

Lecture 10

Martin Zimmermann

Plan for today

- Equivalence of Büchi automata & ω-regular expressions
- Generalized Büchi automata

Review: NBA and ω -regular languages

The class of languages accepted by NBA agrees with the class of ω -regular languages

How to construct an NBA for the ω -regular expression:

 $\mathbf{G} = \mathbf{E}_1 \cdot \mathbf{F}_1^{\omega} + \ldots + \mathbf{E}_n \cdot \mathbf{F}_n^{\omega} ?$

Rely on operations for NBA that mimic operations on ω -regular expressions:

- (1) for NBA A_1 and A_2 there is an NBA accepting $\mathcal{L}_{\omega}(A_1) \cup \mathcal{L}_{\omega}(A_2)$
- (2) for any regular language \mathcal{L} with $\varepsilon \notin \mathcal{L}$ there is an NBA accepting \mathcal{L}^{ω}
- (3) for regular language L and NBA A' there is an NBA accepting L.L_w(A')

Concatenation of an NFA and an NBA

For NFA \mathcal{A} and NBA \mathcal{A}' (both over the alphabet Σ there exists an NBA \mathcal{A}'' with $\mathcal{L}_{\omega}(\mathcal{A}'') = \mathcal{L}(\mathcal{A}).\mathcal{L}_{\omega}(\mathcal{A}')$ and $|\mathcal{A}''| = \mathcal{O}(|\mathcal{A}| + |\mathcal{A}'|)$

Proof

Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F), \mathcal{A}' = (Q', \Sigma, \delta', Q'_0, F')$ with $Q \cap Q' = \emptyset$. Define NBA $\mathcal{A}'' = (Q'', \Sigma, \delta'', Q''_0, F'')$ with

$$P'' = Q \cup Q', F'' = F',$$

$$Q''_0 = \begin{cases} Q_0 & \text{if } Q_0 \cap F = \emptyset, \\ Q_0 \cup Q'_0 & \text{otherwise.} \end{cases}$$

$$\delta''(q, A) = \begin{cases} \delta(q, A) & \text{if } q \in Q \text{ and } \delta(q, A) \cap F = \emptyset, \\ \delta(q, A) \cup Q'_0 & \text{if } q \in Q \text{ and } \delta(q, A) \cap F \neq \emptyset, \\ \delta'(q, A) & \text{if } q \in Q'. \end{cases}$$

For each (accepting) run $\rho = q_0 q_1 q_2 \cdots$ of \mathcal{A}'' on $A_0 A_1 A_2 \cdots \in \Sigma^{\omega}$:

- either $q_0q_1q_2\cdots$ is an (accepting) run of \mathcal{A}'' on $A_0A_1A_2\cdots$ (in case $Q_0 \cap F \neq \emptyset$), or
- ▶ there is an n ≥ 0 such that
 - $q_0 \cdots q_n q$ is an accepting run of \mathcal{A} on $A_0 \cdots A_n$ for some $q \in F$, and
 - $q_{n+1}q_{n+2}q_{n+3}$ ··· is an (accepting) run of \mathcal{A}' on $A_{n+1}A_{n+2}A_{n+3}$ ···.

Summarizing the results so far

For any ω -regular language $\mathcal L$ there exists an NBA $\mathcal A$ with $\mathcal L_\omega(\mathcal A)$ = $\mathcal L$

NBA accept ω -regular languages

For each NBA \mathcal{A} : $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular

Proof

Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$. Define the NFA $\mathcal{A}_{q,p} = (Q, \Sigma, \delta, \{q\}, \{p\})$, (for $q, p \in Q$).

▶ Let $\sigma \in \mathcal{L}_{\omega}(\mathcal{A})$ with accepting run $q_0q_1q_2\cdots$ that visits $q \in F$ infinitely often.

$$\sigma = \underbrace{W_0}_{\in \mathcal{L}(\mathcal{A}_{q_0,q})} \underbrace{W_1}_{\in \mathcal{L}(\mathcal{A}_{q,q})} \underbrace{W_2}_{\in \mathcal{L}(\mathcal{A}_{q,q})} \cdots$$

• On the other hand, each word of this form has an accepting run of *A*.

Thus:

$$\mathcal{L}_{\omega}(\mathcal{A}) = \bigcup_{q_0 \in Q_0, q \in F} \mathcal{L}(\mathcal{A}_{q_0,q}). \left(\mathcal{L}(\mathcal{A}_{q,q})\right)^{\omega}$$

which is ω -regular.

