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Plan for today

▸ LTL

▸ Fairness in LTL

▸ LTL Model Checking



REVIEW: Action-based fairness constraints

For TS = (S,Act,→, I,AP, L)without terminal states, A ⊆ Act,

and in�nite execution fragment ρ = s0 α0−−−→ s1
α1−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever: ∀k ≥ 0. ∃j ≥ k. αj ∈ A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

in�nitely often A is taken

2. ρ is strongly A-fair whenever:

(∀k ≥ 0. ∃j ≥ k. Act(sj) ∩ A ≠ ∅ )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

in�nitely often A is enabled

Ô⇒ (∀k ≥ 0. ∃j ≥ k. αj ∈ A )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in�nitely often A is taken

3. ρ is weakly A-fair whenever:

(∃k ≥ 0.∀j ≥ k. Act(sj) ∩ A ≠ ∅ )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A is eventually always enabled

Ô⇒ (∀k ≥ 0. ∃j ≥ k. αj ∈ A )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in�nitely often A is taken



REVIEW: Fair satisfaction

▸ TS satis�es LT-property P:

TS ⊧ P if and only if Traces(TS) ⊆ P

▸ TS fairly satis�es LT-property Pwrt. fairness assumptionF :

TS ⊧F P if and only if FairTracesF(TS) ⊆ P

▸ TS satis�es the LT property P if all its fair observable behaviors

are admissible



LTL fairness constraints

LetΦ and Ψ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = ◻◇ Ψ

2. A strong LTL fairness condition is of the form:

sfair = ◻◇Φ Ð→ ◻◇ Ψ

3. A weak LTL fairness constraint is of the form:

wfair = ◇◻Φ Ð→ ◻◇Ψ

Φ stands for “something is enabled”; Ψ for “something is taken”



Fair satisfaction

LTL fairness assumption = conjunction of LTL fairness constraints:

fair = ufair ∧ sfair ∧ wfair

For state s in transition system TS (over AP) without terminal states, let

FairPathsfair(s) = { π ∈ Paths(s) ∣ π ⊧ fair }

FairTracesfair(s) = { trace(π) ∣ π ∈ FairPathsfair(s)}

For LTL-formula φ, and LTL fairness assumption fair:

s ⊧fair φ if and only if ∀π ∈ FairPathsfair(s). π ⊧φ and

TS ⊧fair φ if and only if ∀s0 ∈ I. s0 ⊧fair φ

⊧fair is the fair satisfaction relation for LTL; ⊧ the standard one for LTL



Turning action-based into state-based fairness

For TS = (S,Act,→, I,AP, L) let TS′ = (S′,Act∪{begin},→ ′, I′,AP′ , L′)with:

▸ S′ = I × {begin} ∪ S × Act and I′ = I × {begin}

▸ → ′ is the smallest relation satisfying:

s α−−→ s′

⟨s, β⟩ α−−→′ ⟨s′ , α⟩
and

s0
α−−→ s s0 ∈ I

⟨s0 , begin⟩ α−−→′ ⟨s, α⟩

▸ AP′ = AP ∪ { enabled(α), taken(α) ∣ α ∈ Act }

▸ labeling function:

▸ L′(⟨s0 , begin⟩) = L(s0) ∪ {enabled(β) ∣ β ∈ Act(s0)}
▸ L′(⟨s, α⟩) = L(s) ∪ { taken(α)} ∪ { enabled(β) ∣ β ∈ Act(s)}

it follows: TracesAP(TS) = TracesAP(TS
′)



State- versus action-based fairness

▸ Strong A-fairness is described by the LTL fairness assumption:

sfairA = ◻◇ ⋁
α∈A

enabled(α) → ◻◇ ⋁
α∈A

taken(α)

▸ The fair traces of TS and its action-based variant TS′ are equal:

{traceAP(π) ∣ π ∈ Paths(TS), π is F -fair}

= {traceAP(π
′) ∣ π′ ∈ Paths(TS′), π′ ⊧ fair}

▸ For every LT-property P (over AP): TS ⊧F P i� TS′ ⊧fair P



Reducing ⊧fair to ⊧

For:

▸ transition system TSwithout terminal states

▸ LTL formula φ, and

▸ LTL fairness assumption fair

it holds:

TS ⊧fair φ if and only if TS ⊧ (fair → φ)

verifying an LTL-formula under a fairness assumption can be done

using standard veri�cation algorithms for LTL



LTL Model Checking



LTL model-checking problem

The following decision problem:

Given �nite transition system TS and LTL-formula φ:

yields “yes” if TS ⊧ φ, and “no” (plus a counterexample) if TS /⊧ φ



A �rst attempt

TS ⊧ φ if and only if Traces(TS) ⊆Words(φ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lω(Aφ)

if and only if Traces(TS) ∩ Lω(Aφ) = ∅

but complementation of NBA is exponential

ifA has n states, Ahas cO(n log n) states inworst case

use the fact that Lω(Aφ) = Lω(A¬φ)!



