Verification

Lecture 13

Martin Zimmermann

Plan for today

- LTL
- Fairness in LTL
- LTL Model Checking

REVIEW: Action-based fairness constraints

For $T S=(S, A c t, \rightarrow, I, A P, L)$ without terminal states, $A \subseteq A c t$, and infinite execution fragment $\rho=s_{0} \xrightarrow{\alpha_{0}} s_{1} \xrightarrow{\alpha_{1}} \ldots$ of $T S$:

1. ρ is unconditionally A-fair whenever: $\forall k \geq 0 . \exists j \geq k . \alpha_{j} \in A$ infinitely often A is taken
2. ρ is strongly A-fair whenever:

$$
\underbrace{\left(\forall k \geq 0 . \exists j \geq k . A c t\left(s_{j}\right) \cap A \neq \varnothing\right)}_{\text {infinitely often } A \text { is enabled }} \Longrightarrow \underbrace{\left(\forall k \geq 0 . \exists j \geq k . \alpha_{j} \in A\right)}_{\text {infinitely often } A \text { is taken }}
$$

3. ρ is weakly A-fair whenever:

$$
\underbrace{\left(\exists k \geq 0 . \forall j \geq k . A c t\left(s_{j}\right) \cap A \neq \varnothing\right)}_{A \text { is eventually always enabled }} \Longrightarrow \underbrace{\left(\forall k \geq 0 . \exists j \geq k . \alpha_{j} \in A\right)}_{\text {infinitely often } A \text { is taken }}
$$

REVIEW: Fair satisfaction

- TS satisfies LT-property P:

$$
T S \vDash P \quad \text { if and only if } \quad \operatorname{Traces}(T S) \subseteq P
$$

- TS fairly satisfies LT-property P wrt. fairness assumption \mathcal{F} :

$$
T S \vDash_{\mathcal{F}} P \quad \text { if and only if } \quad \text { Fair }^{\prime} \operatorname{Traces}_{\mathcal{F}}(T S) \subseteq P
$$

- TS satisfies the LT property P if all its fair observable behaviors are admissible

LTL fairness constraints

Let Φ and Ψ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

$$
\text { ufair }=\square \diamond \Psi
$$

2. A strong LTL fairness condition is of the form:

$$
\text { sfair }=\square \diamond \Phi \longrightarrow \square \diamond \Psi
$$

3. A weak LTL fairness constraint is of the form:

$$
\text { wfair }=\diamond \square \Phi \longrightarrow \square \diamond \Psi
$$

Φ stands for "something is enabled"; Ψ for "something is taken"

Fair satisfaction

$\underline{\text { LTL fairness assumption }}=$ conjunction of LTL fairness constraints:

$$
\text { fair }=\text { ufair } \wedge \text { sfair } \wedge \text { wfair }
$$

For state s in transition system TS (over AP) without terminal states, let

$$
\begin{aligned}
& \text { FairPaths }_{\text {fair }}(s)=\{\pi \in \operatorname{Paths}(s) \mid \pi \vDash \text { fair }\} \\
& \text { FairTraces } \left._{\text {fair }}(s)=\left\{\operatorname{trace}^{(} \pi\right) \mid \pi \in \text { FairPaths }_{\text {fair }}(s)\right\}
\end{aligned}
$$

For LTL-formula φ, and LTL fairness assumption fair:

$$
\begin{aligned}
s \vDash_{\text {fair }} \varphi & \text { if and only if } \\
T S \vDash_{\text {fair }} \varphi & \text { if and only if }
\end{aligned} \quad \forall s_{0} \in I . s_{0} \vDash_{\text {fair }} \varphi \text { fair } \varphi \text { fair }(s) . \pi \vDash \varphi \quad \text { and }
$$

$\vDash_{\text {fair }}$ is the fair satisfaction relation for LTL; \vDash the standard one for LTL

Turning action-based into state-based fairness

For $T S=(S, A c t, \rightarrow, I, A P, L)$ let $T S^{\prime}=\left(S^{\prime}, A c t \cup\{\right.$ begin $\left.\}, \rightarrow^{\prime}, I^{\prime}, A P^{\prime}, L^{\prime}\right)$ with:

- $S^{\prime}=I \times\{$ begin $\} \cup S \times$ Act and $I^{\prime}=I \times\{$ begin $\}$
- \rightarrow^{\prime} is the smallest relation satisfying:

$$
\frac{s \xrightarrow{\alpha} s^{\prime}}{\langle s, \beta\rangle \xrightarrow{\alpha}\left\langle s^{\prime}, \alpha\right\rangle} \quad \text { and } \quad \frac{s_{0} \xrightarrow{\alpha} s s_{0} \in I}{\left\langle s_{0}, \text { begin }\right\rangle \xrightarrow{\alpha}\langle s, \alpha\rangle}
$$

