
Veri�cation

Lecture 10

Martin Zimmermann



Plan for today

▸ Equivalence of Büchi automata & ω-regular expressions

▸ Generalized Büchi automata



Review: NBA and ω-regular languages

The class of languages accepted by NBA

agrees with the class of ω-regular languages

How to construct an NBA for the ω-regular expression:

G = E1 .F
ω
1 + . . . + En.F

ω
n ?

Rely on operations for NBA that mimic operations on ω-regular
expressions:

(1) for NBAA1 andA2 there is an NBA accepting Lω(A1) ∪ Lω(A2)
(2) for any regular language Lwith ε ∉ L there is an NBA accepting Lω

(3) for regular language L and NBAA′ there is an NBA acceptingL.Lω(A′)



Concatenation of an NFA and an NBA

For NFAA and NBAA′ (both over the alphabet Σ

there exists an NBAA′′ with
Lω(A′′) = L(A).Lω(A′) and ∣A′′∣ = O(∣A∣ + ∣A′∣)



Proof

LetA = (Q, Σ, δ,Q0, F),A′ = (Q′ , Σ, δ′,Q′0, F′)with Q ∩Q′ = ∅.
De�ne NBAA′′ = (Q′′, Σ, δ′′,Q′′0 , F′′)with
▸ Q′′ = Q ∪Q′, F′′ = F′,

▸ Q′′0 =
⎧⎪⎪⎨⎪⎪⎩
Q0 if Q0 ∩ F = ∅,
Q0 ∪Q′0 otherwise.

▸ δ′′(q,A) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ(q,A) if q ∈ Q and δ(q,A) ∩ F = ∅,
δ(q,A) ∪Q′0 if q ∈ Q and δ(q,A) ∩ F /= ∅,
δ′(q,A) if q ∈ Q′ .

For each (accepting) run ρ = q0q1q2⋯ ofA′′ on A0A1A2⋯ ∈ Σω:

▸ either q0q1q2⋯ is an (accepting) run ofA′′ on A0A1A2⋯ (in case

Q0 ∩ F /= ∅), or
▸ there is an n ≥ 0 such that

▸ q0⋯qnq is an accepting run ofA on A0⋯An for some q ∈ F, and
▸ qn+1qn+2qn+3⋯ is an (accepting) run ofA′ on An+1An+2An+3⋯.



Summarizing the results so far

For any ω-regular language L
there exists an NBAAwith Lω(A) = L



NBA accept ω-regular languages

For each NBAA: Lω(A) is ω-regular



Proof

LetA = (Q, Σ, δ,Q0, F). De�ne the NFAAq,p = (Q, Σ, δ, {q}, {p}),
(for q, p ∈ Q).
▸ Let σ ∈ Lω(A)with accepting run q0q1q2⋯ that visits q ∈ F
in�nitely often.

σ = w0´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
∈L(Aq0 ,q

)

w1
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈L(Aq,q)

w2
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
∈L(Aq,q)

⋯

▸ On the other hand, each word of this form has an accepting

run ofA.

Thus:

Lω(A) = ⋃
q0∈Q0 ,q∈F

L(Aq0 ,q). (L(Aq,q))
ω

which is ω-regular.



Checking non-emptiness

Lω(A) ≠ ∅ if and only if

∃q0 ∈ Q0. ∃q ∈ F. ∃w ∈ Σ∗. ∃v ∈ Σ+. q ∈ δ∗(q0 ,w) ∧ q ∈ δ∗(q, v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

there is a reachable accept state on a cycle

The emptiness problem for NBA A can be solved in timeO(∣A∣)



Non-blocking NBA

▸ NBAA is non-blocking if δ(q,A) ≠ ∅ for all q and A ∈ Σ
▸ for each input word there exists an in�nite run

▸ For each NBAA there exists a non-blocking NBA trap(A)with:
▸ ∣trap(A)∣ = O(∣A∣) and A ≡ trap(A)

▸ ForA = (Q, Σ, δ,Q0, F) let trap(A) = (Q′ , Σ, δ′,Q0, F)with:
▸ Q′ = Q ∪ {qtrap }where qtrap /∈ Q
▸ δ′(q,A) = { δ(q,A) ∶ if q ∈ Q and δ(q,A) /= ∅{qtrap} ∶ otherwise



Generalized Büchi automata



Generalized Büchi automata

▸ NBA are as expressive as ω-regular languages

▸ Variants of NBA exist that are equally expressive
▸ Muller, Rabin, and Streett automata
▸ generalized Büchi automata (GNBA)

▸ GNBA are like NBA, but have a distinct acceptance criterion
▸ a GNBA requires to visit several sets F1 , . . . , Fk (k ≥ 0) in�nitely

often
▸ for k=0, all runs are accepting
▸ for k=1 this boils down to an NBA

▸ GNBA are useful to relate temporal logic and automata
▸ but they are equally expressive as NBA



Generalized Büchi automata

A generalized NBA (GNBA) G is a tuple (Q, Σ, δ ,Q0,F)where:
▸ Q is a �nite set of states with Q0 ⊆ Q a set of initial states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ F = {F1 , . . . , Fk } is a (possibly empty) subset of 2Q

The size of G, denoted ∣G∣, is the number of states and transitions in G:
∣G∣ = ∣Q∣ +∑

q∈Q

∑
A∈Σ

∣ δ(q,A) ∣



Language of a GNBA

▸ GNBA G = (Q, Σ, δ,Q0,F) and word σ = A0A1A2 . . . ∈ Σω

▸ A run for σ in G is an in�nite sequence q0 q1 q2 . . . such that:

