Verification

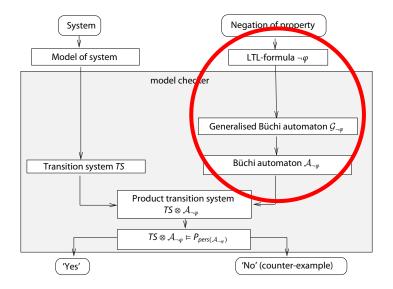
Lecture 14

Bernd Finkbeiner

Plan for today

- LTL model checking (continued)
 - LTL vs. NBA
 - Persistency checking via nested DFS

Overview of LTL model checking



REVIEW: Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over *AP*) there exists a GNBA \mathcal{G}_{φ} over 2^{AP} such that: (a) *Words*(φ) = $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$

(b) \mathcal{G}_{φ} can be constructed in time and space $\mathcal{O}\left(2^{|\varphi|}\right)$

(c) #accepting sets of \mathcal{G}_{arphi} is bounded above by $\mathcal{O}(|arphi|)$

 \Rightarrow every LTL-formula expresses an ω -regular property!

NBA are more expressive than LTL

There is no LTL formula φ with $Words(\varphi) = P$ for the LT-property:

$$P = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{\left\{ a \right\}} \right)^{\omega} \mid a \in A_{2i} \text{ for } i \ge 0 \right\}$$

But there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{P}$

 \Rightarrow there are ω -regular properties that cannot be expressed in LTL!

Proof

- Proof by contradiction:
 Assume there is an LTL formula φ with Words(φ) = P.
- Let $w_1 = \{a\}^{n+1} \varnothing \{a\}^{\omega}$ and $w_2 = \{a\}^{n+2} \varnothing \{a\}^{\omega}$ where *n* is the number of \bigcirc -operators in φ . We show that $w_1 \in Words(\varphi)$ iff $w_2 \in Words(\varphi)$. This contradicts $Words(\varphi) = P$. <u>Structural induction</u> on φ :
- $\varphi \in AP$: φ only depends on first position
- ► $\varphi = \bigcirc \psi$: by IH, $\{a\}^n \varnothing \{a\}^\omega \in Words(\psi)$ iff $\{a\}^{n+1} \varnothing \{a\}^\omega \in Words(\psi)$. Hence, $w_1 \in Words(\varphi)$ iff $w_2 \in Words(\varphi)$.

Proof (cont'd)

• $\varphi = \psi_1 \cup \psi_2$: 1. $w_1 \in Words(\varphi) \Rightarrow w_2 \in Words(\varphi)$: • Case 1: $w_1 \models \psi_2$. Then, by IH, $w_2 \models \psi_2$. • Case 2: $w_1 \neq \psi_2$. Let k be the smallest index such that $w_1[k \dots] \models \psi_2$ and $\forall 0 \le i < k.w_1[i \dots] \models \psi_1$. \Rightarrow $w_2[k+1,\ldots] \models \psi_2$ and $\forall 1 \le i < k.w_2[i\ldots] \models \psi_1$. Additionally, by IH, $w_1 \models \psi_1 \Rightarrow w_2 \models \psi_1$. 2. $w_2 \in Words(\varphi) \Rightarrow w_1 \in Words(\varphi)$ • Case 1: $w_2 \models \psi_2$. Then, by IH, $w_1 \models \psi_2$. • Case 2: $w_2 \neq \psi_2$. Let k be the smallest index such that $w_2[k \dots] \models \psi_2$ and $\forall 0 \le i < k.w_2[i \dots] \models \psi_1$. $\Rightarrow w_1[k-1,\ldots] \models \psi_2$ and $\forall 0 \le i < k-1.w_1[i\ldots] \models \psi_1$.

Complexity of LTL-to-NBA translation

For any LTL-formula φ (over *AP*) there exists an NBA \mathcal{A}_{φ} with $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A}_{\varphi})$ and which can be constructed in time and space in $2^{\mathcal{O}(|\varphi|)}$

Justification complexity: next slide

Time and space complexity

- States GNBA \mathcal{G}_{φ} are elementary sets of formulae in $closure(\varphi)$
 - sets *B* can be represented by bit vectors with single bit per subformula ψ of φ

ged

- The number of states in \mathcal{G}_{φ} is bounded by $2^{|\varphi|}$.
- The number of accepting sets of \mathcal{G}_{φ} is bounded by $|\varphi|$.
- The number of states in NBA \mathcal{A}_{φ} is thus bounded by $2^{|\varphi|} \cdot |\varphi| = 2^{(|\varphi| + \log |\varphi|)} = 2^{\mathcal{O}(|\varphi|)}$.