Observation

TS ⊧ φ if and only if Traces(TS) ⊆Words(φ)

if and only if Traces(TS) ∩ ((2AP)ω ∖Words(φ)) = ∅

if and only if Traces(TS) ∩ Words(¬φ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lω(A¬φ)

= ∅

if and only if TS⊗A¬φ ⊧ ◇◻ ¬F

LTL model checking is thus reduced topersistence checking!



Overview of LTL model checking

model checker

‘No’ (counter-example)

Model of system

Transition system TS

Negation of property

Product transition system

TS⊗A¬φ

TS⊗A¬φ ⊧ Ppers(A¬φ)

LTL-formula ¬φ

Büchi automatonA¬φ

Generalised Büchi automaton G¬φ

System

‘Yes’



REVIEW: Generalized Büchi automata

A generalized NBA (GNBA) G is a tuple (Q, Σ, δ ,Q0,F)where:
▸ Q is a �nite set of states with Q0 ⊆ Q a set of initial states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ F = {F1 , . . . , Fk } is a (possibly empty) subset of 2Q

Goal: For LTL formula φ construct GNBA Gφ withLω(Gφ) =Words(φ)



Closure

Assume φ only contains the operators ∧, ¬,◯ and U

▸ ∨,→,◇, ◻, W , and so on, are expressed in terms of these basic

operators

For LTL-formula φ, the set closure(φ)

consists of all sub-formulas ψ of φ and their negation ¬ψ

(where ψ and ¬¬ψ are identi�ed)

for φ = aU (¬a ∧ b), closure(φ) = {a, b,¬a,¬b,¬a∧ b,¬(¬a∧ b), φ,¬φ }



Elementary sets of formulae

B ⊆ closure(φ) is elementary if:

1. B is logically consistent if for all φ1 ∧ φ2 ,ψ ∈ closure(φ):
▸ φ1 ∧ φ2 ∈ B ⇔ φ1 ∈ B and φ2 ∈ B
▸ ψ ∈ B ⇒ ¬ψ /∈ B
▸ true ∈ closure(φ) ⇒ true ∈ B

2. B is locally consistent if for all φ1Uφ2 ∈ closure(φ):
▸ φ2 ∈ B ⇒ φ1 Uφ2 ∈ B
▸ φ1 Uφ2 ∈ B and φ2 /∈ B ⇒ φ1 ∈ B

3. B is maximal, i.e., for all ψ ∈ closure(φ):
▸ ψ ∉ B ⇒ ¬ψ ∈ B



The GNBA of LTL-formula φ

For LTL-formula φ, let Gφ = (Q, 2AP, δ,Q0,F)where
▸ Q is the set of all elementary sets of formulas B ⊆ closure(φ)

▸ Q0 = {B ∈ Q ∣ φ ∈ B}

▸ F = { {B ∈ Q ∣ φ1Uφ2 /∈ B or φ2 ∈ B} ∣ φ1Uφ2 ∈ closure(φ)}

▸ The transition relation δ ∶ Q × 2AP → 2Q is given by:
▸ δ(B, B∩ AP) is the set of all elementary sets of formulas B′

satisfying:

(i) For every◯ψ ∈ closure(φ):◯ψ ∈ B ⇔ ψ ∈ B′, and
(ii) For every φ1 Uφ2 ∈ closure(φ):

φ1 Uφ2 ∈ B ⇔ (φ2 ∈ B ∨ (φ1 ∈ B ∧ φ1 Uφ2 ∈ B′))



GNBA for LTL-formula◯a

{a,◯a}

B1

{a,¬◯a}

B2

{¬a,◯a}

B3

{¬a,¬◯a}

B4

a

¬a

a

a

¬a

¬a

¬a

a



GNBA for LTL-formula aUb

{a, b, aU b}

B1

{¬a,¬b,¬(aU b)}

B4

{a,¬b,¬(aUb)}

B5

{¬a, b, aU b}

B2

{a,¬b, aUb}

B3



Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over AP) there exists a

GNBA Gφ over 2
AP such that:

(a) Words(φ) = Lω(Gφ)

(b) Gφ can be constructed in time and spaceO (2∣φ∣)

(c) #accepting sets of Gφ is bounded above byO(∣φ∣)

⇒ every LTL-formula expresses an ω-regular property!


