
Verification

Lecture 15

Bernd Finkbeiner

Plan for today

▸ Complexity of LTL model checking

▸ Bounded model checking

2

The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to

the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete

[Sistla & Clarke 1985]

3

Reduction from Hamiltonian Path Problem

▸ Hamiltonian Path for a directed graph (V , E) passes every
vertex exactly once.

▸ The Hamiltonion Path Problem ‘‘Does a given graph have a

Hamiltonian Path?’’ is NP-complete.

▸ The Hamiltonian Path Problem is polynomially reducible to the

complement of the LTL model checking problem.

▸ Transition system: S = V ∪ {b};→= E ∪ (V ∪ {b}) × {b};
L(v) = {v} for v ∈ V , L(b) = ∅

▸ LTL property ‘‘no path is Hamiltonian’’:

¬⋀
v∈V

(◇ v ∧ ◻(v →◯ ◻ ¬v))

4

PSPACE-hardness

▸ LetM be a polynomial space-bounded Turing machine that

accepts words of a language K (i.e., K is a PSPACE-language)

▸ We construct for each word w a transition system TS and an

LTL formula φ such that TS ⊧ φ iffw ∈ K .

Single-tape Turing machine (Q, q0, F, Σ, δ)
δ ∶ Q × Σ → Q × Σ × {L, R,N}
L: left, R: right, N: no move

Space-bounded: there is a polynomial P(n) such that the

computation on input word of length n visits at most P(n) tape
cells.

5

0
begin

⋮
1

⋮
2

. . . ⋮
P(n)

S = {0, 1, . . . , P(n)} ∪ {(q,A, i) ∣ q ∈ Q ∪ {∗},A ∈ Σ, 0 < i ≤ P(n)}

Idea: q ∈ Q identifies current state of Turing machine and current

position of cursor; ∗ everywhere else.
6

▸ Configuration (Tape content A1, . . . ,AP(n), current state q,

cursor position i)

is encoded as path fragment

0(∗,A1, 1)1(∗,A2, 2)2 . . . i − 1(q,Ai , i)i(∗,Ai+1, i + 1) . . . P(n)
▸ Computation is encoded as a sequence of such fragments.

▸ Legal configurations:

φconf = ◻(begin→ φ1
conf ∧ φ2

conf)
φ1
conf = ⋁1≤i≤P(n)◯ 2i−1ΦQ whereΦQ = ⋁(q,A,i)∈S,q∈Q(q,A, i)

φ2
conf = ⋀1≤i≤P(n)(◯ 2i−1ΦQ → ⋀1≤j≤P(n),j≠i◯ 2j−1¬ΦQ)

7

Transition function

for δ(q,A) = (p, B, L):

φq,A = ◻(begin→ ⋀1≤i≤P(n)(◯ 2i−1(q,A, i)→ ψ(q,A, i, p, B, L)))

where

ψ(q,A, i, p, B, L) = ⋀1≤j≤P(n),i≠j,C∈Σ(◯ 2j−1C ↔◯ 2j−1+2P(n)+1C)
´¹¹¹¸¹¹¹¶

content of all cells ≠ i unchanged

∧ ◯ 2i−1+2P(n)+1B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

overwrite A by B in cell i

∧ ◯ 2i−1+2P(n)+1−2p
´¹¹¸¹¹¶

move to state p and cursor to cell i − 1

φδ =⋀
q,A

φq,A [C short for⋁r,j(r, C, j), p short for⋁D,j(p,D, j)]

8

▸ Starting configuration

φw
start = begin ∧◯q0 ∧⋀1≤i≤n◯ 2i−1Ai ∧⋀n<i≤P(n)◯ 2i−1blank

▸ Accepting configuration

φaccept = ◇ ⋁q∈F q

▸ Full encoding

φw = φconf ∧ φw
start ∧ φδ ∧ φaccept

⇒Model check ¬φw .

