
SYNT 2017
6th Workshop on Synthesis

July 22, 2017 (collocated with CAV 2017)
PRE-Proceedings

The papers in the present volume are to be presented at SYNT 2017
on July 22, 2017. They are not final versions of papers. When

referencing these papers, please consult the EPTCS POST-proceedings
of SYNT 2017 available from http://www.eptcs.org/

http://www.eptcs.org/

Contents

1 Synthesis Challenges in Building a Multi-Robot Task Server
(Keynote Talk) 2

2 Quantitative Assume Guarantee Synthesis (Invited Talk) 3

3 Synthesizing Universally-Quantified Inductive Invariants (In-
vited Talk) 4

4 SyGuS Techniques in the Core of an SMT Solver (Invited
Talk) 5

5 CTL* Synthesis via LTL Synthesis 6

6 Symbolic vs. Bounded Synthesis for Petri Games 19

7 A Class of Control Certificates to Ensure Reach-While-Stay
for Switched Systems 40

8 Performance Heuristics for GR(1) Synthesis and Related
Algorithms 58

1

To appear in EPTCS.
c© R. Majumdar

This work is licensed under the
Creative Commons Attribution License.

Synthesis Challenges in Building a Multi-Robot Task Server
(Keynote Talk)

Rupak Majumdar
MPI-SWS

rupak@mpi-sws.org

In this talk, I will talk about synthesis challenges that arose in our attempts to build Antlab, an
end-to-end system that takes streams of user task requests and executes them using collections of
robots. In Antlab, each request is specified declaratively in linear temporal logic extended with
quantifiers over robots. The user does not program robots individually, nor know how many robots
are available at any time or the precise state of the robots. The Antlab runtime system manages the
set of robots, schedules robots to perform tasks, automatically synthesizes robot motion plans from
the task specification, and manages the co-ordinated execution of the plan.

We are using Antlab as a vehicle to test out different ideas in synthesis. I will describe a re-
peated re-planning and dynamic conflict resolution algorithm and its hierarchical version. On the
theoretical side, I will describe a game problem with dynamic and stochastic rewards which get dis-
counted over time. I will conclude with our unfinished attempts to understand the “right” notion of
compositionality in synthesis.

This talk represents joint work with Rayna Dimitrova, Ivan Gavran, Adrian Leva, Kaushik
Mallik, Thomas Moor, Vinayak Prabhu, Indranil Saha, Anne-Kathrin Schmuck, Sadegh Soudjani,
and Damien Zufferey.

PRE-proceedings version; check www.eptcs.org for final version

To appear in EPTCS.
c© J. O. Ringert

This work is licensed under the
Creative Commons Attribution License.

Quantitative Assume Guarantee Synthesis
(Invited Talk)

Jan Oliver Ringert
Tel Aviv University

ringert@post.tau.ac.il

In assume-guarantee synthesis, we are given a specification (A,G), describing an assumption on
the environment and a guarantee for the system, and we construct a system that interacts with an
environment and is guaranteed to satisfy G whenever the environment satisfies A. While assume-
guarantee synthesis is 2EXPTIME-complete for specifications in LTL, researchers have identified
the GR(1) fragment of LTL, which supports assume-guarantee reasoning and for which synthesis has
an efficient symbolic solution. In recent years we see a transition to quantitative synthesis, in which
the specification formalism is multi-valued and the goal is to generate high-quality systems, namely
ones that maximize the satisfaction value of the specification.

We study quantitative assume-guarantee synthesis. We start with specifications in LTL[F], an
extension of LTL by quality operators. The satisfaction value of an LTL[F] formula is a real value in
[0,1], where the higher the value is, the higher is the quality in which the computation satisfies the
specification.

We define the quantitative extension GR(1)[F] of GR(1). We show that the implication relation,
which is at the heart of assume-guarantee reasoning, has two natural semantics in the quantitative
setting. Indeed, in addition to max1-A,G, which is the multi-valued counterpart of Boolean impli-
cation, there are settings in which maximizing the ratio G/A is more appropriate. We show that
GR(1)[F] formulas in both semantics are hard to synthesize. Still, in the implication semantics, we
can reduce GR(1)[F] synthesis to GR(1) synthesis and apply its efficient symbolic algorithm. For the
ratio semantics, we present a sound approximation, which can also be solved efficiently.

This talk presents joint work with Shaull Almagor, Orna Kupferman, and Yaron Velner, published
at CAV 2017.

PRE-proceedings version; check www.eptcs.org for final version

To appear in EPTCS.
c© S. Shoham

This work is licensed under the
Creative Commons Attribution License.

Synthesizing Universally-Quantified Inductive Invariants
(Invited Talk)

Sharon Shoham
Tel Aviv University

sharon.shoham@gmail.com

A fundamental approach for safety verification is the use of inductive invariants — properties that
hold initially, imply the safety property, and are preserved by every step of the system. A common
practice is to model a system using logical formulas, and then come up with an inductive invariant in
the form of a logical formula. For infinite-state systems (such as programs that manipulate dynamic
memory, or distributed algorithms that are designed to run on any number of nodes), these formulas
are in many cases quantified. In this talk I will discuss recent approaches for synthesizing inductive
invariants in the form of universally-quantified formulas in uninterpreted first-order logic. The key
idea is to generalize from concrete counterexamples to induction into universally-quantified clauses
based on the logical notion of a diagram.

PRE-proceedings version; check www.eptcs.org for final version

To appear in EPTCS.
c© A. Reynolds

This work is licensed under the
Creative Commons Attribution License.

SyGuS Techniques in the Core of an SMT Solver
(Invited Talk)

Andrew Reynolds
University of Iowa

andrew.j.reynolds@gmail.com

Recent work has shown that SMT solvers, instead of just acting as subroutines for synthesis tasks,
can be instrumented to perform synthesis themselves. This talk will overview two techniques for
synthesis conjectures in SMT solvers. The first is based on first-order quantifier instantiation, and
can be used to tackle a restricted but fairly common class of properties, known as single invocation
properties. The second relies on a deep embedding of the synthesis problem into the theory of
inductive datatypes, which can then be solved using enumerative syntax-guided techniques. This
talk will discuss current challenges for these two techniques. For the first, we describe challenges
for devising quantifier instantiation techniques for synthesis for new background theories and ways
of minimizing solutions. For the second, we describe how a DPLL(T)-based solver can perform
enumerative syntax-guided search while incorporating techniques that prune search space, including
those are specialized for programming-by-examples.

PRE-proceedings version; check www.eptcs.org for final version

CTL∗ Synthesis
via

LTL Synthesis

Roderick Bloem1, Sven Schewe2, Ayrat Khalimov1 ?

1 Graz University of Technology, Austria
2 University of Liverpool, UK

Abstract. We reduce synthesis for CTL∗ properties to synthesis for
LTL. In the context of model checking this is impossible, but in synthesis
we can choose how a system should look: in particularly, we can add new
outputs. This way, we can construct an LTL formula, over old and new
outputs, and original inputs, which is realizable if and only if the original
CTL∗ property is realizable. Thus we can use existing LTL synthesizers
to solve CTL∗ synthesis problem.

1 Introduction

In reactive synthesis we automatically derive a system from a given specification
in some temporal logic. Originally, Alonzo Church considered S1S logic [4], then
later Amir Pnueli introduced linear temporal logic (LTL) [11].

Recent years showed a great progress in the LTL synthesis. The first solutions
used Safra construction [13,10] to translate a nondeterministic Büchi automa-
ton expressing a given LTL formula into a (deterministic) game. The strategy
to win the game, if exists, can be used to construct a system that satisfies the
original LTL formula. This approach, namely the Safra construction, is diffi-
cult to implement efficiently. Safraless decision methods [9,14] try to overcome
the difficult construction and go via universal co-Büchi automata. Rougly, they
reduce the LTL synthesis problem to safety LTL synthesis, which is amenable
to efficient implementations. In a similar spirit, a restricted fragment of LTL,
GR(1) [3] is amenable to efficient implementations. Furthemore, there is the syn-
thesis competetion SYNTCOMP [6], where synthesisers compete on (i) safety
LTL expressed as AIGER circuits [2], and (ii) full LTL.

All this is about linear temporal logics, while less progress was made for
synthesis from branching logics. The branching logics can express important
properties unexpressible in linear logics, like resettability: “from every state there
is a way to get to the ‘reset’ state”. Also, CTL∗ is the first step towards logics like
ATL useful for verifying and synthesizing concurrent systems, which are hard to
implement correctly.

? The authors-order was decided by the fair coin.

PRE-proceedings version; check www.eptcs.org for final version

A few works explored synthesisers for branching logics [7,8,5,12]. In [8], the
authors encode CTL synthesis problem into so-called monothonic SAT, while in
[7], the authors encoded CTL∗ synthesis into SMT. In both papers, the authors
developed specialized encoders for CTL∗ synthesis.

Since LTL synthesizers gain efficiency, one might ask

Can we re-use optimized state-of-the-art LTL synthesizers to solve CTL∗

synthesis problem?

In this paper we positively answer this question by providing sound and complete
encoding of CTL∗ synthesis problem into LTL synthesis.

As it often happens, the above question was not our original motivation.
Originally, we studied Bounded Synthesis for CTL∗ [7], in which we search for
systems of increasing size until the upper bound is reached. Due to 2EXPTIME
completeness of the CTL∗ synthesis problem, the upper bound is doubly expo-
nential in the size of the formula, and is impractical to reach. This diminishes the
usefulness of the bounded synthesis for unrealisable CTL∗ specifications, raising
the question:

Is there an efficient way to check unrealisability of CTL∗ properties?

Note that the approach that is usually taken in the LTL synthesis, namely syn-
thesizing the negated specification (thus a model of environment), does not work
for CTL∗. Take for example, the property Ag where g is the output. Both Ag
and E¬g are realizable. Our translation from CTL∗ synthesis to LTL synthesis is
“if and only if”. Thus we can translate CTL∗ synthesis into LTL synthesis prob-
lem and then run known unrealisability checks on the LTL synthesis problem.
Although this does not seem to be very efficient due to the size and structure of

LTL formulas, it can still be faster than iterating all system sizes up to 22
|Φ|

.

2 Definitions

Notation: B = {true, false} is the set of Boolean values, N is the set of natural
numbers (excluding 0), [i, j] for integers i ≤ j is the set {i, ..., j}, [k] is [1, k]
for k ∈ N. By default, we use natural numbers. Also, for an arbitrary set I, the
calligraphic writing I denotes 2I .

2.1 Systems and Automata

In this paper we consider finite systems and automata.
A (Moore) system M is a tuple (I,O, T, t0, τ, out) where I and O are disjoint

sets of input and output variables, T is the set of states, t0 ∈ T is the initial
state, τ : T × 2I → T is a transition function, out : T → 2O is the output
function that labels each state with a set of output variables. Note that systems

have no dead ends and have a transition for every input. We write t
io→ t′ when

t′ = τ(t, i) and out(t) = o; let I , 2I and O , 2O.

PRE-proceedings version; check www.eptcs.org for final version

For the rest of the section, fix a system M = (I,O, T, t0, τ, out).
A system path is a sequence t1t2... ∈ Tω such that for every i there is e ∈ I

with τ(ti, e) = ti+1. An input-labeled system path is a sequence (t1, e1)(t2, e2)... ∈
(T ×I)ω where τ(ti, ei) = ti+1 for every i. A system trace starting from t1 ∈ T is
a sequence (o1∪e1)(o2∪e2)... ∈ (I ∪O)ω for which there exists an input-labeled
system path (t1, e1)(t2, e2)... and oi = out(ti) for every i. Note that since systems
are Moore, the output oi cannot “react” to input ei, the outputs are “delayed”
with respect to inputs.

A (word) automaton A is a tuple (Σ,Q,Q0, δ, acc) where Σ is an alphabet,
Q is a set of states, Q0 ⊆ Q are initial states, δ : Q × Σ → 2Q is a transition
relation, acc : Qω → B is a path acceptance condition. Note that automata have
no dead ends and have a transition for every letter of the alphabet.

For the rest of the section, fix automaton A = (Σ,Q,Q0, δ, acc) with Σ =
2I∪O.

A path in automaton A is a sequence q1... ∈ Qω starting in an initial state
such that there exists ai ∈ Σ for every i such that (qi, ai, qi+1) ∈ δ(qi). A
sequence a1... ∈ Σω generates a path π = q1 . . . iff for every i: (qi, ai, qi+1) ∈ δ.
A path π is accepted iff acc(π) holds.

We define two acceptance conditions. For a given sequence π ∈ Qω, let Inf(π)
be the elements of Q appearing in π infinitely often and let Fin(π) = Q \ Inf(π).
Then:

– Büchi acceptance is defined by a set F ⊆ Q: acc(π) holds iff Inf(π) ∩ F 6= ∅.
– Co-Büchi acceptance is defined by a set F ⊆ Q: acc(π) holds iff F ⊆ Fin(π).

We distinguish two types of automata: universal and non-deterministic. The
type defines when the automaton accepts a given infinite sequence. A nondeter-
ministic automaton A accepts a sequence from Σω iff there exists an accepted
path generated by the sequence. Universal automata require all paths generated
by the sequence to be accepted. We write L(A) for the set of all infinite sequences
accepted by A.

We distinguish between two path quantifiers, E and A: M |= E(A) iff there
is a system trace (o0 ∪ e0)(o1 ∪ e1)... accepted by the automaton; M |= A(A) iff
every system trace is accepted by the automaton.

The product M × A is the automaton (Q × T,Q0 × {t0}, ∆, acc′) such that
for all (q, t) ∈ Q× T : ∆(q, t) = {(δ(q, i ∪ out(t)), τ(q, i)) | i ∈ I}. Define acc′ to
return true for a given π ∈ (Q × T)ω iff acc returns true for the corresponding
projection of π into Q. Note that M × A has the 1-letter alphabet (not shown
in the tuple).

Abbreviations. NBA means nondeterministic Büchi automaton, UCA—universal
co-Büchi automaton.

2.2 CTL∗ with Inputs (release PNF)

For this section, fix a systemM = (I,O, T, t0, τ, out). Below we define CTL∗ with
inputs (in release positive normal form). The definition differentiates inputs and
outputs (see Remark 1) and is specific to Moore machines.

PRE-proceedings version; check www.eptcs.org for final version

Syntax of CTL∗ with inputs. State formulas have the grammar:

Φ = true | false | o | ¬o | Φ ∧ Φ | Φ ∨ Φ | Aϕ | Eϕ

where o ∈ O and ϕ is a path formula. Path formulas are defined by the grammar:

ϕ = Φ | i | ¬i | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ,

where i ∈ I. The temporal operators G and F are defined as usual.

The above grammar describes the CTL∗ formulas in positive normal form.
The general CTL∗ formula (in which negations can appear anywhere) can be
converted into the formula of this form with no size blowup, using equivalence
¬(a U b) ≡ ¬a R ¬b.
Semantics of CTL∗ with inputs. We define the semantics of CTL∗ with
respect to a system M . The definition is very similar to the standard one [1],
except for a few cases involving inputs (marked with “+”).

Let t ∈ T and o ∈ O. Then:

– t 6|= Φ iff t |= Φ does not hold

– t |= true and t 6|= false

– t |= o iff o ∈ out(t), t |= ¬o iff o 6∈ out(t)

– t |= Φ1 ∧ Φ2 iff t |= Φ1 and t |= Φ2. Similarly for Φ1 ∨ Φ2.

+ t |= Aϕ iff for all input-labeled system paths π starting from t: π |= ϕ. For
Eϕ, replace “for all” with “there exists”.

Let π = (t1, e1)(t2, e2)... ∈ (T × 2I)ω be an input-labeled system path and i ∈ I.
For k ∈ N, define π[k:] = (tk, ek)..., i.e., the suffix of π starting from (tk, ek).
Then:

– π |= Φ iff t1 |= Φ

+ π |= i iff i ∈ e1, π |= ¬i iff i 6∈ e1
– π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2. Similarly for ϕ1 ∨ ϕ2.

– π |= Xϕ iff π[2:] |= ϕ

– π |= ϕ1 U ϕ2 iff ∃l ∈ N : (π[l:] |= ϕ2 ∧ ∀m ∈ [1, l − 1] : π[m:] |= ϕ1)

– π |= ϕ1 R ϕ2 iff (∀l ∈ N : π[l:] |= ϕ2) ∨ (∃l ∈ N : π[l:] |= ϕ1 ∧ ∀m ∈ [1, l] :
π[m:] |= ϕ2)

A system M satisfies a CTL∗ state formula Φ, written M |= Φ, iff the initial
state satisfies it.

Remark 1 (Subtleties). Note that M |= i ∧ o is not defined, since i ∧ o is not a
state formula. Let r ∈ I and g ∈ O. By the semantics, Er ≡ true and E¬r ≡ true,
while Eg ≡ g and E¬g ≡ ¬g. Similar claims hold for a Boolean combination of
inputs or that of outputs.

PRE-proceedings version; check www.eptcs.org for final version

3 Converting CTL∗ to LTL for Synthesis

3.1 Reducing CTL∗ synthesis to LTL synthesis

Let us first look at a standard algorithm for CTL∗ synthesis. When synthesising
a system that realises a CTL∗ specification, we normally

– Turn the CTL∗ formula to an alternating tree automaton A.
– We move from computation trees to annotated computation trees that move

the (memoryless) strategy of the verifier1 into the label of the computation
tree. This allows for using the derived universal tree automaton U .

– We determinise U to a deterministic automaton D.
– We play an emptiness game for D.
– If the verifier wins, his winning strategy (after projection of the additional

labels) defines a system, if the spoiler wins, the specification is unrealisable.

We draw from this construction and use particular properties of the alter-
nating automaton A. The properties of A that we use are that it is not a general
alternating automaton, but one that is composed from universal and existen-
tial word automata. These universal and existential word automata start at
any system state [tree node] where a universally and existentially, respectively,
quantified subformula is marked as true in the annotated model [annotated com-
putation tree]. We use the term “existential word automata” to emphasise that
the automaton is not only a non-deterministic word automaton, but it is also
used in the alternating automaton in a way, where the verifier can pick the path
along which it has to accept.

Example 1 (Word and tree automata). Consider formula EGEX(g∧X(g∧F¬g)).
Figure 1 shows non-deterministic word automata for the subformulas, and the
alternating (actually, nondeterministic) tree automaton for the whole formula.

Given a computation tree, the verifier moves from a node according to the
alternation of the automaton (either in all directions or in one direction) and
maps each node to an automaton state. The decision, in which direction to move
and which automaton state to pick, constitutes the strategy of the verifier. Each
time the verifier has to move in several tree directions (this can happen when the
node is annotated with a universal automaton state), we spawn a new version
of the verifier, for each transition of the universal automaton.

The strategy of the verifier is simply a mapping of states of the existential
word automata to the selected decisions, which consist of the tree direction
(the continuation of the tree path along which the automaton shall accept)
and the automaton transition. This is a mapping dec : Q → I × Q such that
dec(q) = (I, q′) implies that q′ ∈ δ(q;O, I) (where δ corresponds to the existential
word automaton to which q belongs)2. This strategy is memoryless wrt. the
history of automata states.

1 Such a strategy maps, in each tree node, an automaton state to a next automaton
state and direction.

2 The verifier, when in the tree node or system state, moves according to this strategy.

PRE-proceedings version; check www.eptcs.org for final version

q0 q1 q2 q3 q4
1 g g

g

¬g
1

(a) NBW for X(g∧X(g∧F¬g)). Transitions to the non-final state sink are not shown.

q′0

pEX

(b) NBW for G(pEX). The transition to the non-final state sink is omitted.

1 E

E
g g ¬g

1

E E E
E

gE

q′0 q1 q2 q3 q4

(c) Alternating tree automaton for EGEX(g ∧ X(g ∧ F¬g)). The green color of the
states indicate that they have the Büchi acceptance condition. To get an alternating
automaton for AGEX(...), replace in the self-loop edge of q′0 label E with A, and make
the state non-final co-Büchi.

Fig. 1: Word and tree automata.

We call a model in which every state is additionally annotated with a ver-
ifier strategy an annotated model. Similarly, an annotated computation tree is
a computation tree in which every node is additionally annotated with a veri-
fier strategy. Thus, in both cases, every system state [node] is labeled with: (i)
original propositional labeling out : O → B, (ii) propositional labeling for (uni-
versal and existential) subformulas, f prop : F → B, and (iii) decision labeling
dec : Q→ I ×Q where Q are the states of all existential automata.

