Infinite Games

Lecture 15

Martin Zimmermann

Universität des Saarlandes

February 6th, 2014

Plan for Today

- Review
- Exam
 - Organizational matters
 - Questions
- Outlook: even more games

Reachability

Name:Format:

Reachability Game $(\mathcal{A}, \operatorname{REACH}(R))$ with $R \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\operatorname{Occ}(\rho) \cap R \neq \emptyset$ linear time in |E|attractor uniform positional uniform positional safety

Safety

Name: Format:

Safety Game $(\mathcal{A}, \text{SAFE}(S))$ with $S \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\operatorname{Occ}(\rho) \subseteq S$ linear time in |E|dualize + attractor uniform positional uniform positional reachability

Büchi

Büchi Game $(\mathcal{A}, \text{BÜCHI}(F))$ with $F \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $Inf(\rho) \cap F \neq \emptyset \\ \mathbf{P}$

iterated attractor uniform positional uniform positional co-Büchi

Co-Büchi

Co-Büchi Game $(\mathcal{A}, \operatorname{COBÜCHI}(\mathcal{C}))$ with $\mathcal{C} \subseteq V$

	Winning	condition:
--	---------	------------

- Solution complexity:
- Algorithm: dualize + iterated attractor
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

Martin Zimmermann Universität des Saarlandes Infinite Games - Lecture 15

 $Inf(\rho) \subseteq C \\ \mathbf{P}$

+ iterated attractor uniform positional uniform positional

Büchi

Parity

Parity Game $(\mathcal{A}, \text{PARITY}(\Omega))$ with $\Omega: V \to \mathbb{N}$

- Winning condition:
- Solution complexity:

 $\min(\inf(\Omega(\rho)))$ even **NP** \cap **co-NP**

uniform positional

uniform positional

- Algorithm: progress measures and many others
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

parity

Muller

Solution complexity:

 $\operatorname{Inf}(\rho) \in \mathcal{F}$ **P**, **NP** ∩ **co**-**NP**, **PSPACE**-complete

- Algorithm: reduction to parity and many others
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

Muller

V

Pushdown Parity

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\begin{array}{l} \min(\inf(\Omega(\rho))) \text{ even} \\ \textbf{EXPTIME}\text{-complete} \\ \text{reduction to parity games} \\ \text{infinite (pd. transducer)} \\ \text{infinite (pd. transducer)} \\ \text{pushdown parity} \end{array}$

Generalized Reachability

Generalized Reachability Game $(\mathcal{A}, CHREACH(\mathcal{R}))$ with $\mathcal{R} \subseteq 2^V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\begin{aligned} \forall R \in \mathcal{R}. \operatorname{Occ}(\rho) \cap R \neq \emptyset \\ \textbf{PSPACE-complete} \\ \text{Simulate for } |V| \cdot |\mathcal{R}| \text{ steps} \\ 2^{|\mathcal{R}|} \\ \binom{|\mathcal{R}|}{\lfloor_{|\mathcal{R}|/2}\rfloor} \\ \text{disjunctive safety} \end{aligned}$

Weak Parity

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\min(\operatorname{Occ}(\Omega(\rho)))$ even **P**

iterated attractor uniform positional uniform positional weak parity

Weak Muller

Name: Format:

Weak Muller Game $(\mathcal{A}, \text{WMULLER}(\mathcal{F}))$ with $\mathcal{F} \subseteq 2^V$

- Winning condition:
- Solution complexity:

 $Occ(\rho) \in \mathcal{F}$ **PSPACE**-complete

- Algorithm: reduction to weak parity or direct one 2|V|
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

weak Muller

2|V|

Request-Response

 $\forall j \forall n (\rho_n \in Q_i \rightarrow \exists m \geq n. \rho_m \in P_i)$

EXPTIME-complete reduction to Büchi

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

n/a

 $k \cdot 2^k$

 2^k

Rabin

- Winning condition: $\exists j(\operatorname{Inf}(\rho) \cap Q_j \neq \emptyset \wedge \operatorname{Inf}(\rho) \cap P_j = \emptyset)$
- Solution complexity:

NP-complete

- Algorithm: reduction to parity or direct one
- Memory requirements for Player 0: uniform positional
- Memory requirements for Player 1:
- Dual game:

Streett

k!

Streett

Name: Format:

 $(\mathcal{A}, \text{STREETT}((Q_j, P_j)_{j \in [k]}))$ with $Q_j, P_j \subseteq V$

- $\forall j(\operatorname{Inf}(\rho) \cap Q_i \neq \emptyset \to \operatorname{Inf}(\rho) \cap P_i \neq \emptyset)$ Winning condition: co-NP-complete
- Solution complexity:

reduction to parity or direct one

- Memory requirements for Player 0:
- Memory requirements for Player 1: uniform positional
- Dual game:

Algorithm:

Rabin

k!

