Verification

Lecture 15

Bernd Finkbeiner

Plan for today

- Complexity of LTL model checking
- Bounded model checking

The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete [Sistla \& Clarke 1985]

Reduction from Hamiltonian Path Problem

- Hamiltonian Path for a directed graph (V, E) passes every vertex exactly once.
- The Hamiltonion Path Problem "Does a given graph have a Hamiltonian Path?" is NP-complete.
- The Hamiltonian Path Problem is polynomially reducible to the complement of the LTL model checking problem.
- Transition system: $S=V \cup\{b\} ; \rightarrow=E \cup(V \cup\{b\}) \times\{b\}$; $L(v)=\{v\}$ for $v \in V, L(b)=\varnothing$
- LTL property "no path is Hamiltonian":

$$
\neg \bigwedge_{v \in V}(\diamond v \wedge \quad \square(v \rightarrow \bigcirc \square \neg v))
$$

PSPACE-hardness

- Let M be a polynomial space-bounded Turing machine that accepts words of a language K (i.e., K is a PSPACE-language)
- We construct for each word w a transition system TS and an LTL formula φ such that $T S \vDash \varphi$ iff $w \in K$.

Single-tape Turing machine ($Q, q_{0}, F, \Sigma, \delta$)
$\delta: Q \times \Sigma \rightarrow Q \times \Sigma \times\{L, R, N\}$
L : left, R : right, N : no move
Space-bounded: there is a polynomial $P(n)$ such that the computation on input word of length n visits at most $P(n)$ tape cells.

$$
S=\{0,1, \ldots, P(n)\} \cup\{(q, A, i) \mid q \in Q \cup\{*\}, A \in \Sigma, 0<i \leq P(n)\}
$$

Idea: $q \in Q$ identifies current state of Turing machine and current position of cursor; * everywhere else.

- Configuration (Tape content $A_{1}, \ldots, A_{P(n)}$, current state q, cursor position i)
is encoded as path fragment $0\left(*, A_{1}, 1\right) 1\left(*, A_{2}, 2\right) 2 \ldots i-1\left(q, A_{i}, i\right) i\left(*, A_{i+1}, i+1\right) \ldots P(n)$
- Computation is encoded as a sequence of such fragments.
- Legal configurations:

$$
\begin{aligned}
& \varphi_{\text {conf }}=\square\left(\text { begin } \rightarrow \varphi_{\text {conf }}^{1} \wedge \varphi_{\text {conf }}^{2}\right) \\
& \varphi_{\text {conf }}^{1}=\bigvee_{1 \leq i \leq P(n)} \bigcirc^{2 i-1} \Phi_{Q} \text { where } \Phi_{Q}=\vee_{(q, A, i) \in S, q \in Q}(q, A, i) \\
& \varphi_{\text {conf }}^{2}=\Lambda_{1 \leq i \leq P(n)}\left(\bigcirc^{2 i-1} \Phi_{Q} \rightarrow \Lambda_{1 \leq j \leq P(n), j \neq i} \bigcirc^{2 j-1} \neg \Phi_{Q}\right)
\end{aligned}
$$

Transition function

for $\delta(q, A)=(p, B, L)$:

$$
\varphi_{q, A}=\square\left(\text { begin } \rightarrow \wedge_{1 \leq i \leq P(n)}\left(O^{2 i-1}(q, A, i) \rightarrow \psi(q, A, i, p, B, L)\right)\right)
$$

where

$$
\psi(q, A, i, p, B, L)=\underbrace{\bigwedge_{1 \leq j \leq P(n), i \neq j, C \in \Sigma}\left(\bigcirc^{2 j-1} C \leftrightarrow \bigcirc^{2 j-1+2 P(n)+1} C\right)}_{\text {content of all cells } \neq i \text { unchanged }}
$$