9

PSPACE-completeness

Claim: The LTL model checking problem can be solved by a

nondeterministic polynomial space-bounded algorithm

Idea: Guess, nondeterministically, an accepting run in TS × Gφ:

u0u1 . . . un−1(v0v1 . . . vm−1)ω

where n,m ≤ ∣S∣ ⋅ 2∣φ∣

▸ Guess n,m nondeterministically by guessing

⌈log(∣S∣ ⋅ 2∣φ∣)⌉ = O(log(∣S∣) ⋅ ∣φ∣) bits.
▸ Guess the sequence u0u1 . . . un−1un . . . un+m where ui = (si , Bi)
such that

▸ si is a successor of si−1 for i ≥ 1
▸ Bi is elementary
▸ Bi ∩ AP = L(si)
▸ Bi ∈ δ(Bi−1 , L(si−1)) for i ≥ 1.

▸ Check if un = un+m

▸ Check that whenever φ1 Uφ2 ∈ Bi for some i ∈ {n, . . . n +m − 1}
then ∃j ∈ {n, . . . , n +m − 1}with φ2 ∈ Bj

10

Required space

n +m can be exponential. However, we only need:

▸ pair of states ui−1, ui;

▸ flag which φ1Uφ2 have appeared in loop;

▸ flag which φ2 have appeared;

▸ un

⇒ polynomial space

11

LTL satisfiability and validity checking

▸ Satisfiability problem:Words(φ) /= ∅ for LTL-formula φ?
▸ does there exist a transition system for which φ holds?

▸ Solution: construct an NBAAφ and check for emptiness
▸ nested depth-first search for checking persistence properties

▸ Validity problem: is φ ≡ true, i.e.,Words(φ) = (2AP)
ω
?

▸ does φ hold for every transition system?

▸ Solution: as for satisfiability, as φ is valid iff ¬φ is not satisfiable

runtime is exponential;

a more efficient algorithmmost probably does not exist!

12

LTL satisfiability and validity checking

The satisfiability and validity problem for LTL are PSPACE-complete

Idea: Reduce model checking problem of φ to satisfiability problem

by encoding transition system as LTL formula:

ψ = ψI ∧ ◻ψS ∧ ◻ψAP

▸ ψI = ⋁q∈I q

▸ ψS = ⋀q∈S q→◯ ⋁q′∈Post(q) q
′

▸ ψAP = ⋀q∈S q→ ⋀a∈L(q) a ∧⋀a/∈L(q) ¬a

Check satisfiability of ψ ∧ ¬φ.

13

Model-checking LTL versus CTL

▸ Model-checking LTL
▸ linear in the state space of the systemmodel
▸ exponential in the length of the formula

▸ Model-checking CTL
▸ linear in the state space of the systemmodel and the formula

▸ Is model-checking CTL more efficient?

14

Hamiltonian path problem

⇒ LTL-formulae can be exponentially shorter than their

CTL-equivalent

v1 v2 v3 v4

w

{p3 }{p0 }

{p1 } {p2 }

{q}

▸ Existence of Hamiltonian path in LTL:

⋀i (◇pi ∧ ◻(pi → ◯ ◻¬pi))
▸ In CTL, all possible (= 4!) routes need to be encoded

15

Summary of LTL model checking (1)

▸ LTL is a logic for formalizing path-based properties

▸ Expansion law allows for rewriting until into local conditions

and next

▸ LTL-formula φ can be transformed algorithmically into NBAAφ

▸ this may cause an exponential blow up
▸ algorithm: first construct a GNBA for φ; then transform it into an

equivalent NBA

▸ LTL-formulae describe ω-regular LT-properties
▸ but do not have the same expressivity as ω-regular languages

16

Summary of LTL model checking (2)

▸ TS ⊧ φ can be solved by a nested depth-first search in TS⊗A¬φ

▸ time complexity of the LTL model-checking algorithm is linear

in TS and exponential in ∣φ∣
▸ Fairness assumptions can be described by LTL-formulae

the model-checking problem for LTL with fairness is reducible

to the standard LTL model-checking problem

▸ The LTL-model checking problem is PSPACE-complete

▸ Satisfiability and validity of LTL amounts to NBA

emptiness-check

▸ The satisfiability and validity problems for LTL are

PSPACE-complete

17

Bounded model checking

18

BDD vs. SAT based approaches

BDD-based approaches

▸ Approach used by many ‘‘industrial-strength’’ model checkers

▸ Hundreds of state variables

▸ Canonical representation⇒ BDDs often too large

▸ Variable order uniform along all paths, selection of good order

very difficult

SAT-based approaches

▸ Avoid space explosion of BDDs

▸ Different split orders possible on different branches

▸ Very efficient implementations available

19

Bounded model checking: Basic idea

Search for counterexamples of bounded length

There exists a counterexample of length k to the invariant AGp

iff the following formula is satisfiable:

fI(v⃗0)∧f→(v⃗0, v⃗1)∧f→(v⃗1, v⃗2)∧. . . f→(v⃗k−2, v⃗k−1)∧(¬p0∨¬p1∨. . .∨¬pk−1)