- $A P^{\prime}=A P \cup\{\operatorname{enabled}(\alpha)$, taken $(\alpha) \mid \alpha \in A c t\}$
- labeling function:

> - $L^{\prime}\left(\left\langle s_{0}\right.\right.$, begin $\left.\rangle\right)=L\left(s_{0}\right) \cup\left\{\right.$ enabled $\left.(\beta) \mid \beta \in \operatorname{Act}\left(s_{0}\right)\right\}$
> - $L^{\prime}(\langle s, \alpha\rangle)=L(s) \cup\{$ taken $(\alpha)\} \cup\{$ enabled $(\beta) \mid \beta \in \operatorname{Act}(s)\}$

$$
\text { it follows: } \operatorname{Traces}_{A P}(T S)=\operatorname{Traces}_{A P}\left(T S^{\prime}\right)
$$

State- versus action-based fairness

- Strong A-fairness is described by the LTL fairness assumption:

$$
\operatorname{sfair}_{A}=\square \diamond \bigvee_{\alpha \in A} \operatorname{enabled}(\alpha) \rightarrow \square \diamond \bigvee_{\alpha \in A} \operatorname{taken}(\alpha)
$$

- The fair traces of $T S$ and its action-based variant $T S^{\prime}$ are equal:

$$
\begin{aligned}
& \left\{\operatorname{trace}_{A P}(\pi) \mid \pi \in \operatorname{Paths}(T S), \pi \text { is } \mathcal{\mathcal { F }} \text {-fair }\right\} \\
= & \left\{\operatorname{trace}_{A P}\left(\pi^{\prime}\right) \mid \pi^{\prime} \in \operatorname{Paths}\left(T S^{\prime}\right), \pi^{\prime} \vDash \text { fair }\right\}
\end{aligned}
$$

- For every LT-property P (over $A P$): $T S \vDash \mathcal{F}^{P}$ iff $T S^{\prime} \vDash_{\text {fair }} P$

Reducing $\vDash_{\text {fair }}$ to \vDash

For:

- transition system TS without terminal states
- LTL formula φ, and
- LTL fairness assumption fair
it holds:

$$
T S \vDash_{\text {fair }} \varphi \quad \text { if and only if } \quad T S \vDash(\text { fair } \rightarrow \varphi)
$$

verifying an LTL-formula under a fairness assumption can be done using standard verification algorithms for LTL

LTL Model Checking

LTL model-checking problem

The following decision problem:
Given finite transition system TS and LTL-formula φ : yields "yes" if $T S \vDash \varphi$, and "no" (plus a counterexample) if $T S$ \# φ

A first attempt

$$
\begin{aligned}
& T S \vDash \varphi \quad \text { if and only if } \quad \operatorname{Traces}(T S) \subseteq \underbrace{\operatorname{Words}(\varphi)}_{\mathcal{L}_{\omega}\left(\mathcal{A}_{\varphi}\right)} \\
& \\
& \text { if and only if } \quad \operatorname{Traces}(T S) \cap \mathcal{L}_{\omega}\left(\overline{\mathcal{A}_{\varphi}}\right)=\varnothing
\end{aligned}
$$

$\underline{\text { but complementation of NBA is exponential }}$
if \mathcal{A} has n states, $\overline{\mathcal{A}}$ has $c^{(n(\log n)}$ states in worst case

$$
\text { use the fact that } \mathcal{L}_{\omega}\left(\overline{\mathcal{A}_{\varphi}}\right)=\mathcal{L}_{\omega}\left(\mathcal{A}_{\neg \varphi}\right) \text { ! }
$$

Observation

$$
T S \vDash \varphi \quad \text { if and only if } \quad \operatorname{Traces}(T S) \subseteq \operatorname{Words}(\varphi)
$$

$$
\text { if and only if } \quad \operatorname{Traces}(T S) \cap\left(\left(2^{A P}\right)^{\omega} \backslash \operatorname{Words}(\varphi)\right)=\varnothing
$$

$$
\text { if and only if } \quad \operatorname{Traces}(T S) \cap \underbrace{\operatorname{Words}(\neg \varphi)}_{\mathcal{L}_{\omega}\left(\mathcal{A}_{\neg \varphi}\right)}=\varnothing
$$

if and only if $\quad T S \otimes \mathcal{A}_{\neg \varphi} \vDash \diamond \square \neg F$

LTL model checking is thus reduced to persistence checking!