Checking non-emptiness

$\mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset$ if and only if

 $\exists q_0 \in Q_0, \exists q \in F. \exists w \in \Sigma^*, \exists v \in \Sigma^+, q \in \delta^*(q_0, w) \land q \in \delta^*(q, v)$

there is a reachable accept state on a cycle

The emptiness problem for NBA A can be solved in time O(|A|)

Non-blocking NBA

- NBA \mathcal{A} is <u>non-blocking</u> if $\delta(q, A) \neq \emptyset$ for all q and $A \in \Sigma$
 - for each input word there exists an infinite run
- For each NBA A there exists a non-blocking NBA trap(A) with:
 - $|trap(\mathcal{A})| = \mathcal{O}(|\mathcal{A}|) \text{ and } \mathcal{A} \equiv trap(\mathcal{A})$
- For $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ let $trap(\mathcal{A}) = (Q', \Sigma, \delta', Q_0, F)$ with:

Generalized Büchi automata

Generalized Büchi automata

- NBA are as expressive as ω-regular languages
- Variants of NBA exist that are equally expressive
 - Muller, Rabin, and Streett automata
 - generalized Büchi automata (GNBA)
- GNBA are like NBA, but have a distinct <u>acceptance criterion</u>
 - ▶ a GNBA requires to visit several sets $F_1, ..., F_k$ ($k \ge 0$) infinitely often
 - ▶ for *k*=0, all runs are accepting
 - for k=1 this boils down to an NBA
- GNBA are useful to relate temporal logic and automata
 - but they are equally expressive as NBA

Generalized Büchi automata

A <u>generalized NBA</u> (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- *Q* is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \rightarrow 2^Q$ is a transition function
- $\mathcal{F} = \{F_1, \ldots, F_k\}$ is a (possibly empty) subset of 2^Q

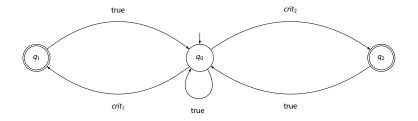
The size of \mathcal{G} , denoted $|\mathcal{G}|$, is the number of states and transitions in \mathcal{G} :

$$|\mathcal{G}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$
- ► A *run* for σ in \mathcal{G} is an infinite sequence $q_0 q_1 q_2 \dots$ such that: ► $a_0 \in Q_0$ and $a_i \xrightarrow{A_i} a_{i+1}$ for all $0 \le i$
- ▶ Run $q_0 q_1 \dots$ is <u>accepting</u> if for all $F \in \mathcal{F}$: $q_i \in F$ for infinitely many *i*
- $\sigma \in \Sigma^{\omega}$ is *accepted* by \mathcal{G} if there exists an accepting run for σ
- ► The <u>accepted language</u> of *G*:
 - $\mathcal{L}_{\omega}(\mathcal{G}) = \{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{G} \}$
- GNBA \mathcal{G} and \mathcal{G}' are <u>equivalent</u> if $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}')$

Example



 $\mathcal{F} = \{\{q_1\}, \{q_2\}\}$

A GNBA for the property "both processes are infinitely often in their critical section"

From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with:

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$$

where ${\mathcal F}$ denotes the set of acceptance sets in ${\mathcal G}$

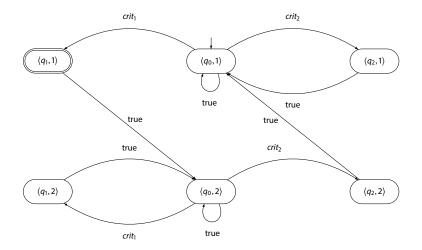
Proof

Let $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$. W.l.o.g.: $\mathcal{F} = \{F_1, \dots, F_k\}, k > 0$. Define $\mathcal{A} = (Q', \Sigma, \delta', Q'_0, F')$ with

- $Q' = Q \times \{1, \ldots, k\},$
- $Q'_0 = Q \times \{1\},\$

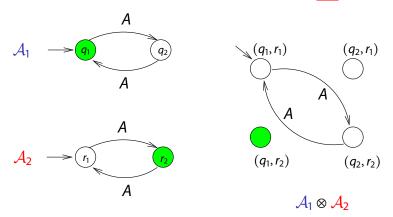
A run $(q_0, i_0)(q_1, i_1)(q_2, i_2)\cdots$ of \mathcal{A} on $A_0A_1A_2\cdots$ is accepting \Leftrightarrow the run $q_0q_1q_2\cdots$ of \mathcal{G} on $A_0A_1A_2\cdots$ is accepting.