Example 2. Figure 2 shows an annotated model and computation tree.

The verifier strategy (encoded in the annotated computation tree) encodes
both, the words on which the nondeterministic automata are interpreted and
witnesses of acceptance (accepting automata paths on those words). For the
encoding in LTL, we will later use that it is enough to map out the automaton
word, and replace the witnesses by what it actually means: that the automaton
word satisfies the respective path formula.

Example 3. In Figure 2b, the verifier strategy in the root node maps out the word
(ḡ, pEX, r)(ḡ, pEX, r̄)

ω on which the NBW in Figure 1b is run, and the witness of
acceptance (q′0)ω. The blue path encodes the word (ḡ, r)(g, r)(g, r)(g, r̄)(ḡ, r̄)ω

and the witness q0q1q2q3q3q
ω
4 for the NBW in Figure 1a.

To map out the word, we look at the set of tree paths that is mapped out
in an annotated computation tree and define equivalence classes on them. Two
tree paths are equivalent if they share a tail (or, equivalently, if one is the tail of
the other).

PRE-proceedings version; check www.eptcs.org for final version

r

r̄r̄ r

ḡ gq0 7→(q1,r)
q′0 7→(q′0,r)

q0 7→(q1,r)
q′0 7→(q′0,r)

q3 7→(q4,r̄) q1 7→(q2,r)
q2 7→(q3,r̄)q4 7→(q4,r̄)

pEXpEX,pEG

(a) An annotated model satisfying EGEX(g∧X(g∧F¬g)). Near the nodes is the winning
strategy of the verifier.

...

ḡ

g

g ḡ

ḡgḡg

g ḡ g ḡ g ḡ g ḡ

q0 7→(q1,r)
q′0 7→(q′0,r)

q1 7→(q2,r)
q0 7→(q1,r)
q′0 7→(q′0,r)

q2 7→(q3,r)
q1 7→(q2,r)

q′0 7→(q′0,r)

q2 7→(q3,r̄)
q3 7→(q3,r̄)

q′0 7→(q′0,r)

q0 7→(q1,r)

q1 7→(q2,r)
q0 7→(q1,r)

pEX,pEG

pEX

pEX

pEX

(b) An annotated computation tree that satisfies EGEX(g∧X(g∧F¬g)). Let proposition
pEG correspond to EG(pEX), and pEX—to EX(g ∧X(g ∧ F¬g)) (not shown in the figure).
A winning strategy for the verifier is depicted using dashed and colored paths. The
black dashed path witnesses pEG, the blue path witnesses pEX starting in the root node,
the pink path—starting in the left child, and so on. The pink and blue paths share the
tail. The verifier strategy annotation is on the left side of nodes, and decisions for non
mapped states are irrelevant. Note that this particular annotated computation tree is
not and unfolding of the annotated model above—here we postpone the right-turn of
the blue path in order to illustrate that paths can share the tail.

Fig. 2: Annotated model and computation tree.

There is a simple sufficient condition for two tree paths to be equivalent: if
they pass through the same node of the annotated computation tree in the same
automaton state, then they have the same future, and are therefore equivalent.

Example 4. In Figure 2b the blue and pink paths are equivalent, since they share
the tail. The sufficient condition fires in the top node, where the paths meet in
automaton state q3

The sufficient condition implies that we cannot have more non-equivalent tree
paths passing through a node than there are states in all existential automata,
call this number k. For each node, we assign unique numbers from {1, ..., k}
to equivalence classes, and thus any two non-equivalent paths that go through
the same node have different numbers. As this is an intermediate step in our
translation, we are wasteful with the labeling:

PRE-proceedings version; check www.eptcs.org for final version

(1) we map states to numbers (IDs) using a label id : Q→ {1, . . . , k}, we choose
the direction to take dir : {1, . . . , k} → I, and choose the successor state,

succ : Q→ Q, such that succ(q) ∈ δ
(
q;O, dir

(
id(q)

))
, and

(2) we maintain the same state ID along the chosen direction: id(q) = id(succ(q)).

Note that (1) alone can be viewed as a re-phrasing of the labeling dec that
we had before on page 5. The requirement (2) is satisfiable, because a tree path
maintains its equivalence class. Therefore any annotated computation tree can
be re-labeled as stated.

Example 5. A re-labeled computation tree is in Figure 3.

...

ḡ

g

g ḡ

ḡgḡg

g ḡ g ḡ g ḡ g ḡ

q0 7→(1,q1),1 7→r

q1 7→(1,q2),1 7→r
q0 7→(1,q1)

q2 7→(1,q3),1 7→r
q1 7→(1,q2)

q2 7→(1,q3)
q3 7→(1,q3),17→r̄

q0 7→(2,q1),2 7→r

q1 7→(2,q2),27→r
q0 7→(3,q1),37→r

q′0 7→(4,q′0),4 7→r

q′0 7→(4,q′0),4 7→r

q′0 7→(4,q′0),4 7→r

q′0 7→(4,q′0),47→r

pEX,pEG

pEX

pEX

pEX

Fig. 3: A re-labeled computation tree. Notation “q0 7→ (1, q1)” means id(q0) = 1
and succ(q0) = q1, and “1 7→ r” means dir(1) = r. Since the blue and pink paths
are equivalent, the label id maps the corresponding automata states in the nodes
to the same number, 1. The IDs of the green and yellow paths differ implying
that they are not equivalent and hence do not share the tail (their tails cannot
be seen).

In the new annotation with labels (out, f prop, id, dir, succ), labeling dir
alone maps out the tree path for each ID, the remainder of the information
is mainly there to establish that the corresponding word is accepted by the re-
spective word automaton (equiv.: satisfies the respective path formula). If we use
only dir, then the only missing information is where the path starts and which
path formula it belongs to—the information originally encoded by f prop.

We address these two points by using numbered computation trees. Recall
that the annotated computation trees have a propositional labeling f prop : F →
B that labels nodes with subformulas. In the numbered computation trees, we
replace f prop for existential subformulas by labeling v : F → {0, ..., k}, where
value 0 encodes that no claim that the path formula holds is made in a node
(similar to the proposition being “false” in the annotated tree), whereas a value

PRE-proceedings version; check www.eptcs.org for final version

...

ḡ

g

g ḡ

ḡgḡg

g ḡ g ḡ g ḡ g ḡ

d1 7→r
d4 7→r

vEX=1,vEG=4

d4 7→r
d1 7→r

vEX=1

d4 7→r
vEX=2

d1 7→r
d2 7→r

d4 7→r
vEX=3

d1 7→r̄
d2 7→r
d3 7→r

Fig. 4: Numbered computation tree after stripping annotations.

ID ∈ {1, ..., k} is interpreted similarly to the proposition being “true”, but also
requires that a respective witness is encoded on the tree path mapped out by
ID.

Example 6. The tree in Figure 3 becomes a numbered computation tree if we
replace the propositional labels pEX and pEG with ID numbers as follows. The
root node and its left child have vEX = 1 and vEG = 4, the left-left child has
vEX = 2 and vEG = 4, the left-left-left child has vEX = 3 and vEG = 4. Note
that id(q0) = vEX and id(q′0) = vEG whenever those vs are non-zero. The nodes
outside of the dashed path have vEX = vEG = 0, meaning that no claims about
satisfaction of the path formulas has to be witnessed there.

Initially, we use ID labeling v in addition with (out, id, dir, succ, f propuniv),
and then there is no relevant change in the automata with which the decision-less
verifier works. I.e., a numbered computation tree can be turned into annotated
computation tree, and vice versa, such that the numbered tree is accepted by the
corresponding automaton iff the annotated tree is accepted by the corresponding
automaton.

Once we have done this, we can observe that the only use of the existential
automata that is left is to help to check that the tree paths mapped out by
dir are indeed models of the respective existentially quantified LTL formula (see
Figure 4). Thus, we can replace this acceptance check by, instead, requiring that
the labeling of the path is a model of this LTL formula. What is more, this is
easy to encode in LTL:

– For each existentially quantified path formula Eϕ, we introduce an integer
value between 0 and k, and we label system states with such values. The
value vEϕ = 0 encodes that we do not claim that Eϕ holds at this state. The
value vEϕ = j 6= 0 means that Eϕ holds in this state, and the system path
along the j-labeled directions encodes a witness. Thus, for each Eϕ, we get

PRE-proceedings version; check www.eptcs.org for final version

an LTL formula

∧

j∈{1,...,k}
G
[
vEϕ = j →

(
G dj → ϕ′

)]
, (1)

where ϕ′ is obtained from ϕ by replacing the subformulas of the form Eψ by
vEψ 6= 0, and the subformulas of the form Aψ by pAψ.

– For each subformula of the form Aϕ, we simply take

G
[
pAϕ → ϕ′

]
, (2)

where ϕ′ is obtained from ϕ as above.

Thus, the overall LTL formula is the conjunction
∧

Eϕ Eq.1 ∧∧Aϕ Eq.2.

The whole above discussion leads us to the theorem.

Theorem 1. Let ΦLTL be derived from a given ΦCTL∗ as described above, I is
the set of inputs and O is the set outputs. Then:

ΦCTL∗ is realizable ⇔ ΦLTL is realizable.

The synthesis costs blow-up is not much worse than before: the individual
specifications are not very complex (tiny blow-up compared to the initial specifi-
cation). We need to satisfy their conjunction—but the size of the resulting UCW
is additive in the individual UCWs. Thus we get:

Theorem 2. Let ΦLTL be derived from a given ΦCTL∗ as described above, I is
the set of inputs and O is the set outputs. Then realizing ΦLTL is of the same
complexity class as that of ΦCTL∗ , namely, 2EXPTIME-complete.

While we have emptiness equivalence for sufficiently large k, k is a parameter,
where much smaller k might suffice. In the spirit of bounded synthesis, it is
possible to use smaller parameters in the hope of finding a model. These models
might be of interest in that they guarantee a limited entanglement of different
runs, as they cap the number of tails of runs that go through the same node of
a computation tree. They are therefore simple in some formal sense, and this
sense is independent of the representation by an automaton. (As opposed to a
lower bound of a sufficiently high number k, for which we have explicitly used
the representation by an automaton.)

Example 7 (LTL translation). Let I = {r}, O = {g}. Consider the CTL formula

EG¬g︸ ︷︷ ︸
v2

∧AGEF¬g︸ ︷︷ ︸
v1

∧EF g︸︷︷︸
v3

.

The sum of states of individual NBWs is 5 (assuming the natural translations),
so we introduce integer propositions v1, v2, v3, all varying over {0, ..., 5}, and

PRE-proceedings version; check www.eptcs.org for final version

¬gv1 = 2, v2 = 2, v3 = 3
d2 = ¬r, d3 = r

t0

g v1 = 2, v2 = v3 = 0
d2 = r

t1

r

r

¬r¬r

Fig. 5: A Moore machine for Example 7. The witness for EG¬g (expressed by
v2) is: v2(t0) = 2 and hence we move along d2 = ¬r and thus loop in t0. The
witness for EF g (expressed by v3): since v3(t0) = 3, we move along d3 = r to
t1, where d3 is not restricted, so let us set d3 = ¬r, then the witness for EF g is
t0(t1)ω. The witness for AGEF¬g is that every state should have v1 6= 0, which
is true. In t0 we have ¬g, so EF¬g is satisfied; for t1 we have v1(t1) = 2 hence

we move t1
r→ t0 and EF¬g is also satisfied.

five Boolean propositions d1, ..., d5. The LTL formula is:

v2 6= 0 ∧ G(v1 6= 0) ∧ v3 6= 0 ∧

∧

j∈[1,5]



v1 = j ⇒ (G dj → F¬g)

v2 = j ⇒ (G dj → G¬g)

v3 = j ⇒ (G dj → F g)




Figure 5 shows a model satisfying the LTL specification.

Example 8 (Non-minimality). Let I = {r}, O = {g}, and consider the CTL∗

safety property

E(X(g ∧ X(g ∧ X¬g)))

The NBA automaton has 5 states, so we introduce integer proposition v varying
over {0, ..., 5} and Boolean propositions d1, d2, d3, d4, d5. The LTL formula is

v 6= 0 ∧
∧

j∈[1,5]

(
v = j ⇒ (G dj → X(g ∧ X(g ∧ X¬g)))

)

A smallest system for this LTL formula is in Figure 6a. It is of size is 3, while
a smallest system for the CTL∗ property is 2 (Figure 6b). Thus, although the
encoding can handle the full CTL∗, it might produce non-minimal systems.

PRE-proceedings version; check www.eptcs.org for final version

¬g

v = 1
d1 = ¬r

t0

g d1 = r

t1

gt2 d1 = r

¬r

¬r

r
1

r

(a) A smallest Moore machine satisfying the LTL
formula. The witness for E(X(g∧X(g∧X¬g))) is
t0
¬r→ t1

r→ t2
r→ t0....

¬g
t0

g

t1

¬r
¬r

r

r

(b) A smallest Moore machine sat-
isfying the CTL∗ formula.

Fig. 6: Systems synthesized from CTL∗ and LTL (Example 8).

4 Checking Unrealisability of CTL∗

Our encoding also allows for checking unrealisability: we do have an LTL formula,
and that can be complemented and the game dualised, just like in the standard
LTL synthesis approach. But this is problematic. Not only can k be exponential
in the size of the CTL∗ formula, all is multiplicative here. What one could try is
to let the new system player in the dualised game choose a number of disjunctive
formulas to follow, and allow it to revoke the choice whenever it likes to. This is
conservative: if following d different disjuncts in the dualised formula is enough
to win, then the new system wins. There does not seem to be good complexity
guarantees that go with this, but with a bit of luck that might work. Also, parts
of the disjunction might work well; this could then be handled precisely.

Acknowledgements. This work was supported by the Austrian Science Fund (FWF)
under the RiSE National Research Network (S11406).

References

1. Baier, C., Katoen, J.P.: Principles of model checking, vol. 26202649. MIT press
Cambridge (2008)

2. Biere, A.: Aiger format and toolbox, http://fmv.jku.at/aiger/
3. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-

tive(1) designs. Journal of Computer and System Sciences 78, 911–938 (2012)
4. Church, A.: Logic, arithmetic, and automata. In: International Congress of Mathe-

maticians (Stockholm, 1962), pp. 23–35. Institute Mittag-Leffler, Djursholm (1963)
5. De Angelis, E., Pettorossi, A., Proietti, M.: Synthesizing concurrent programs using

answer set programming. Fundamenta Informaticae 120(3-4), 205–229 (2012)
6. Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T., Könighofer, R., Pérez,

G.A., Raskin, J.F., Ryzhyk, L., Sankur, O., et al.: The first reactive synthesis
competition (syntcomp 2014). arXiv preprint arXiv:1506.08726 (2015)

PRE-proceedings version; check www.eptcs.org for final version

7. Khalimov, A., Bloem, R.: Bounded synthesis for Streett, Rabin, and CTL*. In:
Computer Aided Verification - 29th International Conference, CAV 2017 (2017),
to appear

8. Klenze, T., Bayless, S., Hu, A.J.: Fast, flexible, and minimal ctl synthesis via
smt. In: International Conference on Computer Aided Verification. pp. 136–156.
Springer (2016)

9. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS. pp. 531–542
(2005)

10. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: LICS. pp. 255–264. IEEE Computer Society (2006), http:
//dx.doi.org/10.1109/LICS.2006.28

11. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
1977., 18th Annual Symposium on. pp. 46–57. IEEE (1977)

12. Prezza, N.: Ctl (computation tree logic) sat solver, https://github.com/

nicolaprezza/CTLSAT

13. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24-26 October
1988. pp. 319–327. IEEE Computer Society (1988), http://dx.doi.org/10.1109/
SFCS.1988.21948

14. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Automated Technology for Ver-
ification and Analysis (ATVA’07). pp. 474–488 (2007)

PRE-proceedings version; check www.eptcs.org for final version

Submitted to:
SYNT 2017

c© B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog
This work is licensed under the
Creative Commons Attribution License.

Symbolic vs. Bounded Synthesis for Petri Games∗

Bernd Finkbeiner
Universität des Saarlandes

Saarbrücken, Germany
finkbeiner@react.uni-saarland.de

Manuel Gieseking
Carl von Ossietzky Universität Oldenburg

Oldenburg, Germany
gieseking@informatik.uni-oldenburg.de

Jesko Hecking-Harbusch
Universität des Saarlandes

Saarbrücken, Germany
hecking-harbusch@react.uni-saarland.de

Ernst-Rüdiger Olderog
Carl von Ossietzky Universität Oldenburg

Oldenburg, Germany
olderog@informatik.uni-oldenburg.de

Petri games are a multiplayer game model for the automatic synthesis of distributed systems. We
compare two fundamentally different approaches for solving Petri games. The symbolic approach
decides the existence of a winning strategy via a reduction to a two-player game over a finite graph,
which in turn is solved by a fixed point iteration based on binary decision diagrams (BDDs). The
bounded synthesis approach encodes the existence of a winning strategy, up to a given bound on the
size of the strategy, as a quantified Boolean formula (QBF). In this paper, we report on initial expe-
rience with a prototype implementation of the bounded synthesis approach. We compare bounded
synthesis to the existing implementation of the symbolic approach in the synthesis tool ADAM. We
present experimental results on a collection of benchmarks, including one new benchmark family,
modeling manufacturing and workflow scenarios with multiple concurrent processes.

1 Introduction

The synthesis problem asks, given a formal specification, for the existence of an implementation and
derives it automatically if existent [2]. This problem can be described as a game between the system and
the environment. A strategy is winning for the system and therefore corresponds to an implementation
if the strategy fulfills the winning condition of the game against all behaviors of the environment. The
synthesized implementation for a given specification is correct by construction, which is beneficial for
error-prone implementation tasks. Synthesis has been applied successfully to implement several practical
applications like the protocol of the AMBA bus circuit [1].

Synthesis is especially interesting for distributed systems where several concurrent components can
communicate with each other to fulfill the specification. Pnueli and Rosner defined the first setting for
distributed synthesis [14]. Information forks have been identified as a necessary and sufficient crite-
rion for the undecidability of the synthesis problem in this setting [9], which prevents most practical
applications. Even for the decidable cases without information forks like pipelines and rings, the synthe-
sis problem has non-elementary complexity [15, 11]. More recently, Zielonka’s asynchronous automata
were introduced as another framework for distributed synthesis. Whereas the synthesis problem for some
cases has non-elementary complexity, the general complexity of synthesis for asynchronous automata re-
mains open [18, 12].

We take Petri games as a starting point to synthesize distributed systems [8]. Petri games define
a multiplayer game model where several distributed system players cooperatively play against several

∗This work was partially supported by the European Research Council (ERC) Grant OSARES (No. 683300) and by the
German Research Foundation through the Research Training Group (DFG GRK 1765) SCARE.

PRE-proceedings version; check www.eptcs.org for final version

2 Symbolic vs. Bounded Synthesis for Petri Games

distributed environment players. Petri games are based on an underlying Petri net where each token
represents a player. Each player in a Petri game has only local information about other players it syn-
chronized with on joint transitions.

We compare two fundamentally different approaches to synthesize winning strategies of Petri games:
The symbolic approach is based on the result that the synthesis problem for Petri games with a bounded
number of system players, a single environment player, and the avoidance of bad places as winning
condition can be solved in single exponential time [8]. This approach performs a reduction to a two-
player game over a finite graph with full information. The implementation is realized in the tool ADAM

using a BDD-based fixed point iteration [6]. The restriction to only a single environment player is an
impediment for convenient modeling.

The second approach to find winning strategies in a Petri game is bounded synthesis [10]. Here,
the size of possible strategies and of the proof that the strategy is winning is limited. It is increased
incrementally when no strategy of the previous size can be found. This steers the search towards small
winning strategies at the cost of being unable to prove the non-existence of a winning strategy. Bounded
synthesis can find winning strategies for Petri games with more than one environment player [5]. The
bounded approach for Petri games limits the number of fired transitions in the proof of the strategy being
winning. It further takes a second bound on the size of the memory each player can utilize as the memory
of players is infinite in general. For the pair of bounds, bounded synthesis searches for termination or
loops in the strategy and can thereby prove the existence of an infinite winning strategy. This search is
encoded in a quantified Boolean formula (QBF) and solved by a QBF solver. We report on our experience
with a first prototype implementation of bounded synthesis generating the QBF and solving it with the
QBF solver QUABS [17] in comparison to the symbolic approach implemented in ADAM.