$\wedge \quad \underbrace{\bigcirc^{2 i-1+2 P(n)+1} B}$
overwrite A by B in cell i
$\wedge \quad \underbrace{\bigcirc 2 i-1+2 P(n)+1-2 p}$
move to state p and cursor to cell i - 1
$\varphi_{\delta}=\bigwedge_{q, A} \varphi_{q, A}$
[C short for $\bigvee_{r, j}(r, C, j), p$ short for $\bigvee_{D, j}(p, D, j)$]

- Starting configuration

$$
\varphi_{\text {start }}^{w}=\text { begin } \wedge \bigcirc q_{0} \wedge \wedge_{1 \leq i \leq n} \bigcirc^{2 i-1} A_{i} \wedge \wedge_{n<i \leq P(n)} \bigcirc^{2 i-1} \text { blank }
$$

- Accepting configuration

$$
\varphi_{\text {accept }}=\diamond \vee_{q \in F} q
$$

- Full encoding
$\varphi_{w}=\varphi_{\text {conf }} \wedge \varphi_{\text {start }}^{w} \wedge \varphi_{\delta} \wedge \varphi_{\text {accept }}$
\Rightarrow Model check $\neg \varphi_{w}$.

PSPACE-completeness

Claim: The LTL model checking problem can be solved by a nondeterministic polynomial space-bounded algorithm Idea: Guess, nondeterministically, an accepting run in $T S \times G_{\varphi}$:
$u_{0} u_{1} \ldots u_{n-1}\left(v_{0} v_{1} \ldots v_{m-1}\right)^{\omega}$ where $n, m \leq|S| \cdot 2^{|\varphi|}$

- Guess n, m nondeterministically by guessing $\left\lceil\log \left(|S| \cdot 2^{|\varphi|}\right)\right\rceil=O(\log (|S|) \cdot|\varphi|)$ bits.
- Guess the sequence $u_{0} u_{1} \ldots u_{n-1} u_{n} \ldots u_{n+m}$ where $u_{i}=\left(s_{i}, B_{i}\right)$ such that
- s_{i} is a successor of s_{i-1} for $i \geq 1$
- B_{i} is elementary
- $B_{i} \cap A P=L\left(s_{i}\right)$
- $B_{i} \in \delta\left(B_{i-1}, L\left(s_{i-1}\right)\right)$ for $i \geq 1$.
- Check if $u_{n}=u_{n+m}$
- Check that whenever $\varphi_{1} \cup \varphi_{2} \in B_{i}$ for some $i \in\{n, \ldots n+m-1\}$ then $\exists j \in\{n, \ldots, n+m-1\}$ with $\varphi_{2} \in B_{j}$

Required space

$n+m$ can be exponential. However, we only need:

- pair of states $u_{i-1}, u_{i} ;$
- flag which $\varphi_{1} \cup \varphi_{2}$ have appeared in loop;
- flag which φ_{2} have appeared;
- u_{n}
\Rightarrow polynomial space

LTL satisfiability and validity checking

- Satisfiability problem: $\operatorname{Words}(\varphi) \neq \varnothing$ for LTL-formula φ ?
- does there exist a transition system for which φ holds?
- Solution: construct an NBA \mathcal{A}_{φ} and check for emptiness
- nested depth-first search for checking persistence properties
- Validity problem: is $\varphi \equiv$ true, i.e., $\operatorname{Words}(\varphi)=\left(2^{A P}\right)^{\omega}$?
- does φ hold for every transition system?
- Solution: as for satisfiability, as φ is valid iff $\neg \varphi$ is not satisfiable
runtime is exponential;
a more efficient algorithm most probably does not exist!

LTL satisfiability and validity checking

The satisfiability and validity problem for LTL are PSPACE-complete

Idea: Reduce model checking problem of φ to satisfiability problem by encoding transition system as LTL formula:

$$
\psi=\psi_{I} \wedge \square \psi_{S} \wedge \square \psi_{A P}
$$

- $\psi_{I}=\bigvee_{q \in 1} q$
- $\psi_{s}=\wedge_{q \in S} q \rightarrow \bigcirc \vee_{q^{\prime} \in \operatorname{Post}(q)} q^{\prime}$
- $\psi_{A P}=\wedge_{q \in S} q \rightarrow \wedge_{a \in L(q)} a \wedge \wedge_{a \notin L(q)} \neg a$

Check satisfiability of $\psi \wedge \neg \varphi$.