▸ q0 ∈ Q0 and qi
Ai−−−→qi+1 for all 0 ≤ i

▸ Run q0 q1 . . . is accepting if for all F ∈ F : qi ∈ F for in�nitely
many i

▸ σ ∈ Σω is accepted by G if there exists an accepting run for σ

▸ The accepted language of G:
▸ Lω(G) = {σ ∈ Σω ∣ there exists an accepting run for σ in G }

▸ GNBA G and G′ are equivalent if Lω(G) = Lω(G′)



Example

q0q1 q2

true

crit2

truecrit1

true

F = {{q1}, {q2}}

A GNBA for the property ”both processes are in�nitely often in their

critical section”



From GNBA to NBA

For any GNBA G there exists an NBAAwith:

Lω(G) = Lω(A) and ∣A∣ = O(∣G∣ ⋅ ∣F ∣)
whereF denotes the set of acceptance sets in G



Proof

Let G = (Q, Σ, δ,Q0,F). W.l.o.g.: F = {F1 , . . . , Fk }, k > 0.
De�neA = (Q′ , Σ, δ′ ,Q′0, F′)with
▸ Q′ = Q × {1, . . . , k},
▸ Q′0 = Q × {1},
▸ F′ = F1 × {1},

▸ δ((q, i),A) = ⎧⎪⎪⎨
⎪⎪⎩

{(q′ , i) ∣ q′ ∈ δ(q,A)} if q ∉ Fi,
{(q′ , i + 1) ∣ q′ ∈ δ(q,A)} otherwise.

where k + 1 = 1.

A run (q0, i0)(q1 , i1)(q2 , i2)⋯ ofA on A0A1A2⋯ is accepting⇔
the run q0q1q2⋯ of G on A0A1A2⋯ is accepting.



Example

⟨q0, 1⟩⟨q1 , 1⟩ ⟨q2 , 1⟩

true

crit2

true

crit1

⟨q1 , 2⟩ ⟨q0 , 2⟩ ⟨q2 , 2⟩

true true

crit1

true crit2

true



Product of Büchi automata

The product construction for �nite automata does not work:

A

A

r1 r2

A

A

q1 q2 (q2, r1)

(q2, r2)(q1, r2)

A

A

A1

A2

A1 ⊗A2

(q1, r1)

Lω(A1) = Lω(A2) = {Aω }, but Lω(A1 ⊗A2) = ∅



Intersection

For GNBA G1 and G2 there exists a GNBA G with

Lω(G) = Lω(G1) ∩Lω(G2) and ∣G∣ = O(∣G1∣ ⋅ ∣G2∣)



Proof

Let Gi = (Qi , Σ, δi,Q0,i ,Fi)with Q1 ∩Q2 = ∅.
De�ne G = (Q1 ×Q2, Σ, δ,Q0,1 ×Q0,2 ,F)with

q′1 ∈ δ1(q1 ,A) ∧ q′2 ∈ δ2(q2 ,A)
⟨q′1 , q

′

2⟩ ∈ δ(⟨q1 , q2⟩,A)

and

F = {F1 ×Q2 ∣ F1 ∈ F1} ∪ {Q1 × F2 ∣ F2 ∈ F2}



Facts about Büchi automata

▸ They are as expressive as ω-regular languages

▸ They are closed under various operations and also under ∩
▸ deterministic automaton −A accepts −Lω(A)

▸ Nondeterministic BA are more expressive

than deterministic BA

▸ Emptiness check = check for reachable recurrent accept state
▸ this can be done inO(∣A∣)



Linear-time Temporal Logic



Syntax

modal logic over in�nite sequences [Pnueli 1977]

▸ Propositional logic
▸ a ∈ AP atomic proposition
▸ ¬ϕ and ϕ ∧ ψ negation and conjunction

▸ Temporal operators
▸ ◯ϕ next state ful�lls ϕ
▸ ϕUψ ϕ holds Until a ψ-state is reached

linear temporal logic is a logic for describing LT properties



Derived operators

ϕ ∨ ψ ≡ ¬ (¬ ϕ ∧ ¬ψ)

ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ

ϕ⇔ ψ ≡ (ϕ⇒ ψ) ∧ (ψ⇒ ϕ)

ϕ ⊕ψ ≡ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ)

true ≡ ϕ ∨ ¬ϕ

false ≡ ¬ true

◇ϕ ≡ trueUϕ “sometimes in the future”

◻ϕ ≡ ¬ ◇ ¬ϕ “from now on forever”

precedence order: the unary operators bind stronger than the binary ones.

¬ and◯ bind equally strong. U takes precedence over ∧, ∨, and→



Intuitive semantics

a

atomic prop. a

arbitrary arbitrary arbitrary arbitrary

. . .

arbitrary

next step◯a

a arbitrary arbitrary arbitrary

. . .

a ∧ ¬b
until aU b

a ∧ ¬b a ∧ ¬b b arbitrary

. . .

¬a
eventually◇a

¬a ¬a a arbitrary

. . .

a

always ◻a
a a a a

. . .



Tra�c light properties

▸ Once red, the light cannot become green immediately:

◻ (red ⇒ ¬◯green)

▸ The light becomes green eventually:◇green

▸ Once red, the light always becomes green eventually:

◻ (red ⇒ ◇ green)
▸ Once red, the light always becomes green eventually after

being yellow for some time inbetween:

◻(red →◯ (redU (yellow ∧ ◯ (yellow Ugreen))))