ADAM has been used to synthesize several case studies from manufacturing and workflow scenarios.
These case studies have been extended into scalable benchmark families to evaluate the behavior of the
implementation of the symbolic approach and to show the applicability of Petri games to synthesize
distributed systems [6].

The key contributions of this paper are the following:
• We add the new benchmark family of a distributed alarm system to the benchmark families of

ADAM. The new benchmark family serves to secure several locations with an alarm system such
that a burglary at any location is indicated at all locations including the information where exactly
the burglary takes place.

• We state our experience with the prototype implementation for the generation of the QBFs repre-
senting the bounded synthesis problem for the given pair of bounds and with the solving of the
generated QBFs. We found out that the bounded unfolding of Petri games benefits from pruning
techniques and that solvers for non-CNF QBFs refining an abstraction based on counterexamples
show the best performance for solving.

• We empirically compare the symbolic synthesis approach implemented in ADAM with the bounded
synthesis approach realized by our prototype implementation. The symbolic approach solves more
instances overall from the extended set of benchmark families whereas bounded synthesis derives
strategies of smaller size. We present reasons for the observed behavior based on the number of
variables in the two approaches.

The remainder of the paper is structured as follows. Section 2 recaps the theory of Petri games on an ab-
stract level and introduces the distributed alarm system as a running example. In Sec. 3, the symbolic and
the bounded approach for solving Petri games are presented, including their application to the distributed
alarm system. The experimental results comparing the two approaches are given in Sec. 4.

PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 3

EnviA iB
LA LB

tA

SAA

EA

SA

faAfrA

infoB

pA

aa ab

AA AB

tB

SBB

EB

SB

faB frB

infoA

pB

ba bb

BA BB

Burglary

Comm.

Alarm

Figure 1: The Petri game depicting the synthesis problem of an alarm system being distributed over two
independent locations with the possibility to communicate. The alarm system has to detect a burglary
and set off alarms at both locations.

2 Petri Games

Petri games are a multiplayer game model for the synthesis of distributed systems [8]. They define a game
on an underlying Petri net by characterizing certain places as bad such that the system has to cooperate
to avoid reaching these places to win. The distinction between system and environment is achieved by
distributing each place of the Petri net to either belong to the system or to the environment. System
places are depicted gray whereas environment places remain white. The players in a Petri game are the
tokens flowing through the underlying Petri net. If a token resides in a system place then it is controlled
by the token’s strategy whereas the behavior of tokens in environment places is uncontrollable. Each
token in a Petri game has local memory, which is only exchanged with the other participating tokens
of joint transitions. The causal history of tokens is utilized by their local strategy to make decisions on
which transitions to fire. Therefore, the strategy of the system in a Petri game is a local controller for
each process and not a global controller with information about the state of tokens in all system places.
Example. We model a distributed alarm system. A burglar (modeled by the environment player residing
in place Env) decides to intrude one of several secured locations. In Fig. 1, the situation is displayed for
the distributed locations A (shown to the left) and B (shown to the right). This situation has been used
as the introductory example in [8] and is extended to a benchmark family for an arbitrary number of
secured locations later in this paper. The goal of the game is to find a strategy for each of the two alarm
processes initially residing in places SA and SB. A token in place XY (for X ,Y ∈ {A,B}) represents that
in location X an alarm is set off indicating that the strategy of the alarm system presumes an intrusion at
location Y. If the burglar intrudes location A by entering place LA, the strategies should steer the token
in SA to place AA and the token in SB to place BA in order to correctly indicate the burglar’s intrusion,
and similarly for the burglar intruding location B. If a token resides in one of the system places SA, SB,
SAA, SBB, pA, or pB then the strategy of the player has to resolve nondeterminism between the outgoing

PRE-proceedings version; check www.eptcs.org for final version

4 Symbolic vs. Bounded Synthesis for Petri Games

transitions. For this, the strategies for the players in SA and SB need to collect sufficient information
about the moves of the other system player and the burglar. For example, the player in place SB does not
know whether the alarm system in SA has fired transition tA unless it gets informed by the communication
transition infoB. We omit the bad places and transitions to them representing false alarms and false
reports, which have to be avoided by a correct alarm system. A false alarm occurs when an intrusion is
indicated before the burglar actually intruded the object whereas a false report occurs when the alarm
system at a certain location indicates an intrusion at a location where no intrusion occurred.

Formally, a Petri game P =(PS,PE ,T ,F , In,B) is based on a Petri net N =(P,T ,F , In) with
the set of places P = PS∪PE , the set of transitions T , the flow relation F ⊆ (P×T)∪ (T ×P),
and the initial marking In. A Petri game divides the places to either belong to the system (PS) or to the
environment (PE) and it further defines some places as bad (B ⊆P). We restrict ourselves to safe Petri
games, i.e., at most one token can reside in each place. We identify a token residing in a place by the
name of the place. A marking is a set of places where one token resides at each place. From a marking,
a transition is enabled if all places in the transition’s preset have one token residing in them. The firing
of an enabled transition removes one token from each place in the transition’s preset (•t) and creates
one token in each place in the transition’s postset (t•). We also refer to the sets of transitions preceding
and following a place as the place’s preset (•p) and postset (p•). The behavior of Petri games is defined
by sequences of reachable markings. These sequences start from the initial marking and between each
pair of subsequent markings one transition is fired. We say that a place p is reachable if there exists a
sequence of reachable markings such that one of the markings contains p.

The notion of unfoldings from Petri nets [4] translates to Petri games. In an unfolding, all cycles, i.e.,
all reachable sequences of markings starting and ending with the same marking, are unrolled infinitely
and all backward branches, i.e., places with at least two transitions merging into them, are unfolded.
A place is unfolded by copying the place and all its outgoing transitions including the following sub-
games and changing one of the incoming flows of a transition from the place’s preset to the copied place.
Therefore, the unfolding explicitly represents the unique causal history of each process. As for Petri
nets, the unfolding can be infinite for Petri games. In bounded unfoldings of Petri games [5], loops and
backward branches are only unfolded up to a given bound b for the number of copies per place. Upon
reaching the bound for a place, both the original place and its existing copies can be part of a loop or
can have backward branch. Therefore, the bounded unfolding is finite even for Petri games with infinite
unfoldings. One bounded unfolding for the Petri game in Fig. 1 is depicted in Fig. 5 in Sec. 3.2. The
places AA, AB, BA, and BB are not unfolded despite them being reachable with different causal pasts,
i.e., having backward branches.

A strategy of a Petri game is a restriction to the unfolding of the Petri game where certain branches
of transitions and places are removed. We assume that this removal is based on the decisions of system
players not to fire certain transitions. The behavior of a strategy is defined by the remaining sequences
of reachable markings. The following four requirements have to hold for a strategy to be winning:

1. Safety. No marking containing a bad place is reachable in the strategy.

2. Determinism. For all system places in all reachable markings of the strategy, at most one outgoing
transition is enabled.

3. Deadlock avoidance. For all reachable markings in the strategy, if a transition is enabled for that
marking in the unfolding then one transition is enabled in the strategy as well. This requirement
prevents trivial solutions where the system does not fire any transition to avoid reaching a marking
containing a bad place.

PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 5

EnviA iB
LA LB

tA

SAA

EA

SA

infoB

pA pA′

aa ab

AA AB

tB

SBB

EB

SB

infoA

pBpB′

ba bb

BA BB

Burglary

Comm.

Alarm

Figure 2: The winning strategy for the system players for the Petri game depicted in Fig. 1 modeling
an alarm system. To win, both system players have to communicate the detection of the burglary before
setting off their alarms.

4. Justified refusal. When a transition is removed from the unfolding to create the strategy then there
is at least one system place in the removed transition’s preset for which all copies of the removed
transition are removed as well. This prevents the system from differentiating copies of transitions
resulting from the unfolding.

Petri games with a bounded number of system tokens, one environment token, and bad places as
winning condition can be solved in single exponential time [8].

Example. The winning strategy for the alarm system from Fig. 1 is depicted in Fig. 2. The displayed
strategy avoids bad places because no false alarm can occur, as the alarm is always triggered after the
burglar intruded, and because no false report can occur, as both system tokens exchange information and
utilize it to indicate the correct location of intrusion. The strategy is deterministic because only one of the
two respective outgoing transitions of SA and SB is enabled, depending on the location of intrusion, and
all other system places have only one outgoing transition. The strategy is deadlock-avoiding because
after indicating the alarm, the system terminates as no transitions are enabled. The unfolding of the
game only allows justified refusal by the system. Therefore, the displayed strategy is winning.

The strategy contains the local controllers for the alarm systems at location A and at location B. The
local controller for the alarm system at A behaves in the following way. The alarm system at SA waits
until it either recognizes an intrusion at A via transition tA or is informed about an intrusion at B via
transition infoA. The place pA′ is reached after getting informed about an intrusion at B from which the
transition ab is fired setting off an alarm at A indicating an intrusion at B. The place SAA is reached
after recognizing an intrusion at A. The local alarm system informs the local alarm system at B with the
transition infoB and afterwards fires the transition aa to reach the place AA. This place represents an
alarm at location A that there was an intrusion at location A. The two local system controllers can be
found in Fig. 3. Note that they can only behave correctly as they rely on the other local alarm system to

PRE-proceedings version; check www.eptcs.org for final version

6 Symbolic vs. Bounded Synthesis for Petri Games

Env

iA iB

LA LB

tA tB

EA EB

SA

tA infoA

SAA

infoB

pA

aa

AA

pA′

ab

AB

SB

tBinfoB

SBB

infoA

pB

bb

BB

pB′

ba

BA

Burglary

Comm.

Alarm

Figure 3: The distributed local controllers for each player of the winning strategy depicted in Fig. 2.
The parallel bars indicate the parallel composition of Petri nets [13] for the environment and the two
system controllers, with synchronization on equally labeled transitions. First, the burglary is detected,
then the detection is communicated, and afterwards the alarm is set off.

faithfully inform them about an ongoing burglary, i.e., the system players cooperate. This distribution
of a winning strategy into local controllers is possible for all winning strategies of safe, concurrency-
preserving Petri games with only one environment player [8].

A bounded strategy for a bounded unfolding is generated in the same way as a strategy is generated
for the unfolding. Based on the decisions of system players, transitions and the following sub-games are
removed. The bounded strategy has to fulfill the same requirements as a strategy for an unfolding but
may have fewer system places where transitions can be removed. Places are not unfolded infinitely often
in the bounded unfolding, which implies that certain histories are aggregated in one place for which the
same decision is repeated. A bounded strategy for a bounded unfolding can easily be extended into a
strategy for the general unfolding by repeating the same decisions at places, which were not unfolded
in the bounded unfolding. The converse direction is not true, i.e., a strategy for the unfolding cannot in
general be translated into a strategy for a bounded unfolding [5].

3 Symbolic and bounded solving

We recall the symbolic solving approach implemented in ADAM and the bounded solving approach
implemented as a prototype. Both approaches are compared in Sec. 4. Symbolic solving is based on the
reduction of Petri games to a two-player game on finite graphs. This is solved using BDDs in ADAM. The
bounded solving approach utilizes two bounds n on the size of the proof and b on the available memory.
The question of the existence of a strategy within these bounds is encoded in a 2-QBF. Our prototype
automates the generation of the 2-QBF, invokes the QBF solver QUABS to solve it, and generates a
winning strategy if the QBF is satisfiable.

PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 7

3.1 Symbolic Solving

In the symbolic synthesis approach for Petri games introduced in [7], the existence of a winning strategy
for the system players is decided via a reduction to a two-player game over a finite graph with complete
information. We recap the ideas of the reduction in this section for the comparison to the bounded
approach presented in Sec. 3.2. In this paper, we only consider the case of one environment and a
bounded number of system players for the symbolic synthesis approach. This case can be solved with
a safety objective in single-exponential time [8]. Furthermore, we stick to safe Petri nets, since the
implementation of ADAM and the bounded synthesis approach are limited to safe nets.

The general approach for the symbolic solving of Petri games is done in three steps: Firstly, from a
given safe Petri game with one environment player, a bounded number of system players, and a safety
objective, a two-player game over a finite graph is constructed. The environment player is represented by
Player 1 (depicted as white rectangles with sharp corners) and all system players together are represented
by Player 0 (depicted as gray rectangles with rounded corners). Secondly, a winning strategy of the two-
player game is constructed such that the system players can cooperatively play against all behaviors
of the hostile environment without encountering any bad situations. Thirdly, the winning strategy for
the system players (Player 0) of the two-player game over a finite graph is transformed into a winning
strategy of the system players in the Petri game and distributed into local controllers for each system
player.

The two-player game over a finite graph simulates a subset of the behavior of the Petri game in such
a way that the game over the graph can be considered as completely informed, i.e., both players have full
information about their opponent at all times. Even though only a subset of the behavior is considered, [8]
shows the existence of a strategy of the Petri game if and only if a strategy for the two-player game exists.
Intuitively, the omitted behavior corresponds to situations where the system players exploit knowledge
about the environment player’s behavior of which they had not been informed. The key idea to achieve
complete information is to delay every environment transition, i.e., transitions t ∈ T with •t ∩PE 6= /0,
until every next possible action of the system has to be done directly or indirectly in interaction with the
environment (or there is no future interaction with the environment needed at all). Those states of the
two-player game where the system players have progressed maximally are called mcuts. In an mcut, all
system players will be informed of the environment’s decision when executing their next step (or they
will never be informed of the environment’s decision). This idea restricts the proposed solving technique
to only one environment player. The states corresponding to an mcut are assigned to the environment
(Player 1) and all other states to the system (Player 0).

To simulate the Petri game, the states of the two-player game correspond to cuts, i.e., maximal sets of
concurrent places. For the sophisticated handling of the causal memory model of Petri games, each place
of a cut is enriched by a commitment set, i.e., a set of transitions currently selected by the corresponding
system player to be allowed to fire. The transition relation of the two-player game mimics the firing of
chosen (and enabled) transitions of the Petri net between the corresponding cuts.

Additionally, there is one extra kind of transitions in the two-player game allowing the system players
to chose new commitment sets. Therefore, each place in a state is equipped with a Boolean flag>. It is set
to true for a place p in a state s if and only if s is a successor of an mcut reached by firing transition t and
p ∈ t• holds. Note that it is only harmful for successors of mcuts to directly choose their commitment
sets without such an intermediate state with a true >-flag, since for a winning strategy of the system
players, all successors of the environment states have to avoid bad situations. Thus, the commitment sets
of system state successors are directly chosen. The resolving of the >, i.e., choosing new commitment
sets, has to be made before any transition is allowed to fire to ensure the correct modeling of the players’

PRE-proceedings version; check www.eptcs.org for final version

8 Symbolic vs. Bounded Synthesis for Petri Games

informedness. It is therefore guaranteed that every decision of the system, which should be independent
of the environment’s decision, is actually taken independently.

Since environment decisions are delayed until the system players have maximally progressed, pos-
sibly infinite calculations can be encountered when the system players can infinitely proceed without
any interaction with the environment. To prevent these infinite behaviors, a further Boolean flag type2
for each place in a state is introduced. This flag set to true prohibits the corresponding player to maxi-
mally progress. Thus, in an mcut all non-type2-typed places are blocked until the environment makes its
next move due to the non-existence of an enabled and chosen transition and the type2-typed places are
blocked by definition. This ensures that the system players cannot pass over the environment’s decision
by just playing infinitely on their own.

There are three different types of bad situations in the two-player game. Firstly, a state s is bad if two
different transitions t1 and t2 with •t1∩ •t2 6= /0 are enabled and chosen in s. Those situations are called
nondeterministic. Secondly, a state represents a bad situation if it contains bad places. Thirdly, deadlocks
are bad situations. Deadlocks are states s where a transition exists which is enabled in the corresponding
cut of the underlying Petri net, but there is no enabled and chosen transition in s. For more details, we
refer the reader to [7, 6, 8].
Example. We describe the two-player game over a finite graph obtained by the reduction of the Petri
game of Fig. 1. In Fig. 4, a part of this game is visualized. Each state s is depicted as tuple s ∈PE ×
P(PS×{0, 1}×{>, !>}×P(T)), where 0 indicates that the corresponding place is type2 typed. In
this example, there is no possibility for the system players to play infinitely long without any further
interaction with the environment. Thus, all places are typed as not type2 (indicated by 1).

The initial state (labeled with 1) corresponds to the cut of the initial marking of the Petri net, where
all system tokens initially have to decide on their commitment sets. A commitment set for a place p
has to be chosen from the powerset of p•. Hence, for the initial state the player on SA chooses from
P({tA, faA, infoA}) and SB from P({tB, faB, infoB}). All of these possible combinations yield a successor
of the initial state. Here, only four successors are displayed. In general, dashed borders designate that
not all successors of a state are depicted in this figure.

The checkerboard patterned states designate the bad situations of the game. Consider for example
the upper left state. There, the token in pA has two possible chosen and enabled transitions (aa and
ab). This situation corresponds to a nondeterministic choice in the Petri game. The other two depicted
bad states correspond to deadlock situations, since the players in SA and SB decided not to allow to
fire any transition, but the underlying Petri net can still fire in the corresponding cut {LA,SA,SB} (e.g.,
transition tA is enabled). The situations where the game enters a state containing a bad place are not
directly visualized, but reaching a bad place cannot be prevented in both situations representing a false
alarm (depicted as the left branch in Fig. 4) and a false report (depicted as the right branch). In the
depicted case of a false alarm, the alarm system of location A decides to use transition faA and since
the environment is delayed until all system behavior is maximally processed, the alarm system will show
a burglary before it has happened (cf. state 2 with a transition t⊥ leading to a bad place and •t⊥ =
{Env,AA}). Even if the system decides to not use any of the bad transitions, it cannot avoid a bad
situation because it will end up in a deadlock (cf. state 3, where reaching a deadlock is mandatory). This
is similarly in the depicted case of a false report. Since alarm system B decided to use transition frB (cf.
state 4) and thus does not report the burglary at its location to the alarm system in A, the token in SA
triggers a deadlock. If SA would have chosen some of the other possible transitions (tA or faA), it would
still have been a deadlock or a false alarm. The only possible solution for the alarm systems is to wait
for the burglary and then use their information channel (infoA and infoB) to inform the other player of
the burglary. This situation corresponds to the orange underlaid states resulting in a winning strategy.

PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 9

Env,
(SA,1,>,{}),
(SB,1,>,{})

1

Env,
(SA,1, !>,{tA, infoA}),
(SB,1, !>,{tB, infoB})

LA,
(SA,1, !>,{tA, infoA}),
(SB,1, !>,{tB, infoB})

EA,
(SAA,1,>,{}),

(SB,1, !>,{tB, infoB})

EA,
(SAA,1, !>,{infoB}),
(SB,1, !>,{tB, infoB})

EA,
(pA,1, !>,{aa}),
(pB,1, !>,{ba})

EA,
(AA,1, !>,{}),
(pB,1, !>,{ba})

EA,
(AA,1, !>,{}),
(BA,1, !>,{})

LB,
(SA,1, !>,{tA, infoA}),
(SB,1, !>,{tB, infoB})

EB,
(SA,1, !>,{tA, infoA}),

(SBB,1,>,{})

EB,
(SA,1, !>,{tA, infoA}),
(SBB,1, !>,{infoA})

EB,
(pA,1, !>,{ab}),
(pB,1, !>,{bb})

EB,
(AB,1, !>,{}),
(pB,1, !>,{bb})

EB,
(AB,1, !>,{}),
(BB,1, !>,{})

Env,
(SA,1, !>,{faA}),

(SB,1, !>,{tB, infoB})

Env,
(pA,1, !>,{aa,ab}),
(SB,1, !>,{tB, infoB})

Env,
(pA,1, !>,{aa}),

(SB,1, !>,{tB, infoB})

Env,
(AA,1, !>,{t⊥}),

(SB,1, !>,{tB, infoB})

2

Env,
(AA,1, !>,{}),

(SB,1, !>,{tB, infoB})

LA,
(AA,1, !>,{}),

(SB,1, !>,{tB, infoB})

LB,
(AA,1, !>,{}),

(SB,1, !>,{tB, infoB})

EB,
(AA,1, !>,{}),
(SBB,1,>,{})

3

Env,
(SA,1, !>,{}),
(SB,1, !>,{})

LA,
(SA,1, !>,{}),
(SB,1, !>,{})

LB,
(SA,1, !>,{}),
(SB,1, !>,{})

Env,
(SA,1, !>,{infoA}),
(SB,1, !>,{tB})

LB,
(SA,1, !>,{infoA}),
(SB,1, !>,{tB})

EB,
(SA,1, !>,{infoA}),

(SBB,1,>,{})

EB,
(SA,1, !>,{infoA}),
(SBB,1, !>,{frB})

4

bb

infoA

iB

tB

iA

tA

infoB

abaa

ba

faA

faA

aa

aa

iB

iA

tB

iA

tB

iB

tB

Winning strategy for the system players

Figure 4: The part of the two-player game over a finite graph constructed from the Petri game depicted
in Fig. 1. The states belonging to the environment player are white with sharp corners whereas the
states belonging to all system players together are gray with rounded corners. The winning strategy for
the system players is underlaid in orange. Dashed states indicate that not all possible successors are
depicted. Checkerboard patterned states designate bad states of the two-player game.