Streett Game

Reducibility

S2S and Parity Tree Automata

- S2S: Monadic Second-order logic over two successors
- PTA: Parity tree automata

Both formalisms are equivalent:

- For every \mathscr{A} exists $\varphi_{\mathscr{A}}$ s.t. $t \in \mathcal{L}(\mathscr{A}) \Leftrightarrow t \models \varphi_{\mathscr{A}}$
- $\blacksquare \text{ For every } \varphi \text{ exists } \mathscr{A}_{\varphi} \text{ s.t. } t \models \varphi \Leftrightarrow t \in \mathcal{L}(\mathscr{A}_{\varphi})$

Consequence: Satisfiability of S2S reduces to PTA emptiness

(Parity) Games everywhere:

- Acceptance game $\mathcal{G}(\mathscr{A}, t)$ for complement closure of PTA
- Emptiness game $\mathcal{G}(\mathscr{A})$ for emptiness check of PTA

"The mother of all decidability results"

Organizational Matters

End-of-term exam

■ When:	February 13th, 2014, 09:30 - 11:30				
■ Where:	HS 003, Building E1.3				
■ Mode:	Open-book				
What to bring:	Student ID				
Exam inspection: Feb. 14th, 2014, 15:00 - 16:00 (Room 328?)					

End-of-semester exam: March 20th, 2014 (more information after first exam)

Questions

Challenge us before we challenge you in the exam.

There will also be a tutorial where you can ask further questions!

When: March 11th, 2014, 16:00 - 18:00
 Where: SR U.11, Building E2.5

Outlook

(Simple) Stochastic Games

• Enter a new player (\diamondsuit), it flips a coin to pick a successor.

No (sure) winning strategy......but one with probability 1.

More formally: Value of the game

```
\max_{\sigma} \min_{\tau} p_{\sigma,\tau}
```

where $p_{\sigma,\tau}$ is the probability that Player 0 wins when using strategy σ and Player 1 uses strategy τ .

Concurrent Games

Both players choose their moves simultaneously
 Matching pennies: randomized strategy winning with probability 1.

The "Snowball Game": for every ε , randomized strategy winning with probability $1 - \varepsilon$.

Games of Imperfect Information

- Players do not observe sequence of states, but sequence of non-unique observations (yellow, purple, blue, brown).
- Player 0 picks action (a,b), Player 1 resolves non-determinism.

No winning strategy for Player 0: every fixed choice of actions to pick at $(\bigcirc \bigcirc \bigcirc)^*(\bigcirc \bigcirc)$ can be countered by going to v_1 or v_2 .

Higher-order Pushdown Automata

- Level-1 stack: finite sequence over Γ (standard stack)
- Level-(k + 1) stack: finite sequence of level-k stacks
- Operations (various definitions possible):
 - $push_{\gamma}$ and pop_{γ} for $\gamma \in \Gamma$: push and pop on level 1
 - copy_k: copy the topmost level-k stack and add it to the level-(k + 1) stack
 - delete_k: delete the topmost level-k stack

Example: on the blackboard

Theorem

Parity games on configuration graphs of higher-order pushdown automata can be solved algorithmically.

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

W	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
$Sc_{\{0,1,2\}}$	0	0	0	0	0	0	0	1
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	Ø

Theorem

Player i has strategy to bound the opponent's scores by two when starting in $W_i(\mathcal{G})$.

Corollary: Stopping play after first score reaches value three preserves winning regions (at most exponential play length)

Games with Costs

Parity game: Player 0 wins from everywhere, but it takes arbitrarily long two "answer" 1 by 0.

■ Add edge-costs: Player 0 wins if there is a bound b and a position n such that every odd color after n is followed by a smaller even color with cost ≤ b in between ⇒ Player 1 wins example from everywhere (stay longer and longer in 2).

Theorem

Parity games with costs are determined, Player 0 has positional winning strategies, and they can be solved in $NP \cap co-NP$.

Many other variants

- More winning conditions: various quantitative conditions (parity with costs, waiting times for RR games, and many more)
- Games on timed automata \Rightarrow uncountable arenas
- Play even longer: games of ordinal length
- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.
- More than two players ⇒ no longer zero-sum games. Requires whole new theory (equilibria).

And: any combination of extensions discussed above.

Thesis Topics

- Even pushdown games can be played in finite time. What about higher-order pushdown games?
- How to compute optimal strategies for parity games with costs?
- Games with delay: how much lookahead is necessary for different winning conditions? What effect has lookahead on the memory requirements?
- ...
- Your own idea?
- Generalized reachability games with sets of size two: P, NP, or PSPACE?
- Exact complexity of parity games.

Thank You

&

Good luck for the exam