
Prof. Bernd Finkbeiner, Ph.D. Winter term 2008/2009
Dipl.-Inf. Rüdiger Ehlers Problem Set 2
Dipl.-Inf. Hans-Jörg Peter Due: Thursday, 6th November 2008
Michael Gerke, B.Sc.

Embedded Systems

STATEFLOW is a tool belonging to the Matlab/Simulink family of products. It extends
Simulink’s quite rudimentary means for modelling state machines doing discrete-state con-
trol and decisionmaking. Building on a variant of Harel’s statechart notation [2], a STATEFLOW

model uses a syntactically sugared version of transition diagrams to represent event-triggered,
i.e. reactive, computational processes. The major extensions to classical transition diagrams
are hierarchy (i.e., state nesting), orthogonality (a.k.a. concurrency or parallelism), and sym-
bolic variables as found in conventional programming languages. Closely related statecharts
notations are used in the STATEMATE high-level modelling toolbox and in the UML for be-
havioural modelling [1], albeit with notably different semantics. Furthermore, STATEMATE

as well as the UML are primarily targeted towards control-dominated applications, whereas
STATEFLOW provides a seamless integration with Simulink such that the control-oriented view
of statecharts and the dataflow-oriented view of Simulink blocks can be freely mixed, as per-
ceived appropriate.

Problem 1: Getting started with STATEFLOW

This tutorial-type exercise shall give you a basic introduction to the use of the STATEFLOW tool
and the syntax and semantics of STATEFLOW statecharts. It does so by guiding you through
the design of a simple stop-watch.

Starting STATEFLOW

You can start STATEFLOW by entering

stateflow

in the MATLAB command shell.
In response, two windows pop up. One is the STATEFLOW block library (named ”sflib”),

which contains an untitled STATEFLOW block icon and a STATEFLOW examples block. The
other window (named ”untitled” displays an untitled Simulink model containing exactly one
untitled STATEFLOW block.
The STATEFLOW block is ready to accommodate a state machine, which can be embedded

into the context of a Simulink model by drawing the latter on the surrounding canvas. Should
you need more than one state machine in your Simulink model then you can obtain further
STATEFLOW blocks by dragging them from the STATEFLOW block library onto the canvas. Anal-
ogously, you could drag Simulink blocks from the Simulink palette onto the canvas in order to
embed the state machine into an environment model or to provide glue components between
multiple STATEFLOW blocks. For the stop-watch, however, one STATEFLOW block plus a quite
trivial environment — we will come to that later — suffices.

1



For the moment, you complete your work at the Simulink level by naming the untitled
STATEFLOW block and the untitled overall model: You label the STATEFLOW block by clicking
in the text area underneath the block and replacing the text “Untitled”/“Chart” with a decent
name, e.g. “Stop-watch”. You name the encompassing Simulink model by choosing “Save
As” from the File menu of the Simulink model window and entering an appropriate file name.
File names for models should end in “.mdl”; the prefix of the file name with the extension
“.mdl” stripped of yields the model name.

Creating the state chart

Currently, the statechart in the STATEFLOW block of your Simulink model is empty. In order
to create a corresponding chart, you have to open the STATEFLOW editor on your STATEFLOW

block by double-clicking into that block. A window as in Fig. 1 pops up. The topmost button

Figure 1: The STATEFLOW editor window

on the left side is the “state tool”, which you must select (by left-clicking it once) in order
to drag a state onto the canvas. You can either drag it directly by holding the mouse button
pressed, or you can select the “state tool” by a single left-click and place the state by moving
the cursor into the drawing area and left-click to place the state. Once you dragged a state,
you can (and should) name it using the keyboard. You may resize states by dragging at their
corners.
Drawing transitions between states is done by first placing the cursor at a straight borderline

of the source state such that the cursor changes to crosshairs. Then click-drag the mouse to the
border of the destination state. When the transition snaps to the border of the destination state,
release the mouse button. The trigger and action parts are added to the transition by labelling
them. Therefore, select the transition by clicking it. Then click the “?” character that appears
alongside the transition and enter the label. Finally, press the Esc key to deselect the transition
label and exit edit mode for this label. The syntax of transition labels is — as far as we will
need it —

2



event [condition] / action

where event can be dropped if no triggering event is needed, [condition] is replaced by the
empty string if no condition is needed, and similarly /action is dropped if no action is to be
taken upon that transition.
The initial state is marked using the “default transition tool”, which is the third button in the

left column of the editor window. GUI-wise, its functionality is akin to that of the “state tool”:
you select it and drag the default transition until it snaps to the state to be marked initial.

Figure 2: The simple stop-watch

Using these techniques, you should now create a statechart akin to that shown in Fig. 2.
Make sure that you understand what this chart is doing.

Defining input from and output to the Simulink environment

Once we have created the statechart, we have to interface it to its environment, thereby also
declaring its globally visible data items.1 For our model, we have to define an input event
tick, an input variable run, and two integer variables minutes and seconds to be output to
the environment. To define the input event, select

Add → Event → Input from Simulink

from the STATEFLOW editor’s pull-downmenu and enter tick for the event name. Concerning
the Trigger type, select Rising edge/Trigger: Rising (which is the default) and try
the other variants later. For the input variable, select

1A chart may also have local events and local data items that are hidden from the outside and thus inaccessible to
the environment. These can be declared using

Add → Event → Local

and

Add → Data → Local

However, we do not need local variables for this simple model.