PRE-proceedings version; check www.eptcs.org for final version

10 Symbolic vs. Bounded Synthesis for Petri Games

3.2 Bounded Solving

We recall the bounded synthesis approach for Petri games [5]. In bounded synthesis, a bound is intro-
duced to limit the search space of possible winning strategies to small strategies. Therefore, bounded
synthesis can find small implementations fast. The bound is increased incrementally if no winning strat-
egy can be found. If a winning strategy for a certain bound is found, bounded synthesis ensures that
this solution is winning in general. We denote this bound by n. Bounded synthesis constitutes a semi-
decision procedure, i.e., it can prove the existence of a winning strategy but not the non-existence of
winning strategies in general. Bounded synthesis finds strategies, which are, because of their small size,
interesting for practical applications as they avoid unnecessary (and possibly expensive) computation
steps.

In Petri games, each local player can have different information about the other players. Recall that
only participating players of a fired transition exchange their complete causal history. A place can have
infinitely many different histories, which are represented explicitly in the possibly infinite unfolding. For
bounded synthesis of Petri games, we have to introduce a second bound b on the size of the memory for
each place in order to retain a finite representation of the bounded synthesis problem. A player residing
in the place can only differentiate causal history up to this bound and further history is treated on par
with some previous history. The original bound of bounded synthesis n limits the size of the proof of
correctness for the strategy. It defines how many transitions are fired until the game has to terminate or
has to repeat its behavior in a loop while fulfilling the requirements for a winning strategy. The conditions
for a winning strategy are safety, determinism, deadlock-avoidance, and justified refusal as discussed in
Sec. 2.

We utilize 2-QBFs to realize the bounded synthesis approach for Petri games. 2-QBFs restrict QBFs
to only have one quantifier alternation. A QBF starts with an alternation of either existentially (∃) or
universally (∀) quantified sets of Boolean variables. This prefix is followed by the matrix which is a
Boolean formula using the standard operators (∧, ∨, ¬) and abbreviated operators (=⇒ , ⇐⇒) on
Boolean variables. We focus on 2-QBFs of the form ∃V1.∀V2.φ where V1∪V2 are all Boolean variables
in φ . The meaning of a 2-QBF is that there exists an assignment for the Boolean variables in V1 such that
for all assignments to the Boolean variables in V2 the formula φ over the assigned Boolean variables is
satisfied.

For bounded synthesis of Petri games, the bound b is used to build a bounded unfolding Pb of the
Petri game P . Pb is again a Petri game explicitly modeling all available decision points for the bounded
strategy. For a Petri game, the existence of a winning strategy for a play of length n can be encoded as
a 2-QBF ∃S.∀M.φn. The set S describes the strategy and contains pairs (p, t) to indicate whether the
system place p ∈Pb

S decides to fire the transition t ∈ p• or not. We further ensure that a decision for
or against t does not violate justified refusal such that all bounded strategies fulfill this condition. The
set M describing the sequence of markings contains pairs (p, i) to indicate that on place p resides a token
at time point 1≤ i≤ n. The formula φn ensures that if M represents a play following the decisions by the
strategy S and the rules of a Petri game for n steps, then the play is winning. This approach can handle
finite and infinite plays by accepting termination before the last simulation step is reached and checking
for loops if the last simulation step is reached.

The encoding for bounded synthesis has the following form:

PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 11

φn
Def .
=


 ∧

i∈{1,...,n−1}
sequencei =⇒ wini


∧ (sequencen =⇒ winn∧ loop)

sequencei
Def .
= initial∧

∧

j∈{1,...,i−1}
flow j

wini
Def .
= nobadplacesi∧deterministici∧deadlockstermi

deadlockstermi
Def .
= deadlocki =⇒ terminatingi

loop
Def .
=

∨

j,k∈{1,...,n}, j<k

(
∧

p∈P
(p, j) ⇐⇒ (p,k)

)

For each time point 1≤ i≤ n, it is tested whether the variables in M represent a correct sequence of
markings corresponding to a play in the Petri game. If this is the case then wini ensures that the strategy
fulfills the requirements at i to be winning. If i = n, i.e., the limit on the simulation length is reached, then
it is additionally tested that a loop occurred. A correct sequence is defined by the play starting from the
initial marking and firing one enabled and (by the strategy) chosen transition at each time step (flow j).
The play is winning if no bad places are reached, the system makes only deterministic decisions, and
each deadlock is caused by termination. A deadlock occurs when all transitions are either not enabled
or not chosen by the strategy. Meanwhile, termination occurs when no transition is enabled, i.e., only
the lack of tokens in the preset of transitions is responsible for this and not the decisions of the system.
Therefore, deadlockstermi ensures that the system does not prevent the reaching of bad places by just
stopping to fire transitions but deadlocks are only allowed when the whole game terminated. A loop in
a Petri game occurs when the exact marking is repeated at two different time points j and k. Since it is
tested that between j and k the strategy is deterministic, this behavior is repeated infinitely often such
that the strategy is also winning in an infinite play. For further details on the definition of initial, flow j,
deterministici etc., we refer the interested reader to [5].
Example. In Fig. 5, a bounded unfolding of the distributed alarm system is given. Only the places pA
and pB are unfolded three times resulting in the four respective places without labels. pA’s unfolded
places are on the lefthand side whereas pB’s are on the righthand side. For the four places of pA from
left to right, we thereby can differentiate the situation that the alarm system in the corresponding wing
successfully tested for the environment and then decided not to inform the other system player, did not
test for the environment at all, successfully tested for the environment and then informed the other system
player, or was informed by the other system player about an intrusion at the other location. The same
holds in converse direction for pB. We did not unfold the places AA, AB, BA, and BB because they are
used only to determine bad behavior. This is only possible in the bounded unfolding.

We argue why bounded synthesis rejects and accepts certain strategies for the bounded unfolding
from Fig. 5. The Petri game is the running example of an alarm system from Fig. 1 in Sec. 2. For ex-
ample, the strategy (SA, tA), (SA, faA), (SA, infoA) activated and all other transitions deactivated is not
winning because for the allowed sequence of markings (Env,1), (SA,1), (SB,1), (LA,2), (SA,2), (SB,2)
in M there is nondeterminism between the enabled transitions tA and faA. Meanwhile, the strategy al-
lowing (SA, tA), (SA, infoA), (SB, tB), (SB, infoB), (SAA, infoB), (SBB, infoA), (pAA,a), (pAB,b), (pBA,a),
(pBB,b) is winning because for all markings that represent a valid play of the game no bad place is
reached, all decisions are deterministic, and all deadlocks are caused by termination. pAA, pAB and
pBA, pBB describe the unfolded places of pA and pB reached after firing infoB and infoA, respectively.

PRE-proceedings version; check www.eptcs.org for final version

12 Symbolic vs. Bounded Synthesis for Petri Games

EnviA iB
LA LB

tA

SAA

EA

SA

faAfrA

infoB

pA′pA pAA pAB

ABAA

tB

SBB

EB

SB

faB frB

infoA

pB′ pBpBBpBA

BBBA

Burglary

Comm.

Alarm

Figure 5: A bounded unfolding for the Petri game depicted in Fig. 1 modeling an alarm system. The
places pA and pB are unfolded three times, respectively, into the eight unlabeled places whereas the
places AA, AB, BA, and BB are not unfolded.

For the pairs of unlabeled transitions, the left transitions are based on the original transition a and the
right ones on b. pA, pA′, pB and pB′ are not reached by the strategy and arbitrary decisions can be
made there. We choose not to fire any transitions in this case. For example, the sequence of markings
(Env,1),(SA,1),(SB,1),(LA,2),(LB,2), . . . in M does not represent a valid play because both outgoing
transitions of Env have been fired, which is illegal in a Petri game (flow1 is violated).

4 Experimental Results

We compare the implementation of the symbolic approach in the tool ADAM against our prototype imple-
mentation of the bounded synthesis approach on an extended set of benchmarks. We take the benchmark
set of ADAM and add the benchmark family of an alarm system. At first, we describe all benchmark fam-
ilies. Then, we outline the technical details of our comparison framework and implementation specific
particularities of the two approaches. Afterwards, we state our observations and explanations concerning
the times for finding winning strategies and the sizes of these strategies.

4.1 Benchmark families

The results in the table from Fig. 6 refer to the following scalable benchmark families where the alarm
system is the new benchmark family:

• AS: Alarm System. There are m secured locations belonging to one person. A burglar can intrude
one of the locations. Each location has a local alarm system, which can communicate with all

PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 13

other local alarm systems. The goal is that the alarm system in each location has to indicate the
position where the burglar intruded. Furthermore, the alarm system should not issue unsubstanti-
ated warnings of an intrusion at any location.
Parameters: m locations

• CM: Concurrent Machines. There are m machines which should process k orders. Each machine
is allowed to process at most one order. The hostile environment disables one arbitrary machine
such that it cannot process any order. The system’s goal is to still process all k orders.
Parameters: m machines and k orders.

• SR: Self-reconfiguring Robots. There are m robots having m different tools at their disposal each.
The robots can only equip one tool at a time. From a global perspective, all robots together have to
maintain a functioning state such that material can be processed by each of the m different tools.
The environment can destroy k tools in total. This can occur at the same robot or on different
robots. The robots have to reconfigure theirselves to maintain a functioning global state for the
processing of material.
Parameters: m robots with m tools each and k destroyed tools in total.

• JP: Job Processing. A job requires processing by a, from the environment chosen, subset of m
processors in ascending order.
Parameter: m processors.

• DW: Document Workflow. There are m clerks having to unanimously endorse or reject a document.
The environment decides which clerk gets the document first. In DWs, it is required that all clerks
endorse the document.
Parameter: m clerks.

4.2 Comparison framework

We compare the symbolic synthesis approach implemented in ADAM with our prototype implementation
of the bounded synthesis approach. ADAM and the bounded synthesis approach are the only tools existing
to find winning strategies of Petri games but they are inherently different. On the one hand, the symbolic
approach models, in theory, infinite memory and unbounded firing sequences of transitions. On the
other hand, bounded synthesis has two parameters n and b, which can be increased to find a winning
strategy. Therefore, the bounded synthesis approach can be parallelized easily because the QBF-solver
can be called twice for two different pairs (n,b) and the resulting encodings. We report in the following
on the runtime results for the minimal b and the corresponding n such that a winning strategy exists
because b turned out to be more expensive than n in terms of runtime. Notice that b = 1 enforces that
the bounded unfolding is the original game, i.e., no bounded unfolding is utilized when searching for a
winning bounded strategy of the corresponding Petri game.

The table in Fig. 6 shows the results of ADAM and our prototype implementation of bounded syn-
thesis for the previously described benchmark families. The results were obtained on an Intel i7-2700K
CPU with 3.50 GHz, 32 GB RAM, and a timeout of 1800 seconds. For each benchmark (column Ben.),
we report on the attempted parameters of the benchmark (Par.), on the size of the Petri game (number of
tokens (#Tok), places (#P), and transitions (#T)), and on the respective time and memory for solving
and on the respective number of places (#Pstr) and transitions (#Tstr) of the winning strategies synthe-
sized by ADAM and by our prototype implementation of bounded synthesis. The elapsed CPU time is
measured in seconds and the used memory in gigabyte. For bounded synthesis, we additionally report the
smallest b and corresponding n to find winning bounded strategies with the least memory requirement.

PRE-proceedings version; check www.eptcs.org for final version

14 Symbolic vs. Bounded Synthesis for Petri Games

Symbolic Synthesis Bounded Synthesis
Ben. Par. #Tok #P #T time memory #Pstr #Tstr n b time memory #Pstr #Tstr

AS 2 3 17 26 1.9 .30 17 10 7 2 18.0 .18 17 10
3 4 28 69 2.5 .41 31 18 7 3 timeout

.
6 7 73 462 91.0 4.65 97 54 7 6 timeout
7 timeout 7 7 timeout

CM 2/1 6 13 10 1.4 .30 14 8 6 3 .6 .06 13 8
2/2 7 18 16 2.0 .30 - - - -

.
2/5 10 33 34 50.9 2.74 - - - -
2/6 timeout - -
3/1 8 18 15 2.0 .30 26 12 6 3 1.7 .12 18 9
3/2 9 25 24 2.4 .30 36 18 6 4 timeout
3/3 10 32 33 3.8 .39 - - - -
3/4 11 39 42 17.2 1.28 - - - -
3/5 timeout
4/1 10 23 20 2.3 .30 42 16 6 3 6.0 .19 21 12
4/2 11 32 32 5.0 .40 55 24 6 4 timeout
4/3 12 41 44 10.9 .84 68 32 6 5 timeout
4/4 13 50 56 92.2 4.17 - - - -
4/5 out of memory - -
5/1 12 28 25 7.2 .39 62 20 6 3 11.1 .19 22 11
5/2 13 39 40 20.8 .79 78 30 6 4 timeout
5/3 14 50 55 82.1 2.67 94 40 6 5 timeout
5/4 15 61 70 1101.3 16.70 110 50 6 6 timeout
5/5 out of memory - -
6/1 14 33 30 41.5 .80 86 24 6 3 23.6 .31 25 12
6/2 15 46 48 183.4 2.67 105 36 6 4 timeout
7/1 16 38 35 289.5 5.35 114 28 6 3 26.0 .36 27 13
8/1 18 43 40 1657.4 15.73 146 32 6 3 94.7 .65 27 14
9/1 20 48 45 out of memory 6 3 152.4 1.22 36 25

.
15/1 32 78 75 out of memory 6 3 1259.5 23.24 66 49

SR 2/1 5 18 17 1.9 .30 32 16 6 2 2.7 .16 18 10
2/2 6 24 26 4.3 .39 - - - -
2/3 7 30 35 1290.3 5.36 - - - -
2/4 out of memory - -
3/1 out of memory 7 2 219.4 .61 27 19

JP 2 3 12 13 1.3 .30 16 13 7 3 1.5 .08 16 13
3 4 18 23 1.8 .30 34 28 8 4 timeout

.
11 12 102 175 353.3 16.78 706 484 16 12 timeout
12 out of memory 17 13 timeout

DW 1 3 12 10 1.1 .30 10 6 8 1 .3 .04 10 6
2 4 19 16 2.0 .30 24 16 10 1 .4 .05 16 12

.
11 13 82 70 137.6 2.82 420 286 28 1 78.3 2.26 70 57
12 14 89 76 201.8 2.82 494 336 30 1 157.3 3.38 76 62
13 15 96 82 277.9 4.24 574 390 32 1 341.1 8.18 82 67
14 16 103 88 400.1 4.22 660 448 34 1 624.5 11.80 88 72
15 17 110 94 537.2 4.87 752 510 36 1 timeout

.
20 22 145 124 1799.8 11.69 1302 880 46 1 timeout
21 timeout 48 1 timeout

DWs 1 3 11 6 .7 .29 8 3 5 1 .2 .04 8 3
2 5 21 12 1.6 .30 23 10 7 1 .3 .05 17 8

.
7 15 71 42 14.4 .91 218 105 17 1 5.3 .87 57 28
8 17 81 48 24.9 1.52 281 136 19 1 11.7 3.18 65 32
9 19 91 54 45.4 2.83 352 171 21 1 41.3 8.84 73 36
10 21 101 60 80.0 2.85 431 210 23 1 132.8 12.96 81 40
11 23 111 66 142.6 4.42 518 253 25 1 timeout

.
16 33 161 96 1508.3 16.30 1073 528 35 1 timeout
17 timeout 37 1 timeout

’-’ means no winning strategy exists.

Figure 6: Comparison between the symbolic synthesis approach and the bounded synthesis approach.
PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 15

When ADAM and our prototype implementation both synthesized a winning strategy, then we mark the
minimal running time, the minimal memory usage, and the minimal number of places and of transitions
in the winning strategy in bold, respectively.

(a) The CPU running time (in minutes) for a selection of
benchmarks and the respective number of processes (tokens).
The running time for the bounded approach is given as squares
and the running time for the symbolic case is given by stars.
The dotted lines designate the expected running time after the
timeout of 30 minutes.

(b) The sizes (in the number of transitions) for a selection of
benchmarks and the respective number of processes (tokens).
The number of transitions of the Petri game is designated by
stars, the number of transitions for the bounded strategy by
filled circles, and the number of transitions of the strategy in
the bounded case by squares.

Figure 7: Comparison of the symbolic synthesis approach and the bounded synthesis approach by the
running times and sizes of the strategies.

A selection of these values and benchmark families are plotted in Fig. 7. In Fig. 7(a), the CPU times
in minutes for the symbolic and the bounded approach on selected benchmark families are plotted for an
increasing number of processes, i.e., the number of tokens of the underlying net. CMi, for i ∈ {2,4,5},
represents the subset of the concurrent machines benchmark, where the first parameter m for the number
of machines is fixed to i. Therefore, the number of orders increases the number of processes in CMi.
The dotted lines designate the expected running time obtained by fitting exponential curves through the
actual values. In Fig. 7(b), we plotted the number of transitions of the input Petri games and of the
corresponding winning strategies of the two approaches for an increasing number of processes from
selected benchmark families.

PRE-proceedings version; check www.eptcs.org for final version

16 Symbolic vs. Bounded Synthesis for Petri Games

4.3 Implementation details

During the implementation of our prototype for bounded synthesis of Petri games, we observed that a
translation of the matrix φn into conjunctive normalform (CNF) and the usage of a QBF solver requiring
input in CNF has poor performance. We found out that the QCIR file format for QBFs [16] allows
competitive performance as φn does not need to be translated into CNF. As we have a 2-QBF not in CNF,
solvers using counterexamples to refine an abstraction (CEGAR-based) [3] showed the best performance.
We therefore decided for the solver QUABS [17] as it combines fast parsing with fast solving. Given a
bound on the length of the proof of correctness for a strategy, we further pruned the bounded unfolding of
unreachable places and unreachable transitions to remove unnecessary variables from the 2-QBF, which
increased the overall performance.

The running times of both approaches are highly dependent on the number of variables which are
respectively used in the BBD and in the QBF. For the symbolic approach, the number of variables in the
BDD grows significantly with the number of players in the Petri game (which are represented by tokens
in the underlying net). The two-player game over a finite graph with complete information is represented
by a BDD for each flow encoding the flow’s source and target state. For optimizing the size of the BDD,
we partition PS into k disjunct sets PSi ⊆PS, for i ∈ {1, . . . ,k}, such that for every reachable marking
each place of the marking belongs uniquely to exactly one of the sets PSi . In general, the number k
corresponds to the number of system processes in the game. A state of the finite graph is encoded by a
binary encoding of the ID of the environment place and the maximally k IDs of the system places of the
marking, which results in encodings of logarithmic size. Whether a process’s commitment set contains
a transition is encoded explicitly by a Boolean flag. An explicit encoding is used because the size of the
commitment set varies for each process depending on the place it resides in. In general, this approach
yields smaller BDDs. The two additional variables per system process encode whether the process’s
commitment set has to be renewed, i.e., the >-flag is set or not, and whether the place is a type2-typed
place. Thus, the number of variables for a BDD can be calculated by

2 ·
(
log2(|PE |)+

k

∑
i=1

(log2(|PSi |)+ |Ti| +2)

)

where Ti =
⋃

p∈PSi
p•.

