Verification

Lecture 13

Martin Zimmermann

Plan for today

- LTL
- Fairness in LTL
- LTL Model Checking

REVIEW: Action-based fairness constraints

For $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states, $A \subseteq Act$, and infinite execution fragment $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$ of TS:

1. ρ is <u>unconditionally A-fair</u> whenever: $\forall k \ge 0$. $\exists j \ge k$. $\alpha_j \in A$

infinitely often A is taken

2. ρ is strongly *A*-fair whenever:

$$(\forall k \ge 0, \exists j \ge k, Act(s_j) \cap A \neq \emptyset) \implies (\forall k \ge 0, \exists j \ge k, \alpha_j \in A)$$

infinitely often A is enabled

infinitely often A is taken

3. ρ is <u>weakly A-fair</u> whenever:

$$(\exists k \ge 0, \forall j \ge k, Act(s_j) \cap A \neq \emptyset) \implies (\forall k \ge 0, \exists j \ge k, \alpha_j \in A)$$

A is eventually always enabled

infinitely often A is taken

REVIEW: Fair satisfaction

TS satisfies LT-property P:

 $TS \models P$ if and only if $Traces(TS) \subseteq P$

• TS fairly satisfies LT-property P wrt. fairness assumption \mathcal{F} :

 $TS \vDash_{\mathcal{F}} P$ if and only if $FairTraces_{\mathcal{F}}(TS) \subseteq P$

 TS satisfies the LT property P if <u>all</u> its <u>fair</u> observable behaviors are admissible

LTL fairness constraints

Let Φ and Ψ be propositional logic formulas over *AP*.

1. An <u>unconditional LTL fairness constraint</u> is of the form:

ufair = $\Box \diamondsuit \Psi$

2. A strong LTL fairness condition is of the form:

sfair = $\Box \diamondsuit \Phi \longrightarrow \Box \diamondsuit \Psi$

3. A weak LTL fairness constraint is of the form:

wfair = $\Diamond \Box \Phi \longrightarrow \Box \Diamond \Psi$

 Φ stands for "something is enabled"; Ψ for "something is taken"

Fair satisfaction

LTL fairness assumption = conjunction of LTL fairness constraints:

fair = ufair \land sfair \land wfair

For state s in transition system TS (over AP) without terminal states, let

$$\begin{aligned} &\textit{FairPaths}_{fair}(s) &= \left\{ \pi \in \textit{Paths}(s) \mid \pi \vDash \textit{fair} \right\} \\ &\textit{FairTraces}_{fair}(s) &= \left\{ \textit{trace}(\pi) \mid \pi \in \textit{FairPaths}_{fair}(s) \right\} \end{aligned}$$

For LTL-formula φ , and LTL fairness assumption *fair*:

 $s \vDash_{fair} \varphi$ if and only if $\forall \pi \in FairPaths_{fair}(s)$. $\pi \vDash \varphi$ and $TS \vDash_{fair} \varphi$ if and only if $\forall s_0 \in I$. $s_0 \vDash_{fair} \varphi$

 \models_{fair} is the <u>fair satisfaction relation</u> for LTL; \models the standard one for LTL

Turning action-based into state-based fairness

For $TS = (S, Act, \rightarrow, I, AP, L)$ let $TS' = (S', Act \cup \{begin\}, \rightarrow', I', AP', L')$ with:

- $S' = I \times \{ begin \} \cup S \times Act and I' = I \times \{ begin \}$
- \rightarrow ' is the smallest relation satisfying:

$$\frac{s \xrightarrow{\alpha} s'}{\langle s, \beta \rangle \xrightarrow{\alpha}' \langle s', \alpha \rangle} \quad \text{and} \quad \frac{s_0 \xrightarrow{\alpha} s s_0 \in I}{\langle s_0, begin \rangle \xrightarrow{\alpha}' \langle s, \alpha \rangle}$$

•
$$AP' = AP \cup \{enabled(\alpha), taken(\alpha) \mid \alpha \in Act \}$$

- Iabeling function:
 - L'(⟨s₀, begin⟩) = L(s₀) ∪ {enabled(β) | β ∈ Act(s₀)}
 L'(⟨s, α⟩) = L(s) ∪ {taken(α)} ∪ {enabled(β) | β ∈ Act(s)}

it follows: $Traces_{AP}(TS) = Traces_{AP}(TS')$

State-versus action-based fairness

Strong A-fairness is described by the LTL fairness assumption:

$$sfair_{A} = \Box \diamondsuit \bigvee_{\alpha \in A} enabled(\alpha) \rightarrow \Box \diamondsuit \bigvee_{\alpha \in A} taken(\alpha)$$

• The fair traces of TS and its action-based variant TS' are equal:

$$\{ trace_{AP}(\pi) \mid \pi \in Paths(TS), \pi \text{ is } \mathcal{F}\text{-fair} \}$$
$$= \{ trace_{AP}(\pi') \mid \pi' \in Paths(TS'), \pi' \vDash fair \}$$

For every LT-property *P* (over *AP*): $TS \models_{\mathcal{F}} P$ iff $TS' \models_{fair} P$

Reducing \vDash_{fair} to \vDash

For:

- transition system TS without terminal states
- LTL formula φ , and
- LTL fairness assumption fair

it holds:

$$TS \vDash_{fair} \varphi$$
 if and only if $TS \vDash (fair \rightarrow \varphi)$

verifying an LTL-formula under a fairness assumption can be done using standard verification algorithms for LTL

LTL Model Checking

LTL model-checking problem

The following decision problem:

Given finite transition system *TS* and LTL-formula φ :

yields "yes" if $TS \vDash \varphi$, and "no" (plus a counterexample) if $TS \not\models \varphi$

A first attempt

$$TS \vDash \varphi$$
 if and only if $Traces(TS) \subseteq Words(\varphi)$
 $\mathcal{L}_{\omega}(\mathcal{A}_{\varphi})$

if and only if $Traces(TS) \cap \mathcal{L}_{\omega}(\overline{\mathcal{A}_{\varphi}}) = \emptyset$

but complementation of NBA is exponential if A has n states, \overline{A} has $c^{O(n \log n)}$ states in worst case use the fact that $\mathcal{L}_{\omega}(\overline{A_{\varphi}}) = \mathcal{L}_{\omega}(\mathcal{A}_{\neg \varphi})!$

Observation

 $TS \vDash \varphi$ if and only if $Traces(TS) \subseteq Words(\varphi)$

if and only if $Traces(TS) \cap ((2^{AP})^{\omega} \setminus Words(\varphi)) = \emptyset$

if and only if
$$Traces(TS) \cap \underbrace{Words(\neg \varphi)}_{\mathcal{L}_{\omega}(\mathcal{A}_{\neg \varphi})} = \varnothing$$

if and only if $TS \otimes \mathcal{A}_{\neg \varphi} \vDash \Diamond \Box \neg F$

LTL model checking is thus reduced to persistence checking!

Overview of LTL model checking

REVIEW: Generalized Büchi automata

A <u>generalized NBA</u> (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- *Q* is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $\mathcal{F} = \{F_1, \ldots, F_k\}$ is a (possibly empty) subset of 2^Q

Goal: For LTL formula φ construct GNBA \mathcal{G}_{φ} with $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$

Closure

Assume φ only contains the operators \land , \neg , \bigcirc and U

 ∨, →, ◇, □, W, and so on, are expressed in terms of these basic operators

For LTL-formula φ , the set $closure(\varphi)$

consists of all sub-formulas ψ of φ and their negation $\neg \psi$

(where ψ and $\neg \neg \psi$ are identified)

for $\varphi = a \cup (\neg a \land b)$, $closure(\varphi) = \{a, b, \neg a, \neg b, \neg a \land b, \neg (\neg a \land b), \varphi, \neg \varphi\}$

Elementary sets of formulae

 $B \subseteq closure(\varphi)$ is <u>elementary</u> if:

1. *B* is <u>logically consistent</u> if for all $\varphi_1 \land \varphi_2, \psi \in closure(\varphi)$:

•
$$\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$$

•
$$\psi \in B \implies \neg \psi \notin B$$

• true
$$\in$$
 closure(φ) \Rightarrow true \in *B*

2. *B* is locally consistent if for all $\varphi_1 \cup \varphi_2 \in closure(\varphi)$:

•
$$\varphi_2 \in B \implies \varphi_1 \cup \varphi_2 \in B$$

- $\varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \implies \varphi_1 \in B$
- 3. *B* is maximal, i.e., for all $\psi \in closure(\varphi)$:

•
$$\psi \notin B \Rightarrow \neg \psi \in B$$

The GNBA of LTL-formula φ

For LTL-formula φ , let $\mathcal{G}_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ where

- Q is the set of all elementary sets of formulas B ⊆ closure(φ)
 Q₀ = { B ∈ Q | φ ∈ B }
- $\succ \mathcal{F} = \left\{ \left\{ B \in Q \mid \varphi_1 \cup \varphi_2 \notin B \text{ or } \varphi_2 \in B \right\} \mid \varphi_1 \cup \varphi_2 \in closure(\varphi) \right\}$
- The transition relation $\delta : Q \times 2^{AP} \rightarrow 2^Q$ is given by:
 - $\delta(B, B \cap AP)$ is the set of all elementary sets of formulas B' satisfying:
 - (i) For every $\bigcirc \psi \in closure(\varphi)$: $\bigcirc \psi \in B \iff \psi \in B'$, and
 - (ii) For every $\varphi_1 \cup \varphi_2 \in closure(\varphi)$:

$$\varphi_1 \cup \varphi_2 \in B \iff \left(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in B')\right)$$

GNBA for LTL-formula $\bigcirc a$

GNBA for LTL-formula *a* U *b*

Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over *AP*) there exists a GNBA \mathcal{G}_{φ} over 2^{AP} such that: (a) *Words*(φ) = $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$

(b) \mathcal{G}_{φ} can be constructed in time and space $\mathcal{O}\left(2^{|\varphi|}\right)$

(c) #accepting sets of \mathcal{G}_{φ} is bounded above by $\mathcal{O}(|\varphi|)$

 \Rightarrow every LTL-formula expresses an ω -regular property!