphi_{1} \cup \varphi_{2}]_{i+1}) \text{ for } i < k - 1 \\ [\varphi_{1} \cup \varphi_{2}]_{i} = \bigvee_{j=0}^{k-2} (l_{j} \land (\varphi_{1} \cup \varphi_{2})_{j}) \text{ for } i = k - 1 \\ \hline [\varphi_{1} \ R \ \varphi_{2}]_{i} = [\varphi_{2}]_{i} \land ([\varphi_{1}]_{i} \lor [\varphi_{1} \ R \ \varphi_{2}]_{i+1}) \text{ for } i < k - 1 \\ [\varphi_{1} \ R \ \varphi_{2}]_{i} = \bigvee_{j=0}^{k-2} (l_{j} \land (\varphi_{1} \ R \ \varphi_{2})_{j}) \text{ for } i = k - 1 \\ \hline \langle \varphi_{1} \ U \ \varphi_{2} \rangle_{i} = [\varphi_{2}]_{i} \lor ([\varphi_{1}]_{i} \land (\varphi_{1} \ U \ \varphi_{2})_{i+1} \text{ for } i < k - 1 \\ \langle \varphi_{1} \ U \ \varphi_{2} \rangle_{i} = [\varphi_{2}]_{i} \land ([\varphi_{1}]_{i} \lor (\varphi_{1} \ R \ \varphi_{2})_{i+1} \text{ for } i < k - 1 \\ \langle \varphi_{1} \ R \ \varphi_{2} \rangle_{i} = [\varphi_{2}]_{i} \land ([\varphi_{1}]_{i} \lor (\varphi_{1} \ R \ \varphi_{2})_{i+1} \text{ for } i < k - 1 \\ \langle \varphi_{1} \ R \ \varphi_{2} \rangle_{i} = true \text{ for } i = k - 1 \end{array}$$

The Completeness Threshold

The bound k is increased incrementally until

- a counterexample is found, or
- the problem becomes intractable due to the complexity of the SAT problem
- k reaches a precomputed threshold that guarantees that there is no counterexample

 \rightarrow this threshold is called the completeness threshold CL.

The completeness threshold

- Computing CL is as hard as model checking
- Idea: Compute an overapproximation of CL based on the graph structure

Basic notions:

- Diameter D: Longest shortest path between any two reachable states
- Recurrence diameter RD: Longest loop-free path between any two reachable states
- Initialized diameter D¹: Longest shortest path between some initial state and some reachable state
- Initialized recurrence diameter RD^I: Longest loop-free path between some initial state and some reachable state

Completeness thresholds

- For $\Box p$ properties, $CT \leq D^{l}$.
- For $\Diamond p$ properties, $CT \leq RD^{l} + 1$.
- ► For general LTL properties, $CT \le \min(RD^{l} + 1, D^{l} + D)$ (where D, D^{l}, RD, RD^{l} refer to the product graph)

Complexity

- ▶ *k* chosen as min(RD' + 1, D' + D) is exponential in number of state variables
- Size of SAT instance is $O(k \cdot (|TS| + |\varphi|))$
- SAT is solved in exponential time
- ⇒ double exponential in number of state variables (Compare: BDD-based model checking is single-exponential)
 - In practice, bounded model checking is very successful
 - Finds shallow errors fast
 - In practice, RD, D are often not exponential

Expressiveness of LTL vs. CTL

Equivalence of LTL and CTL formulas

CTL-formula Φ and LTL-formula φ (both over *AP*) are <u>equivalent</u>, denoted $\Phi \equiv \varphi$, if for any transition system *TS* (over *AP*):

 $TS \models \Phi$ if and only if $TS \models \varphi$

Examples (1)

CTL-formula AGAFa and LTL-formula GFa are equivalent.

AFAGa is not equivalent to FGa

Examples (3)

$F(a \land Xa)$ is not equivalent to $AF(a \land AXa)$

LTL and CTL are incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - ► FGa
 - F($a \wedge Xa$)
- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - AF AG a
 - AF $(a \land AX a)$
 - AG EF a
- ⇒ Cannot be expressed = there does not exist an equivalent formula

Example

The CTL-formula AG EF *a* cannot be expressed in LTL

Let Φ be a CTL-formula, and φ the LTL-formula obtained by eliminating all path quantifiers in Φ . Then: [Clarke & Draghicescu]

 $\Phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to Φ

Comparing LTL and CTL

The LTL-formula FG *a* cannot be expressed in CTL