For the bounded approach, we distinguish existentially and universally quantified variables and gate
variables. The existentially quantified variables describe the system’s strategy and the universally quan-
tified variables encode all sequences of markings. The gate variables are used to describe the bounded
synthesis problem in the matrix φn given the existentially and universally quantified variables. Thus,
the size of the QBF is growing with the structure of the underlying net of the Petri game, i.e., with the
number of places and transitions.

In Fig. 8, we compare the number of variables in the two approaches for benchmark families where
several instances are solved by both approaches. DW, DWs, and CM with parameter k = 1 qualify for
this comparison. For the symbolic approach, the number of variables in the BDD is given (#Varsymbolic).
For the bounded approach, the total number of variables in the QBF (#Varbounded) and the number of
existentially (#Var∃) and universally (#Var∀) quantified variables thereof are given. The number of gate
variables (#Varφn) used to build the matrix φn is stated as the remaining variables of #Varbounded, i.e.,
#Var∃+ #Var∀+ #Varφn = #Varbounded. From the size difference of the respective numbers of variables
in the two approaches, one can derive that they are used for a different purpose in the respective ap-
proach. For the symbolic approach, the number of variables grows linearly for all benchmarks. For the

PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 17

Ben. Par. #Varsymbolic n b #Varbounded #Var∃ #Var∀ #Varφn

CM 2/1 66 6 3 2743 53 162 2528
3/1 92 6 3 7678 109 300 7269
4/1 120 6 3 17849 197 462 17190
5/1 146 6 3 25848 266 570 25012
6/1 172 6 3 35287 343 678 34266
7/1 198 6 3 46166 428 786 44952
8/1 226 6 3 58485 521 894 57070

DW 1 46 8 1 1144 12 96 1036
2 72 10 1 2591 20 190 2381
3 98 12 1 4838 28 312 4498
4 124 14 1 8052 36 462 7554
5 148 16 1 12404 44 640 11720
6 172 18 1 18059 52 846 17161
7 198 20 1 25186 60 1080 24046
8 224 22 1 33953 68 1342 32543
9 248 24 1 44528 76 1632 42820
10 272 26 1 57079 84 1950 55045
11 296 28 1 71744 92 2296 69356
12 320 30 1 88781 100 2670 86011
13 344 32 1 108268 108 3072 105088
14 368 34 1 130403 116 3502 126785

DWs 1 36 5 1 440 9 55 376
2 70 7 1 1414 17 147 1250
3 102 9 1 3204 25 279 2900
4 136 11 1 6050 33 451 5566
5 168 13 1 10192 41 663 9488
6 200 15 1 15870 49 915 14906
7 232 17 1 23324 57 1207 22060
8 266 19 1 32794 65 1539 31190
9 298 21 1 44520 73 1911 42536
10 330 23 1 58742 81 2323 56338

Figure 8: Comparison between the numbers of different variables in the two approaches.

PRE-proceedings version; check www.eptcs.org for final version

18 Symbolic vs. Bounded Synthesis for Petri Games

bounded approach, the number of existentially quantified variables grows linearly, the number of univer-
sally quantified variables grows quadratically, and the total number of variables grows cubicly in DW and
DWs. For CM, all variables in the bounded encoding grow exponentially which is surprising as n and b
remain constant. We suppose that this increase is caused by the construction of the bounded unfolding
which produces an exponentially growing number of transitions for this benchmark family despite b = 3
remaining constant.

We further detected that the QBF problem files can become large, which requires a QBF solver with
fast parsing of the problem file. The largest solved QCIR file is of size 40 MB and contains 208.877
variables (benchmark concurrent machines with parameters m = 15 and k = 1 and bounds n = 6 and
b = 3). A very large QCIR file for a benchmark which ADAM solved but for which the QBF solver timed
out (benchmark job processing with parameter m = 4 and bounds n = 9 and b = 5) has a size of 275 MB
and contains 2.722.512 variables.

In summary, the size of the BDD for the symbolic approach is dominated by the number of tokens
whereas the size of the 2-QBF for the bounded approach is dominated by the number of places and
transitions of the underlying net of the Petri game.

4.4 Comparison

Both approaches work especially well on certain aspects of distributed synthesis. The symbolic approach
implemented in ADAM solves more instances than the bounded synthesis approach for all benchmark
families but for concurrent machines (CM) with one defective machine (k = 1). ADAM can further show
the non-existence of a winning strategy for instantiations of benchmark families for which bounded
synthesis is not applicable. For example, ADAM shows that for CM no strategy exists when equally
many or more orders as machines are placed because one machine can process at most one order and the
environment marks one machine as unable to process an order.

The bounded approach is well suited for finding small winning strategies. It holds for all winning
strategies produced by the two approaches that the respective winning strategies from bounded synthesis
have equally many or fewer places and transitions. For small instances, these differences are negligible
as for the first instances of alarm system (AS) and both versions of document workflow (DW and DWs)
the respective strategies are of equal size. The larger the benchmark instances become, the larger the
differences in strategy size get. For DW with parameter m = 14, the strategy from ADAM has 660 places
and 448 transitions whereas the strategy from the prototype implementation of bounded synthesis has
only 88 places and 72 transition. This comes at a higher solving time of 625 seconds in contrast to
400 seconds and at using 12 GB of memory in comparison to 4 GB.

The difference in size of the strategies can also be observed from Fig. 7(b) where the size of the input
and of the produced strategies by the two approaches are compared for a given number of processes. This
difference in size is based on the different structure of the strategies in the two approaches. In bounded
unfoldings and bounded strategies, more than one transition can merge into one place, if the different
history of the token is not needed. In contrast, the symbolic approach has to unfold a place in every case
notwithstanding the need for differentiation of its causal past. This becomes apparent in the benchmarks
DW and DWs. In the symbolic case, for every choice of the environment which clerk has to decide on
endorsing the document first, the places and transitions of each clerk are copied and put into the right
order. The bounded algorithm detects that it is not necessary to unfold all these places, since the memory
is not needed for finding a winning strategy and thus yields a much smaller strategy.

The bounded approach can be more subtle in choosing when to unfold places and therewith generally
finds smaller strategies than the symbolic approach. This illustrates the difference between a bounded

PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 19

strategy (produced by the bounded synthesis approach) and a strategy (produced by the symbolic synthe-
sis approach). Bounded strategies are based on the bounded unfolding which can consolidate different
causal pasts into one system place for which the corresponding strategy has to make the same decision.
In contrast, a strategy is based on the unfolding, which explicitly represents every causal past of a system
place. At each such system place, an individual decision can be made. Therefore, when the same de-
cision suffices for each causal past, these decisions are represented explicitly with each unfolded place.
From the visualization of Fig. 7(b), we can conjecture for the displayed subset of benchmark families
that the symbolic approach can only find strategies which grow in size exponentially because the unfold-
ing is exponential in the number of places and transitions. In contrast, the bounded approach can find
strategies which grow in size linearly when a linearly growing bounded unfolding suffices to represent
the necessary causal history.

For the sizes of the solution in the symbolic case, we can see that in general the strategy sizes increase
faster and also are larger than the sizes of the input in the benchmark families from Fig. 7(b). This is
caused by our benchmarks mostly increasing linearly in the input sizes (e.g., by adding a new robot or
a new machine). Meanwhile, the solution is getting more difficult due to the additional abilities and be-
haviors of the whole system (e.g., the factory) and the symbolic approach has to consider more different
flows of tokens with different causal histories. In general, the unfolding and the strategy increase in size
stronger than the input. One exception to the linear increase of the input is the new alarm system bench-
mark. There we also add only linearly bounded many places and transitions for every new alarm system,
but we have to add an additional alarm signal at each already existing alarm system and, furthermore,
transitions leading to bad places for all additional combinations of bad situations. Since those transitions
are not present in the strategy, the size of the solution is smaller than the size of the input for the alarm
system benchmark.

For the running time, we can see in Fig. 6 and in Fig. 7(a) that the bounded approach outperforms the
symbolic one for smaller instances but increases more sharply. This stems from the different parameters
in both approaches discussed in Sec. 4.3, which are responsible for the solving complexity. For the
symbolic case, the number of processes are principally responsible for the increasing number of variables
of the BDD and thus for the complexity. For the bounded approach, this is different because the number
of QBF variables is more dependent on the structure of the net than on the number of tokens.

For the benchmarks of DW and DWs, the bounded synthesis approach outperforms ADAM for the
first eleven respectively nine parameters in terms of runtime and memory usage. On the next three
parameters (DW) respectively on the next parameter (DW), ADAM outperforms bounded synthesis. After
that, bounded synthesis already reaches the time limit while ADAM can solve further five parameters for
DW and DWs each.

The bounded synthesis approach further showed that no unfolding is necessary to solve instances
of DW and DWs. It also revealed that for CM it is possible to find winning strategies for benchmark
instances of growing size while maintaining the same values for n and b.

5 Conclusion

We added the new benchmark family of a distributed alarm system to the set of benchmark families
for distributed synthesis with Petri games collected during the implementation of ADAM. The new
benchmark family models an alarm system for a person with a scalable number of independent locations
she needs to secure. Each of these locations has a local alarm system, which can detect the intrusion by
a burglar. Furthermore, all alarm systems can communicate with each other and each alarm system can

PRE-proceedings version; check www.eptcs.org for final version

20 Symbolic vs. Bounded Synthesis for Petri Games

indicate the position of a detected burglary. We synthesized strategies to detect the position of a burglary
and indicate it at the alarm systems of all independent locations.

We found out that the translation of bounded synthesis into 2-QBF resulted in large non-CNF formu-
las, which were solved best by a CEGAR-based QBF solver like QUABS. The automatic construction of
the bounded unfolding benefits from a removal of unreachable places and transitions, which implies that
there is still room for improvement when constructing the bounded unfolding.

We compared the symbolic synthesis approach implemented in the tool ADAM with the bounded
synthesis approach on the extended set of benchmarks. We found out that symbolic synthesis can overall
synthesize strategies for larger problems for all benchmark families except the benchmark family of
concurrent machines (with parameter k = 1). For the smaller instances, bounded synthesis is faster but
the running time grows at a higher rate such that ADAM can solve more instances overall. At the same
time, bounded synthesis finds smaller strategies in the number of places and transitions. This difference
is negligible for small instances but grows for larger instances. The difference in size of the strategies is
caused by the distinction between the bounded unfolding and the unfolding. In the bounded unfolding,
different causal pasts can be consolidated into one place whereas in the unfolding, unique causal pasts
have to be differentiated. Therefore, bounded strategies can profit in terms of size from situations where
only some causal past is needed. This adds to the general benefit of bounded synthesis in comparison
with symbolic synthesis to steer the search to small strategies.

We identified that the number of variables in the BDD of the symbolic approach grows in the number
of tokens in the underlying net of the Petri game whereas the number of variables in the QBF of the
bounded approach grows in the number of places and transitions of the underlying net of the Petri game.
We further showed that for the benchmark families DW and DWs local strategies for each system player
suffice as the bounded unfolding is the same as the original game. This proved that both symbolic and
bounded synthesis are well-suited for certain aspects of distributed synthesis with Petri games.

References

[1] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Martin Weiglhofer
(2007): Interactive presentation: Automatic hardware synthesis from specifications: a case study. In: 2007
Design, Automation and Test in Europe Conference and Exposition, DATE 2007, Nice, France, April 16-20,
2007, pp. 1188–1193, doi:10.1145/1266366.1266622.

[2] Alonzo Church (1963): Application of recursive arithmetic to the problem of circuit synthesis.

[3] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu & Helmut Veith (2000): Counterexample-
Guided Abstraction Refinement. In: Computer Aided Verification, 12th International Conference, CAV 2000,
Chicago, IL, USA, July 15-19, 2000, Proceedings, pp. 154–169, doi:10.1007/10722167 15. Available at
https://doi.org/10.1007/10722167_15.

[4] Javier Esparza & Keijo Heljanko (2008): Unfoldings - A Partial-Order Approach to Model Checking. Mono-
graphs in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/978-3-540-77426-6.

[5] Bernd Finkbeiner (2015): Bounded Synthesis for Petri Games. In: Correct System Design - Symposium in
Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday, Oldenburg, Germany, September 8-9,
2015. Proceedings, pp. 223–237, doi:10.1007/978-3-319-23506-6 15.

[6] Bernd Finkbeiner, Manuel Gieseking & Ernst-Rüdiger Olderog (2015): Adam: Causality-Based Synthesis
of Distributed Systems. In: Computer Aided Verification - 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, pp. 433–439, doi:10.1007/978-3-319-21690-4 -
25.

PRE-proceedings version; check www.eptcs.org for final version

B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, & E.-R. Olderog 21

[7] Bernd Finkbeiner & Ernst-Rüdiger Olderog (2014): Petri Games: Synthesis of Distributed Systems
with Causal Memory. In: Proceedings Fifth International Symposium on Games, Automata, Log-
ics and Formal Verification, GandALF 2014, Verona, Italy, September 10-12, 2014., pp. 217–230,
doi:10.4204/EPTCS.161.19.

[8] Bernd Finkbeiner & Ernst-Rüdiger Olderog (2017): Petri games: Synthesis of distributed systems with causal
memory. Inf. Comput. 253, pp. 181–203, doi:10.1016/j.ic.2016.07.006.

[9] Bernd Finkbeiner & Sven Schewe (2005): Uniform Distributed Synthesis. In: 20th IEEE Symposium on
Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings, pp. 321–330,
doi:10.1109/LICS.2005.53.

[10] Bernd Finkbeiner & Sven Schewe (2013): Bounded synthesis. STTT 15(5-6), pp. 519–539,
doi:10.1007/s10009-012-0228-z.

[11] Orna Kupferman & Moshe Y. Vardi (2001): Synthesizing Distributed Systems. In: 16th Annual IEEE Sym-
posium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings, pp.
389–398, doi:10.1109/LICS.2001.932514.

[12] P. Madhusudan, P. S. Thiagarajan & Shaofa Yang (2005): The MSO Theory of Connectedly Communicat-
ing Processes. In: FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Sci-
ence, 25th International Conference, Hyderabad, India, December 15-18, 2005, Proceedings, pp. 201–212,
doi:10.1007/11590156 16.

[13] Ernst-Rüdiger Olderog (1991): Nets, Terms and Formulas: Three Views of Concurrent Processes and Their
Relationship. Cambridge University Press.

[14] Amir Pnueli & Roni Rosner (1989): On the Synthesis of a Reactive Module. In: Conference Record of the
Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January
11-13, 1989, pp. 179–190, doi:10.1145/75277.75293.

[15] Amir Pnueli & Roni Rosner (1990): Distributed Reactive Systems Are Hard to Synthesize. In: 31st Annual
Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume
II, pp. 746–757, doi:10.1109/FSCS.1990.89597.

[16] QBF Gallery 2014: QCIR-G14: A Non-Prenex Non-CNF Format for Quantified Boolean Formulas. Available
at http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf.

[17] Leander Tentrup (2016): Solving QBF by Abstraction. CoRR abs/1604.06752. Available at http://arxiv.
org/abs/1604.06752.

[18] Wieslaw Zielonka (1987): Notes on Finite Asynchronous Automata. ITA 21(2), pp. 99–135.

PRE-proceedings version; check www.eptcs.org for final version

Submitted to:
SYNT 2017

c© H. Ravanbakhsh & S. Sankaranarayanan
This work is licensed under the
Creative Commons Attribution License.

A Class of Control Certificates to Ensure Reach-While-Stay
for Switched Systems

Hadi Ravanbakhsh and Sriram Sankaranarayanan
Department of Computer Science
University of Colorado, Boulder

Boulder, CO, USA
firsname.lastname@colorado.edu

In this article, we consider the problem of synthesizing switching controllers for temporal properties
through the composition of simple primitive reach-while-stay (RWS) properties. Reach-while-stay
properties specify that the system states starting from an initial set I, must reach a goal (target) set G
in finite time, while remaining inside a safe set S. Our approach synthesizes switched controllers that
select between finitely many modes to satisfy the given RWS specification. To do so, we consider
control certificates, which are Lyapunov-like functions that represent control strategies to achieve the
desired specification. However, for RWS problems, a control Lyapunov-like function is often hard to
synthesize in a simple polynomial form. Therefore, we combine control barrier and Lyapunov func-
tions with an additional compatibility condition between them. Using this approach, the controller
synthesis problem reduces to one of solving quantified nonlinear constrained problems that are han-
dled using a combination of SMT solvers. The synthesis of controllers is demonstrated through a set
of interesting numerical examples drawn from the related work, and compared with the state-of-the-
art tool SCOTS. Our evaluation suggests that our approach is computationally feasible, and adds to
the growing body of formal approaches to controller synthesis.

1 Introduction

The problem of synthesizing switching controllers for reach-while-stay (RWS) specifications is examined
in this article. RWS properties are an important class, since we may decompose more complex temporal
specifications into a sequence of RWS specifications [10]. The plant model is a switched system that
consists of finitely many (controllable) modes, and the dynamics for each mode are specified using
ODEs. Furthermore, we consider nonlinear ODEs for each mode, including rational, trigonometric, and
exponential functions. The goal of the controller is to switch between the appropriate modes, so that the
resulting closed loop traces satisfy the specification.

RWS properties specify that a goal set G must be reached by all behaviors of the closed-loop system
while staying inside a safe set S. Specifically, the state of the system is assumed to be initialized to
any state in the set S. RWS properties include safety properties (stay inside a safe set S), reachability
properties (reach a goal set G), and “control-to-facet” problems [7, 8].

The controller synthesis is addressed in two phases: (a) formulating a control certificate whose ex-
istence guarantees the existence of a non-Zeno switching control law for the given RWS specification,
and (b) solving for a certificate of a particular form as a feasibility problem. The control certificates are
control Lyapunov-like functions which represent a strategy for the controller to satisfy the specifications.
Additionally, this strategy can be effectively implemented as a feedback law using a controller that re-
spects min dwell time constraints. In the second phase, a counterexample guided inductive synthesis
(CEGIS) framework [27], — an approach that uses SMT solvers at its core — is used to discover such
control certificates. However, this procedure is used off the shelf, building upon the previous work of

PRE-proceedings version; check www.eptcs.org for final version

2 A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems

Ravanbakhsh et al. [22]. This procedure uses a specialized solver for finding a certificate of a given para-
metric form that handles quantified formulas by alternating between a series of quantifier free formulas
using existing SMT solvers [18, 4].

The contributions of the paper are as follows: first, we show that a straightforward formulation of
the control certificate for the RWS problem yields an exponential number of conditions, and hence can
be computationally infeasible. Next, we introduce a class of control certificates which (i) has a concise
logical structure that makes the problem of discovering the certificates computationally feasible; and (ii)
we show that such certificates yield corresponding switching strategies with a min-dwell time property
unlike the conventional control certificates. Next, we extend our approach to the initialized RWS (IRWS)
property that additionally restricts the set of initial conditions of the system using a class of “control
zero-ing” barrier functions [34, 37] . Also, a suitable formulation for these functions is provided within
our framework. Finally, we provide numerical examples to demonstrate the effectiveness of the method,
including comparisons with recently developed state-of-art automatic control synthesis tool SCOTS [26].

1.1 Related Work

The broader area of temporal logic synthesis seeks to synthesize formally guaranteed controllers from
the given plant model and specifications. The dominant approach is to build a discrete abstraction of
the given plant that is related to the original system [36, 14, 15, 26, 17]. Once a suitable abstraction is
found, these approaches use a systematic temporal logic-based controller design approach over the ab-
straction [33]. The properties of interest in these systems include the full linear temporal logic (LTL) and
an efficiently synthesizable subset such as GR(1) [36, 14]. These approaches differ in how the abstraction
can be constructed in a guaranteed manner. One class of approaches works by fixing a time step, gridding
the state-space, and simulating one point per cell [17, 15, 26, 38, 32]. The resulting abstraction, however,
is not always approximately bisimilar to the original system. Nevertheless, conditions such as open loop
incremental stability of the plant can be used to obtain bisimilarity [5]. Alternatively, the abstraction
can be built without time discretization [20, 14] by considering infeasible transitions. And furthermore,
the abstraction can be iteratively refined through a counter-example refinement scheme [19]. Our work
here does not directly focus on building abstractions. Rather, our focus is on deductive approaches for a
narrow class of temporal logic properties namely RWS properties. Using our approach, control systems
for richer properties can be built from solving a series of RWS problems.