Overview of LTL model checking

REVIEW: Generalized Büchi automata

A generalized NBA (GNBA) \mathcal{G} is a tuple $\left(Q, \Sigma, \delta, Q_{0}, \mathcal{F}\right)$ where:

- Q is a finite set of states with $Q_{0} \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is a transition function
- $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$ is a (possibly empty) subset of 2^{Q}

Goal: For LTL formula φ construct $\operatorname{GNBA} \mathcal{G}_{\varphi}$ with $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)=\operatorname{Words}(\varphi)$

Closure

Assume φ only contains the operators \wedge, \neg, \bigcirc and U

- $\vee, \rightarrow, \diamond, \square, W$, and so on, are expressed in terms of these basic operators

For LTL-formula φ, the set closure (φ) consists of all sub-formulas ψ of φ and their negation $\neg \psi$
(where ψ and $\neg \neg \psi$ are identified)
for $\varphi=a \mathrm{U}(\neg a \wedge b), \operatorname{closure}(\varphi)=\{a, b, \neg a, \neg b, \neg a \wedge b, \neg(\neg a \wedge b), \varphi, \neg \varphi\}$

Elementary sets of formulae

$B \subseteq$ closure (φ) is elementary if:

1. B is logically consistent if for all $\varphi_{1} \wedge \varphi_{2}, \psi \in \operatorname{closure}(\varphi)$:

- $\varphi_{1} \wedge \varphi_{2} \in B \Leftrightarrow \varphi_{1} \in B$ and $\varphi_{2} \in B$
- $\psi \in B \Rightarrow \neg \psi \notin B$
- true $\in \operatorname{closure}(\varphi) \Rightarrow$ true $\in B$

2. B is locally consistent if for all $\varphi_{1} \cup \varphi_{2} \in \operatorname{closure}(\varphi)$:

- $\varphi_{2} \in B \Rightarrow \varphi_{1} \cup \varphi_{2} \in B$
- $\varphi_{1} \cup \varphi_{2} \in B$ and $\varphi_{2} \notin B \Rightarrow \varphi_{1} \in B$

3. B is maximal, i.e., for all $\psi \in \operatorname{closure}(\varphi)$:

- $\psi \notin B \Rightarrow \neg \psi \in B$

The GNBA of LTL-formula φ

For LTL-formula φ, let $\mathcal{G}_{\varphi}=\left(Q, 2^{A P}, \delta, Q_{0}, \mathcal{F}\right)$ where

- Q is the set of all elementary sets of formulas $B \subseteq \operatorname{closure}(\varphi)$
- $Q_{0}=\{B \in Q \mid \varphi \in B\}$
- $\mathcal{F}=\left\{\left\{B \in Q \mid \varphi_{1} \cup \varphi_{2} \notin B\right.\right.$ or $\left.\left.\varphi_{2} \in B\right\} \mid \varphi_{1} \cup \varphi_{2} \in \operatorname{closure}(\varphi)\right\}$
- The transition relation $\delta: Q \times 2^{A P} \rightarrow 2^{Q}$ is given by:
- $\delta(B, B \cap A P)$ is the set of all elementary sets of formulas B^{\prime} satisfying:
(i) For every $\bigcirc \psi \in \operatorname{closure}(\varphi): \bigcirc \psi \in B \Leftrightarrow \psi \in B^{\prime}$, and
(ii) For every $\varphi_{1} \cup \varphi_{2} \in \operatorname{closure}(\varphi)$:

$$
\varphi_{1} \cup \varphi_{2} \in B \Leftrightarrow\left(\varphi_{2} \in B \vee\left(\varphi_{1} \in B \wedge \varphi_{1} \cup \varphi_{2} \in B^{\prime}\right)\right)
$$

GNBA for LTL-formula $\bigcirc a$

GNBA for LTL-formula $a \cup b$

Main result

[Vardi, Wolper \& Sistla 1986]

> For any LTL-formula φ (over AP) there exists a $$
\text { GNBA } \mathcal{G}_{\varphi} \text { over } 2^{A P} \text { such that: }
$$

(a) $\operatorname{Words}(\varphi)=\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)$
(b) \mathcal{G}_{φ} can be constructed in time and space $\mathcal{O}\left(2^{|\varphi|}\right)$
(c) \#accepting sets of \mathcal{G}_{φ} is bounded above by $\mathcal{O}(|\varphi|)$
\Rightarrow every LTL-formula expresses an ω-regular property!

