Infinite Games

Lecture 15

Martin Zimmermann
Universität des Saarlandes

February 6th, 2014

Plan for Today

- Review
- Exam
- Organizational matters
- Questions

■ Outlook: even more games

Review

Reachability

■ Name:

- Format:

Reachability Game $(\mathcal{A}, \operatorname{REACH}(R))$ with $R \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
$\operatorname{Occ}(\rho) \cap R \neq \emptyset$
linear time in $|E|$ attractor uniform positional uniform positional safety

Safety

- Name:

Safety Game

- Format:

$$
(\mathcal{A}, \operatorname{sAFE}(S)) \text { with } S \subseteq V
$$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
$\operatorname{Occ}(\rho) \subseteq S$
linear time in $|E|$ dualize + attractor uniform positional uniform positional
reachability

Büchi

■ Name:

- Format:

Büchi Game $(\mathcal{A}, \operatorname{BÜCHI}(F))$ with $F \subseteq V$

- Winning condition:
$\operatorname{Inf}(\rho) \cap F \neq \emptyset$
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
iterated attractor uniform positional uniform positional co-Büchi

Co-Büchi

■ Name:

- Format:

Co-Büchi Game
$(\mathcal{A}, \operatorname{cobüchi}(C))$ with $C \subseteq V$

- Winning condition:
- Solution complexity:

$$
\operatorname{Inf}(\rho) \subseteq C
$$

■ Algorithm: dualize + iterated attractor

- Memory requirements for Player 0: uniform positional
- Memory requirements for Player 1: uniform positional
- Dual game:

Büchi

Parity

■ Name:

- Format:

Parity Game

$(\mathcal{A}, \operatorname{PaRITY}(\Omega))$ with $\Omega: V \rightarrow \mathbb{N}$

- Winning condition:
- Solution complexity:
$\min (\operatorname{Inf}(\Omega(\rho)))$ even $\mathbf{N P} \cap \mathbf{c o - N P}$
- Algorithm: progress measures and many others
- Memory requirements for Player 0: uniform positional
- Memory requirements for Player 1: uniform positional
- Dual game: parity

Muller

■ Name:
Muller Game

- Format: $(\mathcal{A}, \operatorname{MulLer}(\mathcal{F}))$ with $\mathcal{F} \subseteq 2^{V}$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game: $\mathbf{P}, \mathbf{N P} \cap \mathbf{c o}-\mathbf{N P}, \mathbf{P S P A C E}$-complete reduction to parity and many others

Pushdown Parity

■ Name:

- Format:

Pushdown Parity Game
$(\mathcal{A}, \operatorname{parity}(\Omega))$ with \mathcal{A} induced by $\operatorname{PDS} \mathcal{P}$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
$\min (\operatorname{Inf}(\Omega(\rho)))$ even
EXPTIME-complete reduction to parity games infinite (pd. transducer) infinite (pd. transducer) pushdown parity

Generalized Reachability

■ Name:
Generalized Reachability Game

- Format: $(\mathcal{A}, \operatorname{CHREACH}(\mathcal{R}))$ with $\mathcal{R} \subseteq 2^{V}$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0 :

Simulate for $|V| \cdot|\mathcal{R}|$ steps

- Memory requirements for Player 1:
- Dual game:

$$
\forall R \in \mathcal{R} . \operatorname{Occ}(\rho) \cap R \neq \emptyset
$$

PSPACE-complete

disjunctive safety

Weak Parity

■ Name:

Weak Parity Game

- Format: $(\mathcal{A}, \operatorname{wparity}(\Omega))$ with $\Omega: V \rightarrow \mathbb{N}$

- Winning condition:
$\min (\operatorname{Occ}(\Omega(\rho)))$ even
- Solution complexity:
- Algorithm: iterated attractor
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
uniform positional uniform positional
weak parity

Weak Muller

■ Name:

- Format:

Weak Muller Game

 $(\mathcal{A}, \operatorname{wmulLeR}(\mathcal{F}))$ with $\mathcal{F} \subseteq 2^{V}$

- Winning condition:
- Solution complexity:
- Algorithm: reduction to weak parity or direct one
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

Request-Response

■ Name:
Request-Response Game

- Format: $\left(\mathcal{A}, \operatorname{REQRES}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)\right)$ with $Q_{j}, P_{j} \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
$\forall j \forall n\left(\rho_{n} \in Q_{j} \rightarrow \exists m \geq n . \rho_{m} \in P_{j}\right)$
- Memory requirements for Player 0:

EXPTIME-complete
reduction to Büchi

- Memory requirements for Player 1:
$k \cdot 2^{k}$
- Dual game:

Rabin

■ Name:
Rabin Game

- Format:
$\left(\mathcal{A}, \operatorname{RabIN}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)\right)$ with $Q_{j}, P_{j} \subseteq V$

- Winning condition: $\exists j\left(\operatorname{Inf}(\rho) \cap Q_{j} \neq \emptyset \wedge \operatorname{Inf}(\rho) \cap P_{j}=\emptyset\right)$
- Solution complexity:

NP-complete

- Algorithm:
reduction to parity or direct one
- Memory requirements for Player 0: uniform positional
- Memory requirements for Player 1:
- Dual game:

Streett

- Name:

Streett Game

- Format: $\left(\mathcal{A}, \operatorname{streett}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)\right)$ with $Q_{j}, P_{j} \subseteq V$

- Winning condition:

■ Solution complexity:
$\forall j\left(\operatorname{Inf}(\rho) \cap Q_{j} \neq \emptyset \rightarrow \operatorname{Inf}(\rho) \cap P_{j} \neq \emptyset\right)$ co-NP-complete

- Algorithm: reduction to parity or direct one
- Memory requirements for Player 0:
- Memory requirements for Player 1: uniform positional
- Dual game: Rabin

Reducibility

S2S and Parity Tree Automata

■ S2S: Monadic Second-order logic over two successors

- PTA: Parity tree automata

Both formalisms are equivalent:
■ For every \mathscr{A} exists $\varphi_{\mathscr{A}}$ s.t. $t \in \mathcal{L}(\mathscr{A}) \Leftrightarrow t \models \varphi_{\mathscr{A}}$
■ For every φ exists \mathscr{A}_{φ} s.t. $t \models \varphi \Leftrightarrow t \in \mathcal{L}\left(\mathscr{A}_{\varphi}\right)$
Consequence: Satisfiability of S2S reduces to PTA emptiness
(Parity) Games everywhere:

- Acceptance game $\mathcal{G}(\mathscr{A}, t)$ for complement closure of PTA
- Emptiness game $\mathcal{G}(\mathscr{A})$ for emptiness check of PTA
"The mother of all decidability results"

Exam

Organizational Matters

End-of-term exam

- When:
- Where:

February 13th, 2014, 09:30-11:30 HS 003, Building E1.3

- Mode:

Open-book

- What to bring:

■ Exam inspection: Feb. 14th, 2014, 15:00-16:00 (Room 328?)

End-of-semester exam: March 20th, 2014 (more information after first exam)

Questions

Challenge us before we challenge you in the exam.

There will also be a tutorial where you can ask further questions!

- When:
- Where:

March 11th, 2014, 16:00-18:00 SR U.11, Building E2.5

Outlook

(Simple) Stochastic Games

■ Enter a new player (\diamond), it flips a coin to pick a successor.

■ No (sure) winning strategy...
■ ...but one with probability 1.
More formally: Value of the game

$$
\max _{\sigma} \min _{\tau} p_{\sigma, \tau}
$$

where $p_{\sigma, \tau}$ is the probability that Player 0 wins when using strategy σ and Player 1 uses strategy τ.

Concurrent Games

- Both players choose their moves simultaneously

Matching pennies: randomized strategy winning with probability 1.

The "Snowball Game": for every ε, randomized strategy winning with probability $1-\varepsilon$.

Games of Imperfect Information

■ Players do not observe sequence of states, but sequence of non-unique observations (yellow, purple, blue, brown).

- Player 0 picks action (a, b), Player 1 resolves non-determinism.

No winning strategy for Player 0: every fixed choice of actions to pick at $(\bigcirc \bigcirc)^{*}(\bigcirc)$ can be countered by going to v_{1} or v_{2}.

Higher-order Pushdown Automata

■ Level-1 stack: finite sequence over Γ (standard stack)
■ Level- $(k+1)$ stack: finite sequence of level- k stacks

- Operations (various definitions possible):
- $\operatorname{push}_{\gamma}$ and $\operatorname{pop}_{\gamma}$ for $\gamma \in \Gamma$: push and pop on level 1
- copy $_{k}$: copy the topmost level- k stack and add it to the level- $(k+1)$ stack
- delete ${ }_{k}$: delete the topmost level- k stack

Example: on the blackboard

Theorem

Parity games on configuration graphs of higher-order pushdown automata can be solved algorithmically.

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
■ Positional determinacy \Rightarrow winning regions preserved
No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0	0	0	0	0	0	1
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	\emptyset

Theorem

Player i has strategy to bound the opponent's scores by two when starting in $W_{i}(\mathcal{G})$.
Corollary: Stopping play after first score reaches value three preserves winning regions (at most exponential play length)

Games with Costs

- Parity game: Player 0 wins from everywhere, but it takes arbitrarily long two "answer" 1 by 0.

■ Add edge-costs: Player 0 wins if there is a bound b and a position n such that every odd color after n is followed by a smaller even color with cost $\leq b$ in between \Rightarrow Player 1 wins example from everywhere (stay longer and longer in 2).

Theorem

Parity games with costs are determined, Player 0 has positional winning strategies, and they can be solved in NP \cap co-NP.

Many other variants

- More winning conditions: various quantitative conditions (parity with costs, waiting times for RR games, and many more)
- Games on timed automata \Rightarrow uncountable arenas
- Play even longer: games of ordinal length
- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.
- More than two players \Rightarrow no longer zero-sum games. Requires whole new theory (equilibria).

And: any combination of extensions discussed above.

Thesis Topics

■ Even pushdown games can be played in finite time. What about higher-order pushdown games?

- How to compute optimal strategies for parity games with costs?
- Games with delay: how much lookahead is necessary for different winning conditions? What effect has lookahead on the memory requirements?
- Your own idea?

■ Generalized reachability games with sets of size two: P, NP, or PSPACE?

- Exact complexity of parity games.

Thank You

\&

Good luck for the exam