Our approach is closely related to work of Habets et al. [6] and Kloetzer et al. [10]. In these methods,
an abstraction is obtained by solving local control-to-facet problems instead of reachability analysis.
However, continuous feedback is synthesized for each control-to-facet problem. The key difference in
this paper is that the control-to-facet problems themselves are solved using switching. Furthermore, we
consider initialized problems, where the initial states are also restricted to belong to a set. We find that
IRWS problems can often be realized through a controller even when the corresponding RWS problem
(for which the initial condition is not restricted) cannot be synthesized.

Another related class of solutions is based on synthesizing “a deductive proof of correctness” si-
multaneously with “a control strategy”. The goal of these approaches also consists of finding a control
certificate, which yields a (control) strategy to guarantee the property. This typically takes the form of
a control Lyapunov-like function. The idea of control Lyapunov functions goes back to Artstein [1] and
Sontag [28]. The problem of discovering a control Lyapunov function is usually formulated using bilin-
ear matrix inequalities (BMI) [31]. Also, instead of solving such NP-hard problems, usually alternating
optimization (V-K iteration or policy iteration) is used to conservatively find a solution [31, 3].

Wongpiromsarn et al. [35] discuss verification of temporal logic properties using barrier certificates.

PRE-proceedings version; check www.eptcs.org for final version

H. Ravanbakhsh & S. Sankaranarayanan 3

For synthesis, Xu et al. [37] discuss conditions for the so-called “control zeroing” barrier functions for
safety and their properties. They also, consider their combination with control Lyapunov functions. In
this article, we provide an alternative condition that is based on “exponential condition” barrier func-
tions [11] and enforcing a compatibility condition between the control actions suggested by the control
barrier and control Lyapunov functions. Also, Dimitrova et. al. [2] have shown that control certificates
can be extended to address more complicated specifications i.e. parity games. While these results show
that constraint solving based methods can be applied on more complicated specification, no method of
finding such certificates is provided.

The use of SMT solvers in control synthesis has also been well-studied. Taly et. al [29, 30] use
a constraint solving approach to find control certificates for reachability and safety. They adapt a tech-
nique known as Counter-Example Guided Inductive Synthesis (CEGIS), originally proposed for program
synthesis [27], to solve the control problems using a combination of an SMT solver with numerical sim-
ulations. Ravanbakhsh et al. [22] propose a combination of SMT and SDP solvers for finding control
certificates. However, their method is only applicable to stability or simple reachability properties, in-
volving the use of a single Lyapunov function. In a subsequent paper, their approach is extended to
handle disturbance inputs [23]. The use of SMT solvers to solve for Lyapunov-like functions is used in
our paper as well. However, this paper focuses on defining a more tractable class of control certificates
for RWS problems. Furthermore, we show how these problems can be composed for more complex
temporal objectives. In particular, our use of the CEGIS procedure is not a contribution of this paper.
Furthermore, in order to handle nonlinear systems and also to guarantee numerical soundness of these
solvers, we use the nonlinear SMT solver dReal [4].

Huang et. al. [9] also propose control certificates to solve the RWS problem for piecewise affine
systems, using SMT solvers. Their approach uses piecewise constant functions as control certificates
and partitions the state space into small enough cells in order to define such functions. By using this
technique, any function can be approximated, which makes the method relatively complete.

As mentioned earlier, past work by Habets et al. and Klutzier et al. [6, 10] build a finite abstraction
by repeatedly solving control-to-facet problems. These problems seek to find a feedback law inside a
polytope P that guarantees all the resulting trajectories exit P through a specific facet F of P. Habets et.
al. [7] show necessary and sufficient conditions for the existence of a control strategy for the control-to-
facet problem on simplices. This condition is sufficient but not necessary for polytopes. They extract a
unique certificate from each problem instance and check whether the condition holds for the certificate.
Subsequently, Roszak et al. [24] and Helwa et al. [8] extend this approach and solve reachability to a set
of facets by introducing flow condition, which combined with invariant condition serves as a control cer-
tificate similar to those used in this paper. From the published results, these methods are more efficient,
but are only applicable to affine systems over polytopes. In contrast, the dynamics in this article can be
non-linear involving rational, trigonometric, and exponential functions. In this article, we demonstrate
that our method can be used to solve such problems and it can be integrated into other methods which
build an abstraction for the system.

2 Background

2.1 Notation

Given a function f (t), let f+(t) (f−(t)) be the right (left) limit of f at t, and
.
f (t) represent the right

derivative of f at time t. For a set S⊆ Rn, ∂S and int(S) are its boundary and interior, respectively.

PRE-proceedings version; check www.eptcs.org for final version

4 A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems

Definition 1 (Nondegenerate Basic Semialgebraic Set):
A nondegenerate basic semialgebraic set K is a nonempty set defined by a conjunction polynomial

inequalities:
K : {x | pK,1(x)≤ 0 ∧ ·· · ∧ pK,i(x)≤ 0} ,

where x ∈ Rn. For each j ∈ [1, i], we define

HK, j = {x | x ∈ K ∧ pK, j(x) = 0} .

It is required that (a) each HK, j is nonempty, (b) the boundary ∂K and the interior int(K) are given
by
∨i

j=1 HK, j and
∧i

j=1 pK, j(x)< 0, respectively, and (c) the interior is nonempty. We use “basic semial-
gebraic” and “nondegenerate basic semialgebraic” interchangeably.

2.2 Switched Systems

We consider continuous-time switched system plants, controlled by a memoryless controller that pro-
vides continuous-time switching feedback. The state of the plant P is defined by n continuous variables
x in a state space X ⊆ Rn, along with a finite set of modes Q = {q1, . . . ,qm}. The trace of the system
(q(t),x(t)) maps time to mode q(.) : R+→ Q, and state x(.) : R+→ X . The mode q ∈ Q is controlled
by an external switching input q(t). The state of the plant inside each mode evolves according to (time
invariant) dynamics: .x(t) = fq(t)(x(t)) , (1)

wherein fq : X → Rn is a Lipschitz continuous function over X , describing the vector field of the plant
for mode q.

The controller C is defined as a function K : Q×X →Q, which given the current mode and state of
the plant, decides the mode of the plant at the next time instant. Formally:

q+(t) = K (q(t),x(t)). (2)

The closed loop 〈P,C 〉 produces traces (q(t),x(t)) defined jointly by equations (1) and (2). How-
ever, care must be taken to avoid Zenoness, wherein the controller can switch infinitely often in a finite
time interval. Such controllers are physically unrealizable. Therefore, we will additionally ensure that
the K function satisfies a minimum dwell time requirement that guarantees a minimum time δ > 0
between mode switches.

Definition 2 (Minimum Dwell Time): A controller C has a minimum dwell time δ > 0 with respect to a
plant P iff for all traces and for all switch times T (q(T) 6= q+(T), the controller does not switch during
the times t ∈ [T,T +δ): i.e, K (q(t),x(t)) = q+(T) for all t ∈ [T,T +δ).

Once the function K is defined with a minimum dwell time guarantee, given initial mode (q(0)),
and initial state (x(0)), a unique trace is defined for the system.

Specifications: Generally, specifications describe desired sequences of plant states x(t) over time t ≥ 0
that we wish to control for. In this paper, we focus on reach-while-stay (RWS) specifications involving
three sets: initial set I ⊆ X , safe set S⊆ X and goal set G⊆ X .

Definition 3 (Initialized Reach-While-Stay (RWS) Specification): A trace x(t) for t ∈ [0,∞) satisfies a
reach-while-stay (RWS) specification w.r.t sets 〈I,S,G〉 iff whenever x(0) ∈ I, there exists a time T ≥ 0
s.t. for all t ∈ [0,T), x(t) ∈ S, and x(T) ∈ G.

PRE-proceedings version; check www.eptcs.org for final version

H. Ravanbakhsh & S. Sankaranarayanan 5

In other words, whenever the system is initialized inside the set I, it stays inside the safe set S until
it reaches the goal set G. Alternatively, we may express the specification in temporal logic as I =⇒
(S U G), where U is the temporal operator “until”.

We will assume that set S is a compact basic semialgebraic set. Typical examples include poly-
topes defined by linear inequalities or ellipsoids, that can be easily checked for the properties such as
compactness and nondegeneracy. Also, sets I and G are compact semialgebraic sets.

The special case when I = S will be called uninitialized RWS. Such a property simply states that the
system initialized inside the set S continues to remain in S until it reaches a goal state x ∈ G at some
finite time instant T . This case is suitable for building a finite abstraction as mentioned in Sec. 1.

2.3 Control Certificates

Encoding verification and synthesis problems into (control) certificates, which are defined by a set of
conditions, is a standard approach. For example Lyapunov functions have been used for ensuring stability
and barrier functions are employed to reason about safety properties. However, these functions are not
usually known in advance. To discover such a function in the first place, we solve a constrained problem
in which certificates are parameterized. Usually, certificates are defined over polynomials with unknown
coefficients and the problem reduces to finding proper coefficients for polynomials [21, 2]. For example,
to find a Lyapunov function, first, a template for Lyapunov function V is chosen: V = ∑i cαxα , where
xα is a monomial with degree greater than zero. Then, solving the following constrained problem yields
a Lyapunov function for proving stability to origin: (∃c) (∀x 6= 0)

(
V (x)> 0∧

.
V (x)< 0

)
, where

.
V is

∇V. f (x). In these techniques, it is essential to define control certificate with a simple structure that can
be discovered automatically. In the subsequent we combine the certificates for safety and liveness to
obtain a certificate for RWS properties.

3 RWS for Basic Semialgebraic Safe Sets

In this section, we first focus on the uninitialized RWS problem (I = S) and provide solutions for the case
when S is a basic nondegenerate semialgebraic set (see Def. 1).

Let S be a nondegenerate basic semialgebraic sets, as in Def. 1. Let ∂S be partitioned into nonempty
facets F1, . . . , Flk . Each facet Fk is, in turn, defined by two sets of polynomial inequalities F<

k of inactive
constraints and F=

k of active constraints: Fk = {
∧

pS, j∈F<
k

pS, j(x)< 0 ∧ ∧pS, j∈F=
k

pS, j(x) = 0}.
For each state on a facet and not in G, we require the existence of a mode q, whose vector field

points inside S. Additionally, we will require a certificate V to decrease everywhere in S \G. For any
polynomial p, let .pq : (∇p) · fq(x). By combining conditions for safety and liveness, one can obtain the
following conditions:





x ∈ int(S)\G =⇒ (∃ q)
.

Vq(x)<−ε

x ∈ F1 \G =⇒ (∃ q)
(.

Vq(x)<−ε ∧ ∧
p∈F=

1

.pq(x)<−ε
)

...

x ∈ Flk \G =⇒ (∃ q)
(.

Vq(x)<−ε ∧ ∧
p∈F=

lk

.pq(x)<−ε
)
.

(3)

PRE-proceedings version; check www.eptcs.org for final version

6 A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems

The first condition in Eq. (3) states that V must strictly decrease everywhere in the set int(S)\G. The
subsequent conditions treat each facet Fj of the set S and posit the existence of a mode q for each state
that causes the active constraints and the function V to decrease.

However, we note that as the number of state variables increases, the number of facets can be expo-
nential in the number of inequalities that define S [8] . This poses a serious limitation to the applicability
of Eq. (3).

Our solution to this problem, is based partly on the idea of exponential barriers discussed by Kong
et al. [11]. Rather than force the vector field to point inwards at each facet, we simply ensure that each
polynomial inequality pS, j ≤ 0 that defines S, satisfies a decrease condition outside set G. Thus, Eq. (3)
is replaced by a simpler (relaxed) condition:

x ∈ S\G =⇒ (∃ q)
.

Vq(x)<−ε ∧∧ j
(
(

.pS, j,q(x)+λ pS, j(x)) <−ε
)
. (4)

Here λ > 0 is a user specified parameter. This rule is a relaxation of (3). The rule is made stronger
for larger values of λ . However, larger values of λ can cause numerical difficulties in practice while
searching for a control certificate.

For safety constraints, we require .pq to be numerically≤−ε mainly, to avoid numerical issues. This
can be restrictive for cases where .pS, j,q is simply zero. To go around this, we define a set of facets
Jq = { j|(∃x) .pS, j,q(x)> 0} for each mode q. Informally speaking, Jq is set of all facets for which change
of pS, j must be considered when mode q is selected. Because for each facet j /∈ Jq, pS, j will never
increase as long as mode q is selected. Then, the conditions become:

x ∈ S\G =⇒ (∃ q)
.

Vq(x)<−ε ∧∧ j∈Jq
((

.pS, j,q(x)+λ pS, j(x)) <−ε) . (5)

As mentioned earlier, the problem of control synthesis consists of two phases. The first phase deals
with the problem of finding a control certificate V (x) that satisfies (5). We use a counter-example guided
inductive synthesis (CEGIS) framework to find such certificates. In the second phase, a switching strategy
is extracted from the control certificate to design the final controller. We now examine each phase, in
turn.

3.1 Discovering Control Certificates

We now explain the CEGIS framework that searches for a suitable control certificate V . To synthesize a
control certificate, we start with a parametric form Vc(x) = V (c,x) : ∑N

i=1 cigi(x) with some (nonlinear)
basis functions g1(x), . . . ,gN(x) chosen by the user, and unknown coefficients c : (c1, . . . ,cN), s.t. c ∈C
for a compact set C ⊆ RN . The certificate V is a linear function over c.

The constraints from Eq. (5) become as follows:

(∃c ∈C) (∀x ∈ X) x ∈ S\G =⇒ ∨
q

(.
Vq <−ε ∧∧ j∈Jq

(
.pS, j,q(x)+λ pS, j(x)<−ε)

)
. (6)

The constraints in Eq. (6) has a complex quantifier alternation structure involving the ∃c quantifier
nested outside the ∀x quantifier. First, we note that Jq is computed separately and here we assume it is
given. Next, we modify an algorithm commonly used for program synthesis problems to the problem of
synthesizing the coefficients c ∈C [27].

The counterexample guided inductive synthesis (CEGIS) approach has its roots in program synthesis,
wherein it was proposed as a general approach to solve ∃∀ constraints that arise in such problems [27].

PRE-proceedings version; check www.eptcs.org for final version

H. Ravanbakhsh & S. Sankaranarayanan 7

The key idea behind the CEGIS approach is to find solutions to such constraints while using a satisfiabil-
ity (feasibility) solver for quantifier-free formulas that check whether a given set of constraints without
quantifiers have a feasible solution.

Solvers like Z3 allow us to solve many different classes of constraints with extensive support for lin-
ear arithmetic constraints [18]. On the other hand, general purpose nonlinear delta-satisfiability solvers
like dReal, support the solving of quantifier-free nonlinear constraints involving polynomials, trigono-
metric, and rational functions [4]. However, the presence of quantifiers drastically increases the complex-
ity of solving these constraints. Here, we briefly explain the idea of CEGIS procedure for ∃∀ constraints
of the form

(∃ c ∈C) (∀ x ∈ X) Ψ(c,x).

Here, c represents the unknown coefficients of a control certificate and x represents the state variables
of the system. Our goal is to find one witness for c that makes the overall quantified formula true. The
overall approach constructs, maintains, and updates two sets iteratively:

1. Xi ⊆ X is a finite set of witnesses. This is explicitly represented as Xi = {x1, . . . ,xi}.
2. Ci ⊆ C is a (possibly infinite) subset of available candidates. This is implicitly represented by a

constraint ψi(c), s.t. Ci : {c ∈C | ψi(c)}.
In the beginning, X0 = {} and ψ0 : true representing the set C0 : C.
At each iteration, we perform the following steps:

(a) Choose a candidate solution ci+1 ∈ Ci. This is achieved by checking the feasibility of the formula
ψi. Throughout this paper, we will maintain ψi as a linear arithmetic formula that involves boolean
combinations of linear inequality constraints. Solving these problems is akin to solving linear optimiza-
tion problems involving disjunctive constraints. Although the complexity is NP-hard, solvers like Z3
integrate fast LP solvers with Boolean satisfiability solvers to present efficient solutions [18].
(b) Test the current candidate. This is achieved by testing the satisfiability of ¬Ψ(c,x) for fixed c = ci+1.
In doing so, we obtain a set of nonlinear constraints over x. We wish to now check if it is feasible.

If ¬Ψ(ci+1,x) has no feasible solutions, then Ψ(ci+1,x) is true (valid) for all x. Therefore, we can
stop with c = ci+1 as the required solution for c.

Otherwise, if ¬Ψ(c,x) is feasible for some x = xi+1, we add it back as a witness: Xi+1 : Xi∪{xi+1}.
The formula ψi+1 is given by

ψi+1 : ψi ∧ Ψ(c,xi+1) .

Note that ψi+1 =⇒ ψi, and ci+1 is no longer a feasible point for ψi+1. The set Ci+1 described by ψi+1
is:

Ci+1 : {c ∈C | Ψ(c,xi) holds for each xi ∈ Xi+1} .

The CEGIS procedure either (i) runs forever, or (ii) terminates after i iterations with a solution c : ci,
or (iii) terminates with a set of witness points Xi proving that no solution exists.

We now provide further details of the CEGIS procedure adapted to find a certificate that satisfies
Eq. (6). In the CEGIS procedure, the formula Ψ(c,x) will have the following form:





x ∈ R1 =⇒ ϕ1(c,x)
x ∈ R2 =⇒ ϕ2(c,x)
...

x ∈ RN j =⇒ ϕN j(c,x) ,

(7)

PRE-proceedings version; check www.eptcs.org for final version

8 A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems

and each ϕ j for j = 1, . . . ,N j has the form

∨

k

∧

l

p j,k,l(c,x)> 0 , (8)

where p j,k,l(c,x) is a function linear in c and possibly nonlinear in x, depending on the dynamics and
template used for the control certificate.

The CEGIS procedure involves two calls to solvers: (a) Testing satisfiability of ψi(c) and (b) Testing
the satisfiability of ¬Ψ(ci+1,x). We shall discuss each of these problems in the following paragraphs.

Finding Candidate Solutions: Given a finite set of witnesses Xi, a solution exists for ψi+1 iff there
exists c ∈C s.t.

∧

x∈Xi

N j∧

j=1

(
x ∈ R j =⇒

∨

k

∧

l

p j,k,l(c,x)> 0

)
,

and since p j,k,l is a linear function in c, such c can be found by solving a formula in Linear Arithmetic
Theory (L A).

Finding Witnesses: Finding a witness for a given candidate solution ci involves checking the satisfia-
bility ¬Ψ. Whereas Ψ is a conjunction of N j clauses, ¬Ψ is a disjunction of clauses. The jth clause in
¬Ψ (1≤ j ≤ N j) has the form

x ∈ R j ∧
∧

k

∨

l

p j,k,l(ci,x)≤ 0 . (9)

We will test each clause separately for satisfiability. Assuming that p j,k,l is a general nonlinear
function over x, SMT solvers like dReal [4] can be used to solve this over a compact set R j. Numerical
SMT solvers like dReal can either conclude that the given formula is unsatisfiable or provide a solution
to a “nearby” formula that is δ close. The parameter δ is adjusted by the user. As a result, dReal can
correctly conclude that the current candidate yields a valid certificate. On the other hand, its witness may
not be a witness for the original problem. In this case, using the spurious witness may cause the CEGIS
procedure to potentially continue (needlessly) even when a solution ci has been found. Nevertheless, the
overall procedure produces a correct result whenever it terminates with an answer.

Example 1 This example is adopted from [19]. There are two variables and three control modes with
the dynamics given below:

[.x1.x2

]
=

[
−x2−1.5x1−0.5x3

1
x1

]
+Bq, Bq1 =

[
0

−x2
2 +2

]
, Bq2 =

[
0
−x2

]
, Bq3 =

[
2
10

]
.

The goal is to reach the target set G : (x1+0.75)2+(x2−1.75)2≤ 0.252, a circle centered at (−0.75,1.75),
as shown in Figure 1a, while staying in the safe region given by the rectangle S0 : [−2,2]× [−2,3]:

S0 : {x|(x1 +2)(x1−2)≤ 0∧ (x2 +2)(x2−3)≤ 0} .

First, we shift co-ordniates to transform (−0.75,1.75) as the new origin. Then, we use a quadratic
template for V (c1x2

1 + c2x1x2 + c3x2
2) , ε = 1, λ = 5. The solution V is found in 5 iterations. Then, we

translate the function back to the original co-ordinates:

V (x1,x2) :37.782349x2
1−2.009762x1x2 +60.190607x1 +4.415093x2

2−16.960145x2 +37.411604 .