Model-checking LTL versus CTL

- Model-checking LTL
- linear in the state space of the system model
- exponential in the length of the formula
- Model-checking CTL
- linear in the state space of the system model and the formula
- Is model-checking CTL more efficient?

Hamiltonian path problem

\Rightarrow LTL-formulae can be exponentially shorter than their CTL-equivalent

- Existence of Hamiltonian path in LTL:

$$
\wedge_{i}\left(\diamond p_{i} \wedge \square\left(p_{i} \rightarrow \bigcirc \square \neg p_{i}\right)\right)
$$

- In CTL, all possible (= 4!) routes need to be encoded

Summary of LTL model checking (1)

- LTL is a logic for formalizing path-based properties
- Expansion law allows for rewriting until into local conditions and next
- LTL-formula φ can be transformed algorithmically into NBA \mathcal{A}_{φ}
- this may cause an exponential blow up
- algorithm: first construct a GNBA for φ; then transform it into an equivalent NBA
- LTL-formulae describe ω-regular LT-properties
- but do not have the same expressivity as ω-regular languages

Summary of LTL model checking (2)

- $T S \vDash \varphi$ can be solved by a nested depth-first search in $T S \otimes \mathcal{A}_{\neg \varphi}$
- time complexity of the LTL model-checking algorithm is linear in $T S$ and exponential in $|\varphi|$
- Fairness assumptions can be described by LTL-formulae the model-checking problem for LTL with fairness is reducible to the standard LTL model-checking problem
- The LTL-model checking problem is PSPACE-complete
- Satisfiability and validity of LTL amounts to NBA emptiness-check
- The satisfiability and validity problems for LTL are PSPACE-complete

Bounded model checking

BDD vs. SAT based approaches

BDD-based approaches

- Approach used by many "industrial-strength" model checkers
- Hundreds of state variables
- Canonical representation \Rightarrow BDDs often too large
- Variable order uniform along all paths, selection of good order very difficult
SAT-based approaches
- Avoid space explosion of BDDs
- Different split orders possible on different branches
- Very efficient implementations available

Bounded model checking: Basic idea

Search for counterexamples of bounded length
There exists a counterexample of length k to the invariant AG p iff the following formula is satisfiable:
$f_{l}\left(\vec{v}_{0}\right) \wedge f_{\rightarrow}\left(\vec{v}_{0}, \vec{v}_{1}\right) \wedge f_{\rightarrow}\left(\vec{v}_{1}, \vec{v}_{2}\right) \wedge \ldots f_{\rightarrow}\left(\vec{v}_{k-2}, \vec{v}_{k-1}\right) \wedge\left(\neg p_{0} \vee \neg p_{1} \vee \ldots \vee \neg p_{k-1}\right)$

Example: two-bit counter

- Initial state: $f_{l}=(\neg / \wedge \neg r)$
- Transition: $f_{\rightarrow}\left(I, r, I^{\prime}, r^{\prime}\right)=\left(r^{\prime} \leftrightarrow \neg r\right) \wedge\left(I^{\prime} \leftrightarrow(I \leftrightarrow \neg r)\right)$
- Property: AG $(\neg / \vee \neg r)$

Counterexample of length 3 ?