3



Add → Data → Input from Simulink

from the STATEFLOW editor’s pull-down menu and enter run for the name. As a type, you
should select boolean. For the outputs, select

Add → Data → Output to Simulink

from the STATEFLOW editor’s pull-down menu and enter minutes (seconds, resp.) for the
name. As a type, youmay select uint32 for minutes and uint8 for seconds. For seconds,
it makes sense to additionally limit the range to 0, . . . , 59 by adding the according values under
“Limit range”. You can check the success of your operations by selecting

Tools → Explore

from the STATEFLOW editor’s pull-downmenu, thus opening a browser for the data dictionary
of the STATEFLOW model.

Adding the Simulink environment

In order to complete our model, we have to embed it into a Simulink environment. Therefore
open the Simulink library bowser, e.g. via the Matlab launch pad under

Simulink → Library Browser .

Select “Sources” from the library browser and drag a “Pulse generator” to the canvas
containing the Simulink model (currently only consisting of the STATEFLOW block). Connect
the pulse generator’s output to the STATEFLOW block’s trigger input (that with the edge symbol
on it) by dragging a line. Double click on the pulse generator block in order to change its
properties. Reduce the Period to 1 second.
Furthermore, drag two constant blocks to the canvas, change their value to 0 and 1 by double

clicking into them and editing their properties (do not forget to change the output data type
of the constant blocks to “boolean”), and connect them to the input port labelled “run” of
the STATEFLOW block via a manual switch (to be found in the Simulink palette “Signal
routing”, as shown in Fig. 3.
Finally, select “‘Sinks” from the library browser and drag two “Displays” to the Simulink

drawing area. Rename the displays to meaningful names, e.g. “Min” and “Sec”, and connect
them to the corresponding outputs of the STATEFLOW block by dragging lines. Your model

Figure 3: The environment

should now resemble Fig. 3.

4



Simulating the system

As the simulation algorithm detects stable situation and skips over them, it will terminate
immediately whenever the manual switch is set to the 0 (= ¬run) position. To circumvent this
optimisation, select

Simulation → Simulation parameters/Configuration Parameters

from the pull-down menu and switch “Solver options, Type” to Fixed-step. Fur-
thermore, change “Solver options, Fixed step size” from auto to some constant
between 1e-4 and 1e-3, depending on the speed of your computer, in order to slow down
the simulation enough to make individual transitions visible.2 If you furthermore change the
“Stop time” to 1000 then you have decent time for experimenting with your model during
simulation. Now start simulation by selecting

Simulation → Start simulation

and switch forth and back the run/stop switch of your model by double-clicking on the man-
ual switch symbol while simulation runs. You can stop the simulation by selecting

Simulation → Stop simulation .

Try out what happens if you over-constrain the range of the data item minutes by confining
its value range to 0, . . . , 58. You can do so by exploring the data dictionary via the browser
(activate with Tools → Explore, or simply Ctrl-R, in the STATEFLOW editor window) and
editing the appropriate entry.

Problem 2: Extending the stop-watch (100 pts.)

In order to get used to the STATEFLOW tool and to the statechart notation, you shall incremen-
tally extend the stop-watch with additional functionality:

1. add a lap switch, allowing you to take lap times by freezing the display while the stop-
watch continues to run,3

2. add a store/recall switch, which stores the current value of the stop-watch to auxil-
iary memory when the switch is engaged, and which resets the stop-watch to the stored
value when it is disengaged. I.e.

• it invisibly stores the current value x of the stop-watch to some internal memory
when the switch is engaged, independently of whether the stop-watch is currently
running (in which case it stores the momentary value) or stopped (in which case it
stores the stable clock reading),

• it sets the stop-watch to xwhen it is disengaged, independently of whether the stop-
watch is currently running (in which case it continues to run from x) or stopped (in
which case it changes to value x, yet remains stopped).

Make sure that switching above switches does not cause missed updates of the internal coun-
ters of the stop-watch. (Hint: Use parallel sub-systems. To obtain a parallel composition right-
click on the canvas and select Decomposition → Parallel (AND).)

2Even though you selected the period of the pulse generator to be 1 second, the simulation does not run in real-
time. It runs with a variable speed-up/slow-down, and “1 second” just refers to the virtual time axis used for
synchronising different Simulink blocks and for producing x-t diagrams from the simulation.

3While this functionality could be implemented by simply disconneting the displays at the Simulink level, you
should implement it via statechart mechanisms.

5



References

[1] Bruce Powell Douglass and Grady Booch. Doing Hard Time: Developing Real-Time Sys-
tems with UML, Objects Frameworks and Patterns. Addison-Wesley Publishing Com-
pany Inc., 1999.

[2] DavidHarel andMichal Politi.Modeling Reactive Systemswith Statecharts.McGraw-Hill
Inc., 1998.

6