PRE-proceedings version; check www.eptcs.org for final version

H. Ravanbakhsh & S. Sankaranarayanan 9

Example 2 A unicycle [25] has three variables. x and y are position of the car and θ is its angle. The
dynamics of the system is .x = u1cos(θ) , .y = u1sin(θ) ,

.
θ = u2, where u1 and u2 are inputs. Assuming

a switched system, we consider u1 ∈ {−1,0,1} and u2 ∈ {−1,0,1}. The safe set is [−1,1]× [−1,1]×
[−π,π] and the target facet is x = 1. We use a template that is linear in (x,y) and quadratic in θ . Using
ε = 0.1 and λ = 0.5, the following CLF is found after 22 iterations:

V (x) :−x− y−0.5881θ +θ 2−0.1956θx+θy .

Example 3 This example is adopted from [7]. There are four variables and two control inputs. The
dynamic is as follows:




.x1.x2.x3.x4


=




x1 + x2 +8
−x2 + x3 +1
−2x3 +2x4 +1
−3x4 +1


+




u1
−u2
−2u1

u2


 .

The region of interest S is hyber-box [−1,1]4 and the input belongs to set [0,1]× [0,2]. The goal is to
reach facet x1 = 1, while staying in S as the safe region.

First, we discretize the control input to model the system as a switched system. For this purpose, we
assume u1 ∈ {0,1} and u2 ∈ {0,0.5,1,1.5,2}. Then, we use a linear template for the CLF (c1x1+c2x2+
c3x3+c4x4) , ε = 0.1, λ = 5. CEGIS framework finds certificate V (x) :−0.13333344(x1+x2+x3+x4).

3.2 Control Design

Thus far, we discussed the CEGIS framework for finding a control certificate. Extracting the K function
from the certificate is now considered. Given a control certificate V satisfying Eq. (5), the choice of a
switching mode is dictated by a function ηq(x) defined for each state x ∈ X and mode q ∈ Q as follows:

ηq(x) : max
(.

Vq(x), ηS,1,q(x), · · · ,ηS,k,q(x)
)
,

where for all j ∈ Jq, ηS, j,q is .pS, j,q +λ pS, j and for j /∈ Jq, ηS, j,q = −∞ or equivalently ηS, j,q = −L for
some large constant L.

The idea is that whenever (at time t) the controller chooses a mode q s.t. ηq(x(t)) < −ε , one can
guarantee that ηq(x(t)) < 0 holds for all t ∈ [T,T +δ), for some minimum time δ . Therefore, for some
fixed εs (0< εs < ε), the function K for any x ∈ S\G can be defined as

K (q,x) :=





q̂ if
(

ηq(x)≥−εs∧ ηq̂(x)<−ε
)

q otherwise .

(10)

In other words, the controller state persists in a given mode q until ηq(x) ≥ −εs. Then, given that
x ∈ S \G, Eq. (5) will provide us a new control mode q̂ that satisfies ηq̂(x) < −ε . This mode is chosen
as the next mode to switch to.

Example 4 Consider once again, the problem from Ex. 1. Using the defined function V (x1,x2), Eq. (10)
yields a controller. Figure 1b shows some of the simulation traces of this closed loop system, demon-
strating the RWS property.

PRE-proceedings version; check www.eptcs.org for final version

10 A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems

(a) (b)

Figure 1: (a) Region G for Example 1 is shown shaded in the center, and the vector fields for modes
q1,q2 and q3 are shown in red, green and blue, respectively. Level-sets of V are shown with black dashed
lines. (b) Closed loop trajectories for Example 1 using the controller defined by Eq. (10). The segments
shown in colors red, green and blue correspond to the modes q1,q2 and q3, respectively.

We now establish the key result that provides a minimum dwell time guarantee.

Lemma 1 There exists a δ > 0 s.t. for all initial conditions x(T) ∈ S \G, if ηq(x(T)) < −ε , and if the
mode of the system is set to q at time T , then

(∀t ∈ [T,T +δ]) (x(t) ∈ S\G) =⇒ ηq(x(t))≤−εs .

Proof 1 Let T +δ be the earliest time instant, where ηq(x(T +δ))≥−εs while at the same time

(∀t ∈ [T,T +δ]) q(t) = q, x(t) ∈ S\G .

At time T , ηq(x(T)) < −ε and at time T + δ , ηq(x(T + δ)) = −εs. Note that ηq(x) is defined as
max(α1(x), . . . ,αm(x)) for some smooth functions α1, . . . ,αm. As a result, Since S is a bounded set, and
p, fq, and V are bounded over S, there exists a constant Λ> 0 s.t.

(∀ x ∈ S)
.αi,q ≤ Λ . (11)

Therefore, for each αi, we have

αi(x(T +δ)) = αi(x(T))+
∫ T+δ

t=T

.αi,q(x(t))dt ≤ αi(x(T))+Λδ .

As a result, we conclude that

ηq(x(T +δ)) = max
i

αi(x(T +δ)) = α j∗(x(T +δ))≤ α j∗(x(T))+Λδ ≤ ηq(T)+Λδ .

PRE-proceedings version; check www.eptcs.org for final version

H. Ravanbakhsh & S. Sankaranarayanan 11

Therefore, we can conclude −εs <−ε +Λδ =⇒ ε−εs
Λ < δ and there exists a fixed δ > ε−εs

Λ > 0 s.t.

(∀t ∈ [T,T +δ)) ηq(x(t))<−εs .

Eq. (10) gives a switching strategy which respects the min-dwell time and as long as x(t) ∈ S, the
controller guarantees ηq(t)(x(t))≤−εs. I.e. for all j∈ Jq,

.
Vq(x(t))≤−εs and .pS, j,q(x(t))+λ pS, j(x(t))≤

−εs.

Theorem 1 Given nondegenerate basic semialgebraic set S, a semialgebraic set G, and a function V
(satisfying Equation (5)), the control strategy defined by Eq. (10) respects the min-dwell time property
and guarantees the RWS property defined by S,G: S =⇒ SU G.

Proof 2 As discussed, there exists a controller which respects the min-dwell time property. Also, the
controller guarantees

.
Vq(x)≤−εs and (

.pS, j,q(x)+λ pS, j(x)≤−εs (for all j ∈ Jq), as long as x ∈ S\G.
Assume x(t) is on the boundary of S (and not in G) at some time t. Because S is assumed to be

a nondegenerate basic semialgebraic set, there exists at least one j s.t. pS, j(x(t)) = 0. If j /∈ Jq, by
definition, .pS, j,q is negative for all states and pS, j,q remains≤ 0 as long as mode q is selected. Otherwise
(j ∈ Jq), we obtain .pS, j,q(x(t)) ≤−εs < 0. Therefore, there exits τ j > 0, s.t. s ∈ (t, t + τ j), we conclude
that pS, j,q(x(s))< 0. As a result, the trajectory cannot leave the set S.

Thus, the trace cannot leave S, unless it reaches G. Now, we show that the trajectory cannot stay
inside S \G forever. By the construction of the controller, we can conclude time diverges (because the
controller respects the min-dwell time property) and that V decreases (

.
Vq(x(t)) ≤ −εs). However, the

value of V is bounded on bounded set S \G. Therefore, x cannot remain in S \G and the only possible
outcome for the trace is to reach G.

4 RWS for Semialgebraic Safe Set

As Habets et al [6] discussed, control-to-facet problems can be used to build an abstraction. Here,
we demonstrate that the method described so far can be integrated in this framework to tackle more
complicated problems. First, we briefly explain how the method works. For a more detailed discussion,
the reader can refer to [6] or [10].

First, state space is decomposed into polytopes according to the specifications. Here, we can use
basic semialgebraic sets instead of polytopes. Then, for each such a set u, we consider an abstract state
A (u). Furthermore, for each of its n−1 dimensional facet F , a control-to-facet problem is solved. The
corresponding problem is to find a control strategy to reach F starting from u. If the control-to-facet
problem is solved successfully, then for each basic semialgebraic set v with a n− 1 dimensional facet
F ′ ⊆ F , an edge from A (u) to A (v) (with label/action F) is added to the abstraction. Also for each
basic semialgebraic set u, one can check if u is a control invariant to build self loops. However, for
RWS properties, self loops are redundant and we skip them here. After building the abstract system, we
use standard techniques to solve the problem for finite systems. If the problem could be solved for the
abstract system, then, one can design a controller.

First, for each abstract state A (u), there is at least one action F that agrees with the winning strategy
for the abstract system. Let that action be F (A (u)). The idea is to implement transition F (A (u)),
using controller Ku,F (A (u)) for the corresponding control-to-facet problem [6]. Formally, the controller

PRE-proceedings version; check www.eptcs.org for final version

12 A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems

can be defined as follows:

K (q,x) =





Ku1,F (A (u1))(q,x) x ∈ u1
...
Kus,F (A (us))(q,x) x ∈ us .

(12)

When x belongs to multiple sets, one can break the tie by some ordering, where states in the winning
set have priorities. It is worth mentioning that combining these controllers together, does not produce
any Zeno behavior as it is guaranteed that each abstract state is visited only once for RWS properties.
However, superdense switching is possible as two facets of a polytope can get arbitrarily close.

If one is interested in LTL properties (not just reach-while-stay) or min-dwell time property, one
possible solution is to use fat facets, where the target sets are n dimensional goal sets. This extends the
domain of the control-to-facet problem to adjacent basic semialgebraic sets as well. Also, it allows the
controller to continue using current sub-controller for some minimum time (if min-dwell time require-
ment is not met), before changing the sub-controller (at the switch time).

Example 5 Consider again the system from Example 1, with the addition of some obstacles [19]. More
precisely, as shown in Fig 2a, safe set is S = S0 \ (O1∪O2). First, the safe set is decomposed into four
basic semialgebraic sets, which are shown with R0 to R3 in Fig. 2a.

O1

O2

R0

R1

R2

R3

(a)

Up

Left

Left

Converge

Diverge

R0

R1

R2

R3

(b)

Figure 2: (a) Schematic view of state decomposi-
tion. (b) Finite abstraction for the original problem.

R0 is the target set. Next, we build a transition
relation between four abstract states, represent-
ing four basic semialgebraic sets. This is done
by solving seven RWS problems for basic semial-
gebraic sets. For R1 to R0, we use a quadratic
template for V , and for other problems, we use
linear template. The abstract system is shown in
Fig. 2b. Next, the problem is solved for the ab-
stract system. The solution to the abstract system
is simple: if the state is in R2, the controller uses
the left facet to reach R1 or R3. Otherwise, if the
state is in R3, the controller uses the upper facet
to reach R1 and finally, if the state is in R1, the
controller makes sure the state reaches R0.

Example 6 This example is a path planning problem for the unicycle [26]. Projection of safe set on
x and y yields a maze. The target set is placed at the right bottom corner of the maze (Fig. 3). Using
specification-guided technique, we modeled the system with 53 polyhedra. Each polyhedron is treated
as a single state and a transition relation is built by solving 113 control-to-facet problems. Then, the
problem is solved over the finite graph. The total computation took 1484 seconds. The figure also shows
a single trajectory of the closed loop system.

Example 7 This example is similar to Example 6, except for the fact that there is no direct control over
the angular velocity. More precisely, only the angular acceleration is controllable and the system would
have the following dynamics .x = u1 cos(θ), .y = u1 sin(θ),

.
θ = ω, .ω = u2 . Also, we assume ω ∈ [−1,1].

By changing the coordinates one can use r =
√

x2 + y2, z1 = xcos(θ)+ ysin(θ) and z2 = ycos(θ)−
xsin(θ) to define position and angle of the car(cf. [12] for details). Then, we use the following template
V (x,y,θ ,ω) = c1r2 + c2z1 + c3z2ω + c4ω2, where the origin is located just outside of the target facet.
Using this template, we find control certificates for all 113 control-to-facet problems in 5296 seconds.

PRE-proceedings version; check www.eptcs.org for final version

H. Ravanbakhsh & S. Sankaranarayanan 13

Figure 3: Region G is shown shaded in Orange, and unsafe regions are shown in blue. An execution
trace of the car is shown for x and y variables.

5 Initialized Reach-While-Stay

So far, we discussed uninitialized RWS specifications (S =⇒ SU G). In these systems, we use boundary
of safe set as barrier. However, as pointed out by Lin et al. [13], this may not be the case. Now, we
consider the initialized problem for a given initial set I (I =⇒ SU G). To avoid technical difficulties, we
assume that I ⊆ int(S). The solution is to create a composite barrier that is formed by the boundary of S
as well as other a priori unknown barrier functions.

Barrier Functions: We recall that for a control barrier function [30, 37], the following conditions are
considered

x ∈ ∂S =⇒ B(x)> 0
x ∈ I =⇒ B(x)< 0

x ∈ S =⇒
(

B(x) = 0 =⇒ (∃q)
.

Bq(x)<−ε
)
.

(13)

This ensures that B(x)= 0 is a barrier and ∂S is unreachable. Eq. (13), combined with the smoothness
of B and fq ensures that as soon as the state is sufficiently “close” to the barrier, it is possible to choose
a control mode that ensures the local decrease of the B.

The condition in Equation (13) can be encoded into the CEGIS framework. However, the presence
of the equality B(x) = 0 poses practical problems. In particular, it requires for each candidate Bc, to find
a counterexample x s.t. Bc(x) 6= 0. Unfortunately, such an assertion is easy to satisfy, resulting in the
procedure always exceeding the maximum number of iterations permitted.

Again, we find that the following relaxation of the third condition is particularly effective in our
experiments

x ∈ ∂S =⇒ B(x)> 0
x ∈ I =⇒ B(x)< 0
x ∈ S =⇒ ∨

q
(.

Bq(x)−λB(x)<−ε ∨
.

Bq(x)+λB(x)<−ε
)
,

(14)

for some constant λ .
Intuitively, by choosing λ = 0, the condition is similar to that of Lyapunov functions, whereas as

|λ | → ∞, the condition gets less conservative and in the limit, it is equivalent to the original condition.

PRE-proceedings version; check www.eptcs.org for final version

14 A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems

In fact, for smaller |λ | CEGIS terminates faster, but at the cost of missing potential solutions. On the
other hand, using larger |λ |, is less conservative at the cost of CEGIS timing out. We also note that this
formulation is less conservative than the one introduced by Kong et al. [11] as our formulation uses two
exponential conditions which only forces decrease of value of B around B∗ = {x | B(x) = 0}.

To solve the RWS in general form, we define a finite set of barriers B with the following conditions:

x ∈ ∂S =⇒ ∨
B∈B B(x)> 0

x ∈ I =⇒ ∧
B∈B B(x)< 0 .

(15)

Also for each mode q, Bq is defined as Bq = {B ∈B|(∃x)
.

Bq(x)> 0}. Then, existence of a proper
mode can be encoded as the following:

x ∈ S\G =⇒
((.

Vq(x)<−ε
)
∧∧B∈Bq

(.
Bq(x)+λB(x)<−ε∨.
Bq(x)−λB(x)<−ε

))
. (16)

Theorem 2 Given nondegenerate basic semialgebraic set S, semialgebraic sets I and G, function V ,
and a non-empty set of functions B (satisfying Equation (15) and (16)), there is a control strategy that
respects the min-dwell time property and guarantees the RWS property: I =⇒ SU G.

To simplify these constraints and reduce the number of unknowns, one can use some of pS,i’s to fix
some of these barriers, which yields conditions similar to the ones used for the uninitialized problem.
This trick is demonstrated in the following example.

Example 8 This example is taken from [16], in which a DC-DC converter is modeled with two variables
i and v.

I

G

S

B3 = 0
B1 = 0

B4 = 0

B0 = 0 B5 = 0

B2 = 0

Figure 4: The blue lines are the barriers
and the red lines are level-sets of the Lya-
punov function.

The system has two modes q1 and q2, with the following
dynamics:

q1 :

{.
i = 0.0167i+0.3333
.v =−0.0142v

q2 :

{.
i =−0.0183i−0.0663v+0.3333
.v =−0.0711i−0.0142v .

The safe set is S : [0.65,1.65]× [4.95,5.95] and the goal set
is G : [1.25,1.45]× [5.55,5.75]. We assume initial set to be
I : [0.85,0.95]× [5.15,5.25] (Fig. 4). Then, we use 5 barriers
B0, . . . ,B4. Using boundaries of S, we choose B1, . . . ,B4 as
follows:

B1 =0.65− i+ εb B2 = 1.65− i+ εb

B3 =4.95− v+ εb B4 = 5.95− v+ εb ,

where εb > 0 is small enough that I ⊂ int(
⋂4

i=1 Bi). In this case, we choose εb = 0.01. Notice that
such εb always exists by the definition. Next, we assume B0 =V and both have the following template:

B0 =V : c1(i−1.35)2 + c2(i−1.35)(v−5.65)+ c3(v−5.65)2−1 .

This template is chosen in a way that V is a quadratic function with minimum value of −1 for the point
of interest i = 1.35, v = 5.65. So far, we used these tricks to reduce the number of unknowns for barriers.

PRE-proceedings version; check www.eptcs.org for final version

H. Ravanbakhsh & S. Sankaranarayanan 15

Table 1: Results of Comparison with SCOTS on examples

Legend: n: # state variables, itr : # iterations, Time: total computation time, η : state discretization step,
τ: time step. All timings are in seconds and rounded, TO: timeout (> 10 hours).

Problem SCOTS CEGIS
ID n η τ itr Time δ Time
Ex. 5 2 0.162 0.12 18 0 10−4 3
Ex. 8 2 0.012 1.0 106 1 10−4 39
Ex. 6 3 0.22×0.1 0.3 404 989 10−4 1484
Ex. 3 4 0.03×0.13 0.005 48 304 10−5 3
Ex. 7 4 0.12×0.052 0.3 TO 10−4 5296

However, our method fails to find a certificate. Next, we add one more barrier (B5) to the formulation
and we use the following template for B5 : c4(i−0.9)2 + c5(i−0.9)(v−5.2)+ c6(v−5.05)2−1, which
is a quadratic function with minimum value of −1 for initial point i = 0.9, v = 5.2. This time, we can
successfully find a control certificate. The final barriers and level-sets of the Lyapunov function is shown
in Fig. 4.

Comparison: While abstraction based methods can provide a near optimal solution (are relatively com-
plete), these methods can be computationally expensive. On the other hand, our method is a Lyapunov-
based method and the solution is not necessarily (relatively) complete. For example, our approach as-
sumes that control certificates with a given form (that is given as input by user) exist . As such, the
existence of such certificates is not guaranteed and thus, our approach lacks the general applicability of a
fixed-point based synthesis. Also, for initialized problems our method needs an initial set as input, while
for the abstraction based methods, maximum controllable region can be obtained without the need for
specifying the initial set. However, our method is relatively more scalable thanks to recent development
in SMT solvers. Here, for the sake of completeness, we provide a brief comparison with SCOTS tool-
box [26] for the examples provided in this article. To compare Example 3, we use fat facet and assume
target set has a volume (otherwise, because of time discretization, SCOTS cannot find a solution). More
precisely, we use target set [1,1.2]× [−1,1]3 instead of [1,1]× [−1,1]3.

All the experiments are ran on a laptop with Core i7 2.9 GHz CPU and 16GB of RAM. The results are
reported in Table 1. We also note that if we use larger values for SCOTS parameters, SCOTS fails to solve
these problems (initial set is not a subset of controllable region). Table 1 shows that SCOTS performs
much better for Example 5 and 8 for which there are only 2 state variables. For Example 6, both methods
have similar performances. And for Example. 3 and Example.7, which have 4 state variables, our method
is faster.

6 Conclusions

In this paper, given a switched system, we addressed controller synthesis problems for RWS with com-
posite barriers. Specifically, we addressed uninitialized problems which are useful for building an ab-
straction, as well as initialized problems. For each problem, we provided sufficient conditions in terms of
“existence of a control certificate”. Also, we demonstrated that searching for a control certificate can be
encoded into constrained problems and solving these problems is computationally feasible. In the future,

PRE-proceedings version; check www.eptcs.org for final version

16 A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems

we wish to investigate how the initialized RWS problems can be extended to be used along fixed-point
computation based techniques as it allows more flexible switching strategies.