Example



Product of Büchi automata

The product construction for finite automata does not work:



$$\mathcal{L}_{\omega}(\mathcal{A}_{1}) = \mathcal{L}_{\omega}(\mathcal{A}_{2}) = \{A^{\omega}\}, \text{ but } \mathcal{L}_{\omega}(\mathcal{A}_{1} \otimes \mathcal{A}_{2}) = \emptyset$$

Intersection

For GNBA \mathcal{G}_1 and \mathcal{G}_2 there exists a GNBA \mathcal{G} with $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}_1) \cap \mathcal{L}_{\omega}(\mathcal{G}_2)$ and $|\mathcal{G}| = \mathcal{O}(|\mathcal{G}_1| \cdot |\mathcal{G}_2|)$

Proof

Let
$$\mathcal{G}_i = (Q_i, \Sigma, \delta_i, Q_{0,i}, \mathcal{F}_i)$$
 with $Q_1 \cap Q_2 = \emptyset$.
Define $\mathcal{G} = (Q_1 \times Q_2, \Sigma, \delta, Q_{0,1} \times Q_{0,2}, \mathcal{F})$ with
$$\frac{q'_1 \in \delta_1(q_1, A) \land q'_2 \in \delta_2(q_2, A)}{\langle q'_1, q'_2 \rangle \in \delta(\langle q_1, q_2 \rangle, A)}$$

and

$$\mathcal{F} = \left\{ F_1 \times Q_2 \mid F_1 \in \mathcal{F}_1 \right\} \cup \left\{ Q_1 \times F_2 \mid F_2 \in \mathcal{F}_2 \right\}$$

Facts about Büchi automata

- They are as expressive as ω-regular languages
- They are closed under various operations and also under \cap
 - deterministic automaton $-\mathcal{A}$ accepts $-\mathcal{L}_{\omega}(\mathcal{A})$
- Nondeterministic BA are more expressive than deterministic BA
- Emptiness check = check for reachable recurrent accept state
 - this can be done in $\mathcal{O}(|\mathcal{A}|)$

Linear-time Temporal Logic

Syntax

modal logic over infinite sequences [Pnueli 1977]

- Propositional logic
 - ▶ a ∈ AP
 - $\neg \phi$ and $\phi \land \psi$
- Temporal operators
 - $\bigcirc \phi$
 - ► φUψ

atomic proposition negation and conjunction

next state fulfills ϕ ϕ holds Until a ψ -state is reached

linear temporal logic is a logic for describing LT properties

Derived operators

$$\phi \lor \psi \equiv \neg (\neg \phi \land \neg \psi)$$

$$\phi \Rightarrow \psi \equiv \neg \phi \lor \psi$$

$$\phi \Leftrightarrow \psi \equiv (\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)$$

$$\phi \oplus \psi \equiv (\phi \land \neg \psi) \lor (\neg \phi \land \psi)$$

true
$$\equiv \phi \lor \neg \phi$$

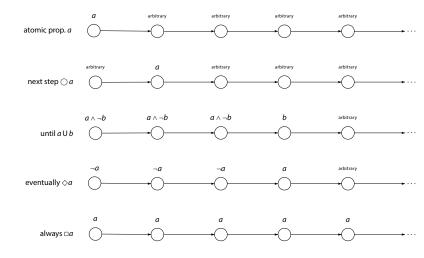
false
$$\equiv \neg \text{true}$$

$$\diamond \phi \equiv \text{true U} \phi \quad \text{"sometimes in the future"}$$

$$\Box \phi \equiv \neg \diamond \neg \phi \quad \text{"from now on forever"}$$

precedence order: the unary operators bind stronger than the binary ones. \neg and \bigcirc bind equally strong. U takes precedence over \land , \lor , and \rightarrow

Intuitive semantics



Traffic light properties

• Once red, the light cannot become green immediately:

$$\Box(red \Rightarrow \neg \bigcirc green)$$

- ► The light becomes green eventually: <> green
- Once red, the light always becomes green eventually: \Box (red \Rightarrow \diamond green)
- Once red, the light always becomes green eventually after being yellow for some time inbetween:

 $\Box(\textit{red} \rightarrow \bigcirc (\textit{red} \, U\,(\textit{yellow} \land \bigcirc (\textit{yellow} \, U\,\textit{green}))))$