Lower bound

There exists a family of LTL formulas φ_n with $|\varphi_n| = O(poly(n))$ such that every NBA \mathcal{A}_{φ_n} for φ_n has at least 2ⁿ states

Proof

Let *AP* be non-empty, that is, $|2^{AP}| \ge 2$ and:

$$\mathcal{L}_n = \left\{ A_1 \dots A_n A_1 \dots A_n \sigma \mid A_i \subseteq AP \land \sigma \in \left(2^{AP}\right)^{\omega} \right\}, \qquad \text{for } n \ge 0$$

It follows $\mathcal{L}_n = Words(\varphi_n)$ where $\varphi_n = \bigwedge_{a \in AP} \bigwedge_{0 \le i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a)$ φ_n is an LTL formula of polynomial length: $|\varphi_n| \in \mathcal{O}(|AP| \cdot n)$.

However, any NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_n$ has at least 2^n states.

Proof (cont'd)

Claim: any NBA \mathcal{A} for $\bigwedge_{a \in A^p} \bigwedge_{0 \le i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a)$ has at least 2^n states

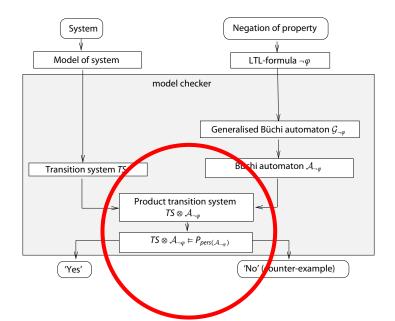
- Words of the form $A_1 \dots A_n A_1 \dots A_n \varnothing \varnothing \oslash \dots$ are accepted by \mathcal{A}
- \mathcal{A} thus has for every word $A_1 \dots A_n$ of length n, a state $q(A_1 \dots A_n)$, which can be reached from an initial state by consuming $A_1 \dots A_n$.
- From $q(A_1...A_n)$, it is possible to visit an accept state infinitely often by accepting the suffix $A_1...A_n \oslash \oslash \oslash ...$

• If
$$A_1 \ldots A_n \neq A'_1 \ldots A'_n$$
 then

$$A_1 \dots A_n A'_1 \dots A'_n \otimes \otimes \otimes \dots \notin \mathcal{L}_n = \mathcal{L}_{\omega}(\mathcal{A})$$

- Therefore, the states $q(A_1 ... A_n)$ are all pairwise different
- ► Given $|2^{AP}|$ possible sequences $A_1 ... A_n$, NBA A has $\ge (|2^{AP}|)^n \ge 2^n$ states

Overview of LTL model checking



Synchronous product

For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ a non-blocking NBA with $\Sigma = 2^{AP}$, let:

$$TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L')$$
 where

►
$$S' = S \times Q$$
, $AP' = Q$ and $L'(\langle s, q \rangle) = \{q\}$

→' is the smallest relation defined by: s → t ∧ q → t ∧ q → p / (s,q) → (t,p)

I' = { (s₀, q) | s₀ ∈ I ∧ ∃q₀ ∈ Q₀, q₀ → (t,p) / (t,p) } **REVIEW: Reduction to persistence checking**

 $TS \vDash \varphi$ if and only if $Traces(TS) \subseteq Words(\varphi)$

if and only if $Traces(TS) \cap ((2^{AP})^{\omega} \setminus Words(\varphi)) = \emptyset$

if and only if
$$Traces(TS) \cap \underbrace{Words(\neg \varphi)}_{\mathcal{L}_{\omega}(\mathcal{A}_{\neg \varphi})} = \varnothing$$

if and only if $TS \otimes \mathcal{A}_{\neg \varphi} \vDash \Diamond \Box \neg F$

LTL model checking is thus reduced to persistence checking!

On-the-fly LTL model checking

- Idea: find a counter-example during the generation of Reach(TS) and $A_{\neg \varphi}$
 - exploit the fact that Reach(TS) and $A_{\neg \varphi}$ can be generated in parallel
- \Rightarrow Generate $Reach(TS \otimes A_{\neg \varphi})$ "on demand"
 - consider a new vertex only if no accepting cycle has been found yet
 - only consider the successors of a state in $\mathcal{A}_{\neg \varphi}$ that match current state in *TS*
- ⇒ Possible to find an accepting cycle without generating $A_{\neg \varphi}$ entirely
 - This on-the-fly scheme is adopted for example in the model checker SPIN

Cycle detection

How to check for a reachable cycles containing an *F*-state?