$$
\begin{gathered}
\underbrace{\neg I_{0} \wedge \neg r_{0}}_{f_{l}\left(\vec{v}_{0}\right)} \wedge \underbrace{\wedge \underbrace{r_{2} \leftrightarrow \neg r_{1} \wedge I_{2} \leftrightarrow\left(I_{1} \leftrightarrow \neg r_{1}\right)}_{f_{\rightarrow}\left(\vec{v}_{1}, \vec{v}_{2}\right)} \wedge(\underbrace{I_{0} \wedge r_{0}}_{\neg p_{0}} \vee \underbrace{I_{1} \wedge r_{1}}_{\neg p_{1}} \vee \underbrace{I_{2} \wedge r_{2}}_{\neg p_{2}})}_{f_{\rightarrow\left(\vec{v}_{0}, \vec{v}_{1}\right)}^{r_{1} \leftrightarrow \neg r_{0} \wedge I_{1} \leftrightarrow\left(I_{0} \leftrightarrow \neg r_{0}\right)}}
\end{gathered}
$$

unsatisfiable \Rightarrow no counterexample

Example: two-bit counter

- Initial state: $f_{l}=(\neg / \wedge \neg r)$
- Transition: $f_{\rightarrow}\left(I, r, I^{\prime}, r^{\prime}\right)=\left(r^{\prime} \leftrightarrow \neg r\right) \wedge\left(I^{\prime} \leftrightarrow(I \leftrightarrow \neg r)\right)$
- Property: AG $(\neg / \vee \neg r)$

Counterexample of length 4?

$$
\begin{aligned}
& \underbrace{\neg I_{0} \wedge \neg r_{0}}_{f_{1}\left(\vec{v}_{0}\right)} \wedge \underbrace{r_{1} \leftrightarrow \neg r_{0} \wedge I_{1} \leftrightarrow\left(I_{0} \leftrightarrow \neg r_{0}\right)}_{f_{\rightarrow}\left(\vec{v}_{0}, \vec{v}_{1}\right)} \wedge \underbrace{\wedge \underbrace{r_{3} \leftrightarrow \neg r_{2} \wedge I_{3} \leftrightarrow\left(I_{2} \leftrightarrow \neg r_{2}\right)}_{\neg p_{0}} \wedge(\underbrace{I_{0} \wedge r_{0}}_{\neg p_{1}} \vee \underbrace{I_{1} \wedge r_{1}}_{\neg p_{2}} \vee \underbrace{I_{2} \wedge r_{2} \vee I_{3} \wedge r_{3}}_{\neg p_{3}})}_{f_{\rightarrow\left(\vec{v}_{1}, \vec{v}_{2}\right)}^{\left.r_{2} \leftrightarrow \neg r_{1}, \vec{v}_{3}\right)} \wedge I_{2} \leftrightarrow\left(I_{1} \leftrightarrow \neg r_{1}\right)}
\end{aligned}
$$

satisfiable \Rightarrow counterexample!

SAT

- Given a propositional formula ψ, does there exist a variable assignment under which ψ evaluates to true?
- NP-complete
- In practice, tremendous progress over the last years
- Most solvers use Conjunctive Normal Form (CNF)
- Arbitrary formulas can be transformed in polynomial time into satisfiability equivalent formulas in CNF

Davis-Putnam-Logemann-Loveland (DPLL) algorithm

if preprocess() $=$ CONFLICT then
return UNSAT;
while TRUE do
if not decide-next-branch() then return SAT;
while deduce() = CONFLICT do
blevel := analyze-conflict();
if blevel=0 then
return UNSAT;
backtrack(blevel);
done;
done;

Conflict analysis using an implication graph

Implication Graph
Clauses:
C1: $x 1^{\prime}+x 2+x 6$
C2: $x 2+x 3+x 7$,
C3: $x 3+x 4^{\prime}+x 8$
C4: $x 1^{\prime}+x 6^{\prime}+x 5^{\prime}$
C5: $x 6^{\prime}+x 7^{\prime}+x 8^{\prime}+x 9^{\prime}$
C6: $x 5+x 9+x 10$
C7: $x 9+x 10$ '
Conflict Clause C8:
$x 1^{\prime}+x 2+x 3+x 8{ }^{\prime}$

Due to conflict (x10, x10')

Efficiency

- conflict learning: adding conflict clauses
- non-chronological backtracking
- heuristics for decisions
- efficient data structures
- incremental satisfiability