20

Example: two-bit counter

▸ Initial state: fI = (¬l ∧ ¬r)
▸ Transition: f→(l, r, l′, r′) = (r′ ↔ ¬r) ∧ (l′ ↔ (l↔ ¬r))
▸ Property: AG (¬l ∨ ¬r)

Counterexample of length 3?

¬l0 ∧ ¬r0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fI(v⃗0)

∧ r1 ↔ ¬r0 ∧ l1 ↔ (l0 ↔ ¬r0)
´¹¹¹¸¹¹¶

f→(v⃗0 ,v⃗1)

∧ r2 ↔ ¬r1 ∧ l2 ↔ (l1 ↔ ¬r1)
´¹¹¹¸¹¹¶

f→(v⃗1 ,v⃗2)

∧ (l0 ∧ r0
²
¬p0

∨ l1 ∧ r1
²
¬p1

∨ l2 ∧ r2
²
¬p2

)

unsatisfiable⇒ no counterexample

21

Example: two-bit counter

▸ Initial state: fI = (¬l ∧ ¬r)
▸ Transition: f→(l, r, l′, r′) = (r′ ↔ ¬r) ∧ (l′ ↔ (l↔ ¬r))
▸ Property: AG (¬l ∨ ¬r)

Counterexample of length 4?

¬l0 ∧ ¬r0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fI(v⃗0)

∧ r1 ↔ ¬r0 ∧ l1 ↔ (l0 ↔ ¬r0)
´¹¹¹¸¹¹¶

f→(v⃗0 ,v⃗1)

∧ r2 ↔ ¬r1 ∧ l2 ↔ (l1 ↔ ¬r1)
´¹¹¹¸¹¹¶

f→(v⃗1 ,v⃗2)

∧ r3 ↔ ¬r2 ∧ l3 ↔ (l2 ↔ ¬r2)
´¹¹¹¸¹¹¶

f→(v⃗2 ,v⃗3)

∧ (l0 ∧ r0
²
¬p0

∨ l1 ∧ r1
²
¬p1

∨ l2 ∧ r2
²
¬p2

∨ l3 ∧ r3
²
¬p3

)

satisfiable⇒ counterexample!

22

SAT

▸ Given a propositional formula ψ,

does there exist a variable assignment

under which ψ evaluates to true?

▸ NP-complete

▸ In practice, tremendous progress over the last years

▸ Most solvers use Conjunctive Normal Form (CNF)

▸ Arbitrary formulas can be transformed in polynomial time into

satisfiability equivalent formulas in CNF

23

Davis-Putnam-Logemann-Loveland (DPLL) algorithm

if preprocess() = CONFLICT then

return UNSAT;

while TRUE do

if not decide-next-branch() then

return SAT;

while deduce() = CONFLICT do

blevel := analyze-conflict();

if blevel=0 then

return UNSAT;

backtrack(blevel);

done;

done;

24

Conflict analysis using an implication graph

Implication Graph

Clauses:

C1: x1’+ x2 + x6

C2: x2 + x3 + x7’

C3: x3 + x4’+ x8

C4: x1’+ x6’+ x5’

C5: x6’+ x7+ x8’+ x9’

C6: x5 + x9 + x10

C7: x9 + x10’

Conflict Clause C8:

x1’+ x2 + x3 + x8’

Due to conflict

(x10, x10’)

Conflicting

Nodes

x1

x2’

x3’

x8

x5’

x6

x7’
x9’

x10

x10’

C1

C1

C2

C2

C4

C4

C5

C5

C5

C6

C6

C7

x4

C3

C3

Cutset

Figure 2. Conflict Analysis using an Implication Graph

Prasad/Biere/Gupta: A Survey of Recent Advances in SAT-Based Formal Verification

25

Efficiency

▸ conflict learning: adding conflict clauses

▸ non-chronological backtracking

▸ heuristics for decisions

▸ efficient data structures

▸ incremental satisfiability

26