- ► Alternative 1: (→ unconditional fairness in Lecture 4)
 - compute the strongly connected components (SCCs)
 - check whether one such SCC is reachable from an initial state
 - ... that contains an F-state
- Alternative 2:
 - use a nested depth-first search
 - \Rightarrow adequate for on-the-fly verification
 - \Rightarrow easier for generating counterexamples

A two-phase depth first-search

1. Determine all *F*-states that are reachable from some initial state

this is performed by a standard depth-first search

- 2. For each reachable *F*-state, check whether it belongs to a cycle
 - start a depth-first search in s
 - check for all states reachable from s whether there is an "backward" edge to s
 - Quadratic complexity

Two-phase depth first-search

Require: finite transition system *TS* without terminal states, and proposition *F* **Ensure:** "yes" if $TS \models \Diamond \Box \neg F$ ", otherwise "no".

set of states $R := \emptyset$; $R_F := \emptyset$; {set of reachable states resp. *F*-states} stack of states $U := \varepsilon$; {DFS-stack for first DFS, initial empty} set of states $T := \emptyset$; {set of visited states for the cycle check} stack of states $V := \varepsilon$; {DFS-stack for the cycle check}

for all $s \in I \setminus R$ do visit(s); od {phase one} for all $s \in R_F$ do

 $T := \emptyset; V := \varepsilon; \{\text{phase two}\}$

if cycle_check(s) then return "no" {s belongs to a cycle}
end for

return "yes" {none of the F-states belongs to a cycle}

Find F-states

```
process visit (state s)
push(s, U); {push s on the stack}
R := R \cup \{s\}; \{\text{mark } s \text{ as reachable}\}
repeat
   s' := top(U);
   if Post(s') \subseteq R then
       pop(U);
       if s' \models F then R_F := R_F \cup \{s'\}; fi
   else
       let s'' \in Post(s') \setminus R
       push(s'', U);
       R := R \cup \{s''\}; {state s'' is a new reachable state}
   end if
until (U = \varepsilon) endproc
```

Cycle detection

```
process boolean cycle_check(state s)
 boolean cycle_found := false; {no cycle found yet}
push(s, V); T := T \cup \{s\}; \{push s on the stack\}
 repeat
    s' := top(V); {take top element of V}
    if s \in Post(s') then
       cycle_found := true; {if s \in Post(s'), a cycle is found}
       push(s, V); {push s on the stack}
    else
       if Post(s') \setminus T \neq \emptyset then
           let s'' \in Post(s') \setminus T;
           push(s'', V); T := T \cup \{s''\}; \{push an unvisited successor of s'\}
           else pop(V); {unsuccessful cycle search for s'}
       end if
    end if
 until ((V = \varepsilon) \lor cycle found)
 return cycle_found endproc
```

Nested depth-first search

- Idea: perform the two depth-first searches in an <u>interleaved</u> way
 - the outer DFS serves to encounter all reachable F-states
 - the inner DFS seeks for backward edges leading to the F-state
- Nested DFS
 - on full expansion of *F*-state *s* in the outer DFS, start inner DFS
 - in inner DFS, visit all states reachable from s not visited in the inner DFS yet
 - no backward edge found to s? continue the outer DFS (look for next F state)
- Counterexample generation: DFS stack concatenation
 - ► stack *U* for the outer DFS = path fragment from $s_0 \in I$ to *s* (in reversed order)
 - stack V for the inner DFS = a cycle from state s to s (in reversed order)

The outer DFS (1)

Require: transition system TS without terminal states, and proposition F **Ensure:** "yes" if $TS \models \Diamond \Box \neg F$, otherwise "no" plus counterexample

```
set of states R := Ø; {set of visited states in the outer DFS}
stack of states U := \varepsilon; {stack for the outer DFS}
set of states T := Ø; {set of visited states in the inner DFS}
stack of states V := \varepsilon; {stack for the inner DFS}
boolean cycle_found := false;
```

```
while (I \setminus R \neq \emptyset \land \neg cycle\_found) do
   let s \in I \setminus R; {explore the reachable}
   reachable cycle(s); {fragment with outer DFS}
end while
```

```
if ¬cycle_found then
```

return ("yes") { $TS \models \bigcirc \Box \neg F$ }

مادم

return ("no", reverse(V.U)) {stack contents yield a counterexample} end if

The outer DFS (2)

```
process reachable_cycle (state s)
push(s, U); {push s on the stack}
R := R \cup \{s\};
repeat
   s' \coloneqq top(U);
   if Post(s') \setminus R \neq \emptyset then
      let s'' \in Post(s') \setminus R;
      push(s", U); {push the unvisited successor of s'}
      R := R \cup \{s''\}; \{and mark it reachable\}
   else
      pop(U); {outer DFS finished for s'}
      if s' \models F then
          cycle found := cycle check(s'); {proceed with the inner DFS in state s'}
      end if
   end if
until ((U = \varepsilon) \lor cycle_found) {stop when stack for the outer DFS is empty or cycle found}
endproc
```

Correctness of nested DFS

Let:

- > TS be a finite transition system over AP without terminal states and
- $\Diamond \Box \neg F$ a persistence property

The nested DFS algorithm yields "no" if and only if $TS \notin \bigcirc \Box \neg F$