Acknowledgments

This work was funded in part by NSF under award numbers SHF 1527075 and CPS 1646556. All
opinions expressed are those of the authors and not necessarily of the NSF.

References

[1] Zvi Artstein (1983): Stabilization with relaxed controls. Nonlinear Analysis: Theory, Methods & Applica-
tions 7(11), pp. 1163–1173.

[2] Rayna Dimitrova & Rwitajit Majumdar (2014): Deductive control synthesis for alternating-time logics. In:
Embedded Software (EMSOFT), 2014 International Conference on, IEEE, pp. 1–10.

[3] L ElGhaoui & V Balakrishnan (1994): Synthesis of fixed-structure controllers via numerical optimization.
In: Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on, 3, IEEE, pp. 2678–2683.

[4] Sicun Gao, Soonho Kong & Edmund M. Clarke (2013): dReal: An SMT Solver for Nonlinear Theories over
the Reals. In: Intl. Conference on Automated Deduction (CADE), pp. 208–214.

[5] Antoine Girard, Giordano Pola & Paulo Tabuada (2010): Approximately bisimilar symbolic models for incre-
mentally stable switched systems. IEEE Transactions on Automatic Control 55(1), pp. 116–126.

[6] LCGJM Habets, Pieter J Collins & Jan H van Schuppen (2006): Reachability and control synthesis for
piecewise-affine hybrid systems on simplices. IEEE Transactions on Automatic Control 51(6), pp. 938–948.

[7] LCGJM Habets & Jan H Van Schuppen (2004): A control problem for affine dynamical systems on a full-
dimensional polytope. Automatica 40(1), pp. 21–35.

[8] Mohamed K Helwa & Mireille E Broucke (2013): Monotonic reach control on polytopes. Automatic Control,
IEEE Transactions on 58(10), pp. 2704–2709.

[9] Zhenqi Huang, Yu Wang, Sayan Mitra, Geir E Dullerud & Swarat Chaudhuri (2015): Controller synthesis
with inductive proofs for piecewise linear systems: An SMT-based algorithm. In: 2015 54th IEEE Conference
on Decision and Control (CDC), IEEE, pp. 7434–7439.

[10] Marius Kloetzer & Calin Belta (2008): A fully automated framework for control of linear systems from
temporal logic specifications. Automatic Control, IEEE Transactions on 53(1), pp. 287–297.

[11] Hui Kong, Fei He, Xiaoyu Song, William NN Hung & Ming Gu (2013): Exponential-condition-based barrier
certificate generation for safety verification of hybrid systems. In: Computer Aided Verification, Springer,
pp. 242–257.

[12] Daniel Liberzon (2012): Switching in systems and control. Springer Science & Business Media.

[13] Zhiyun Lin & Mireille E Broucke (2007): Reachability and control of affine hypersurface systems on poly-
topes. In: Decision and Control, 2007 46th IEEE Conference on, IEEE, pp. 733–738.

[14] Jun Liu, Necmiye Ozay, Ufuk Topcu & Richard M Murray (2013): Synthesis of reactive switching protocols
from temporal logic specifications. Automatic Control, IEEE Transactions on 58(7), pp. 1771–1785.

[15] Manuel Mazo Jr, Anna Davitian & Paulo Tabuada (2010): Pessoa: A tool for embedded controller synthesis.
In: Computer Aided Verification, Springer, pp. 566–569.

[16] Sebti Mouelhi, Antoine Girard & Gregor Gössler (2012): CoSyMA: A Tool for Controller Synthesis Us-
ing Multi-scale Abstractions. Research Report RR-8108, INRIA. Available at https://hal.inria.fr/
hal-00743982.

PRE-proceedings version; check www.eptcs.org for final version

H. Ravanbakhsh & S. Sankaranarayanan 17

[17] Sebti Mouelhi, Antoine Girard & Gregor Gössler (2013): CoSyMA: a tool for controller synthesis using multi-
scale abstractions. In: Proceedings of the 16th international conference on Hybrid systems: computation and
control, ACM, pp. 83–88.

[18] Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: TACAS, LNCS 4963,
Springer, pp. 337–340.

[19] Petter Nilsson & Necmiye Ozay (2014): Incremental Synthesis of Switching Protocols via Abstraction Re-
finement. In: Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, IEEE.

[20] Necmiye Ozay, Jun Liu, Priyanka Prabhakar & Richard M Murray (2013): Computing augmented finite
transition systems to synthesize switching protocols for polynomial switched systems. In: American Control
Conference (ACC), 2013, IEEE, pp. 6237–6244.

[21] Stephen Prajna, Antonis Papachristodoulou & Pablo A Parrilo (2002): Introducing SOSTOOLS: A general
purpose sum of squares programming solver. In: Decision and Control, 2002, Proceedings of the 41st IEEE
Conference on, 1, IEEE, pp. 741–746.

[22] Hadi Ravanbakhsh & Sriram Sankaranarayanan (2015): Counter-Example Guided Synthesis of Control Lya-
punov Functions for Switched Systems. In: Decision and Control (CDC), 2015 IEEE 54rd Annual Conference
on, IEEE.

[23] Hadi Ravanbakhsh & Sriram Sankaranarayanan (2016): Robust Controller Synthesis of Switched Sys-
tems Using Counterexample Guided Framework. In: Proceedings of the 13th International Conference
on Embedded Software, EMSOFT ’16, ACM, pp. 8:1–8:10, doi:10.1145/2968478.2968485. Available at
http://doi.acm.org/10.1145/2968478.2968485.

[24] Bartek Roszak & Mireille E Broucke (2006): Necessary and sufficient conditions for reachability on a sim-
plex. Automatica 42(11), pp. 1913–1918.

[25] Matthias Rungger, Manuel Mazo & Paulo Tabuada (2012): Scaling up controller synthesis for linear systems
and safety specifications. In: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, IEEE,
pp. 7638–7643.

[26] Matthias Rungger & Majid Zamani (2016): SCOTS: A tool for the synthesis of symbolic controllers. In:
Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, ACM, pp.
99–104.

[27] Armando Solar-Lezama (2008): Program synthesis by sketching. ProQuest.

[28] Eduardo D Sontag (1989): A ‘universal‘ construction of Artstein’s theorem on nonlinear stabilization. Sys-
tems & control letters 13(2), pp. 117–123.

[29] Ankur Taly, Sumit Gulwani & Ashish Tiwari (2011): Synthesizing switching logic using constraint solving.
International journal on software tools for technology transfer 13(6), pp. 519–535.

[30] Ankur Taly & Ashish Tiwari (2010): Switching logic synthesis for reachability. In: Proceedings of the tenth
ACM international conference on Embedded software, ACM, pp. 19–28.

[31] Weehong Tan & Andrew Packard (2004): Searching for control Lyapunov functions using sums of squares
programming. In: Allerton conference on communication, control and computing, pp. 210–219.

[32] Yuichi Tazaki & Jun-ichi Imura (2012): Discrete abstractions of nonlinear systems based on error propaga-
tion analysis. IEEE Transactions on Automatic Control 57(3), pp. 550–564.

[33] Wolfgang Thomas, Thomas Wilke et al. (2002): Automata, logics, and infinite games: a guide to current
research. 2500, Springer Science & Business Media.

[34] Peter Wieland & Frank Allgöwer (2007): Constructive safety using control barrier functions. IFAC Proceed-
ings Volumes 40(12), pp. 462–467.

[35] Tichakorn Wongpiromsarn, Ufuk Topcu & Andrew Lamperski (2016): Automata theory meets barrier cer-
tificates: Temporal logic verification of nonlinear systems. IEEE Transactions on Automatic Control 61(11),
pp. 3344–3355.

PRE-proceedings version; check www.eptcs.org for final version

18 A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems

[36] Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu & Richard M Murray (2011): TuLiP: a
software toolbox for receding horizon temporal logic planning. In: Proceedings of the 14th international
conference on Hybrid systems: computation and control, ACM, pp. 313–314.

[37] Xiangru Xu, Paulo Tabuada, Jessy W Grizzle & Aaron D Ames (2015): Robustness of control barrier func-
tions for safety critical control. IFAC-PapersOnLine 48(27), pp. 54–61.

[38] Majid Zamani, Giordano Pola, Manuel Mazo & Paulo Tabuada (2012): Symbolic models for nonlinear con-
trol systems without stability assumptions. IEEE Transactions on Automatic Control 57(7), pp. 1804–1809.

PRE-proceedings version; check www.eptcs.org for final version

To appear in EPTCS.
c© E. Firman, S. Maoz, & J.O. Ringert

This work is licensed under the
Creative Commons Attribution License.

Performance Heuristics for GR(1) Synthesis
and Related Algorithms

Elizabeth Firman Shahar Maoz Jan Oliver Ringert
School of Computer Science
Tel Aviv University, Israel

Reactive synthesis for the GR(1) fragment of LTL has been implemented and studied in many works.
In this workshop paper we present and evaluate a list of heuristics to potentially reduce running times
for GR(1) synthesis and related algorithms. The list includes early detection of fixed-points and
unrealizability, fixed-point recycling, and heuristics for unrealizable core computations. We evaluate
the presented heuristics on SYNTECH15, a total of 78 specifications of 6 autonomous Lego robots,
written by 3rd year undergraduate computer science students in a project class we have taught, as
well as on several benchmarks from the literature. The evaluation investigates not only the potential
of the suggested heuristics to improve computation times, but also the difference between existing
benchmarks and the robot’s specifications in terms of the effectiveness of the heuristics.

1 Introduction

Reactive synthesis is an automated procedure to obtain a correct-by-construction reactive system from its
temporal logic specification [28]. Rather than manually constructing a system and using model checking
to verify its compliance with its specification, synthesis offers an approach where a correct implementa-
tion of the system is automatically obtained, if such an implementation exists.

GR(1) is a fragment of LTL, which has an efficient symbolic synthesis algorithm [1, 27] and whose
expressive power covers most of the well-known LTL specification patterns of Dwyer et al. [6, 19].
GR(1) synthesis has been used and extended in different contexts and for different application domains,
including robotics [16], scenario-based specifications [23], aspect languages [22], event-based behavior
models [5], and device drivers [30], to name a few.

In this workshop paper we present and investigate performance heuristics for algorithms for GR(1)
synthesis in case a specification is realizable and Rabin(1) synthesis [14, 24] in case the specification is
unrealizable. For the case of unrealizability we also investigate heuristics for speeding up the calculation
of unrealizable cores [4, 14], i.e., minimal unrealizable subsets that explain a cause of unrealizability.
For each heuristics we present (1) its rationale including the source of the heuristics, if one exists, (2)
how we implement it on top of the basic algorithms, and (3) one example where the heuristics is very
effective and one example where it does not yield an improvement of performance.

All heuristics we have developed and studied, satisfy three main criteria. First, they are generic, i.e.,
they are not optimized for a specific specification or family of specifications. Second, they are all low
risk heuristics, i.e., in the worst case they may only have small negative effects on performance. Finally,
they are conservative, i.e., none of the heuristics changes the results obtained from the algorithms.

We evaluate the presented heuristics on two sets of specifications. The first set, SYNTECH15, con-
sists of 78 specifications of 6 autonomous Lego robots, written by 3rd year undergraduate computer
science students in a project class we have taught. The second set consists of specifications for the ARM
AMBA AHB Arbiter (AMBA) and a Generalized Buffer from an IBM tutorial (GenBuf), which are the
most popular GR(1) examples in literature, used, e.g., in [1, 4, 14, 31]. Our evaluation addresses the

PRE-proceedings version; check www.eptcs.org for final version

2 Performance Heuristics for GR(1) Synthesisand Related Algorithms

effectiveness of each of the heuristics individually and together, and whether there exists a difference in
effectiveness with regard to different sets of specifications.

To the best of our knowledge, a comprehensive list of heuristics for GR(1) and its systematic evalu-
ation have not yet been published.

2 Preliminaries

LTL and synthesis We repeat some of the standard definitions of linear temporal logic (LTL), e.g., as
found in [1], a modal temporal logic with modalities referring to time. LTL allows engineers to express
properties of computations of reactive systems. The syntax of LTL formulas is typically defined over a
set of atomic propositions AP with the future temporal operators X (next) and U (until).

The syntax of LTL formulas over AP is ϕ ::= p | ¬ϕ | ϕ ∨ϕ | Xϕ | ϕUϕ for p ∈ AP. The semantics
of LTL formulas is defined over computations. For Σ = 2AP, a computation u = u0u1..∈ Σω is a sequence
where ui is the set of atomic propositions that hold at the i-th position. For position i we use u, i |= ϕ to
denote that ϕ holds at position i, inductively defined as:

• u, i |= p iff p ∈ ui;
• u, i |= ¬φ iff u, i 6|= φ ;
• u, i |= ϕ1∨ϕ2 iff u, i |= ϕ1 or u, i |= ϕ2;

• u, i |= Xϕ iff u, i+1 |= ϕ;
• u, i |= ϕ1Uϕ2 iff ∃k≥ i: u,k |= ϕ2 and ∀ j, i≤

j < k: u, j |= ϕ1.

We denote u,0 |= ϕ by u |= ϕ . We use additional LTL operators F (finally), G (globally), ONCE (at
least once in the past) and H (historically, i.e., always in the past) defined as:

• Fϕ := true U ϕ;
• Gϕ := ¬F¬ϕ;

• u, i |= ONCEϕ iff ∃0≤ k ≤ i: u,k |= ϕ;
• u, i |= Hϕ iff ∀0≤ k ≤ i: u,k |= ϕ .

LTL formulas can be used as specifications of reactive systems where atomic propositions are inter-
preted as environment (input) and system (output) variables. An assignment to all variables is called a
state. Winning states are states from which the system can satisfy its specification. A winning strategy
for an LTL specification ϕ prescribes the outputs of a system that from its winning states for all envi-
ronment choices lead to computations that satisfy ϕ . A specification ϕ is called realizable if a strategy
exists such that for all initial environment choices the initial states are winning states. The goal of LTL
synthesis is, given an LTL specification, to find a strategy that realizes it, if one exists.

µ-Calculus and Fixed-Points The modal µ-calculus is a fixed-point logic [15]. It extends modal logic
with least (µ) and greatest (ν) fixed points. We use the µ-calculus over the power set lattice of a finite
set of states S, i.e., the values of fixed-points are subsets of S. For monotonic functions ψ over this
lattice and by the Knaster-Tarski theorem the fixed points µX .ψ(X) and νY.ψ(Y) are uniquely defined
and guaranteed to exist. The fixed-points can be computed iteratively [10] in at most |S| iterations due to
monotonicity of ψ:

• µX .ψ(X): From X0 :=⊥ and Xi+1 := ψ(Xi) obtain µX .ψ(X) := X f for X f = ψ(X f) (note f ≤ |S|)
• νY.ψ(Y): From Y0 :=> and Yi+1 := ψ(Yi) obtain νY.ψ(Y) := Yf for Yf = ψ(Yf) (note f ≤ |S|)

The fixed-point computation is linear in |S|. When states are represented by a set of atomic propo-
sitions (or Boolean variables) AP then |S| = 2|AP|, i.e., the number of iterations is exponential in AP.

PRE-proceedings version; check www.eptcs.org for final version

E. Firman, S. Maoz, & J.O. Ringert 3

Because the least (greatest) fixed-point is unique and ψ is monotonic we can safely start the iteration
from under-approximations (over-approximations). Good approximations can reduce the number of it-
erations to reach the fixed-point.

GR(1) Synthesis GR(1) synthesis [1] handles a fragment of LTL where specifications contain initial
assumptions and guarantees over initial states, safety assumptions and guarantees relating the current
and next state, and justice assumptions and guarantees requiring that an assertion holds infinitely many
times during a computation. A GR(1) synthesis problem consists of the following elements [1]:
• X input variables controlled by the environment;
• Y output variables controlled by the system;
• θ e assertion over X characterizing initial environment states;
• θ s assertion over X ∪Y characterizing initial system states;
• ρe(X ∪Y ,X) transition relation of the environment;
• ρs(X ∪Y ,X ∪Y) transition relation of the system;
• Je

i∈1..n justice constraints of the environment to satisfy infinitely often;
• Js

j∈1..m justice constraints of the system to satisfy infinitely often.
GR(1) synthesis has the following notion of (strict) realizability [1] defined by the LTL formula:

ϕsr = (θ e→ θ s)∧ (θ e→ G((Hρe)→ ρs))∧ (θ e∧Gρe→ (
∧

i∈1..n

GFJe
i →

∧

j∈1..m

GFJs
j)).

Specifications for GR(1) synthesis have to be expressible in the above structure and thus do not cover
the complete LTL. Efficient symbolic algorithms for GR(1) realizability checking and strategy synthesis
for ϕsr have been presented in [1, 27]. The algorithm of Piterman et al. [27] computes winning states for
the system, i.e., states from which the system can ensure satisfaction of ϕsr. We denote the states from
which the system can force the environment to visit a state in R by (R) defined as:

(R) = {q ∈ 2X ∪Y | ∀x ∈ 2X : ¬ρe(q,x)∨∃y ∈ 2Y : (ρs(q,〈x,y〉)∧〈x,y〉 ∈ R)}.

The system winning states are given by the following formula using µ-calculus notation:

Wsys = νZ.
m⋂

j=1

µY.
n⋃

i=1

νX .(Js
j ∩ (Z))∪ (Y)∪ (¬Je

i ∩ (X)) (1)

The algorithm from [1] for computing the set Wsys is shown in Alg. 1. Note that this algorithm already
contains some performance improvements over the naive evaluation of Eqn. (1), e.g., the nested fixed-
points Y are not computed independently for each Js

j and Z; instead the value of Z is updated before
computing Js

j+1. Algorithm 1 stores intermediate computation results in arrays Z[] (L. 19), Y[][]
(L. 16), and X[][][] (L. 14). This memory is used for strategy construction [1].

Unrealizability and Rabin(1) Game A specification ϕ is unrealizable if there is a counter-strategy
in which the environment can force the system to violate at least one of its guarantees while satisfying
all the environment assumptions. Maoz and Sa’ar [25] show how to compute the fixed-point algorithm
given by Könighofer et al. [14] by playing a generalized Rabin game with one acceptance pair (Rabin(1)
game1). The algorithm computes the set of the winning states for the environment by calculating cycles

1We use Rabin(1) to refer to the dual of GR(1) to avoid confusion with “Generalized Rabin(1) synthesis” as defined by
Ehlers [7], where assumptions and guarantees are expressed by generalized Rabin(1) conditions.

PRE-proceedings version; check www.eptcs.org for final version

4 Performance Heuristics for GR(1) Synthesisand Related Algorithms

Algorithm 1 GR(1) game algorithm from [1] to
compute system winning states Z

1: Z = true
2: while not reached fixed-point of Z do
3: for j = 1 to |Js| do
4: Y = false; cy = 0
5: while not reached fixed-point of Y do
6: start = Js

j ∧ Z∨ Y
7: Y = false
8: for i = 1 to |Je| do
9: X = Z // better approx. than true, see [1]

10: while not reached fixed-point of X do
11: X = start ∨ (¬Je

i ∧ X)
12: end while
13: Y = Y ∨X
14: X[j][i][cy]← X
15: end for
16: Y[j][cy++]← Y
17: end while
18: Z = Y
19: Z[j] = Y
20: end for
21: end while
22: return Z

Algorithm 2 Rabin(1) game algorithm from [25,
29] to compute environment winning states Z

1: Z = false;cz = 0
2: while not reached fixed-point of Z do
3: for j = 1 to |Js| do
4: Y = true
5: while not reached fixed-point of Y do
6: start = ¬Js

j ∧ Y
7: Y = true
8: for i = 1 to |Je| do
9: pre = Z∨ Je

i ∧ start
10: X = false;cx = 0
11: while not reached fixed-point of X do
12: X = pre∨ (¬Js

j ∧ X)
13: X[cz][i][cx++]← X
14: end while
15: Y = Y ∧X
16: end for
17: end while
18: Z = Z∨Y
19: Z[cz++]← Y
20: end for
21: end while
22: return Z

violating at least one justice guarantee Js
i while satisfying all justice assumptions Je

j . Cycles can be left by
the system iff the environment can force it to a future cycle (ensures termination) or to a safety guarantee
violation.

We denote the states from which the environment can force the system to visit a state in R by (R)
defined as:

(R) = {q ∈ 2X ∪Y | ∃x ∈ 2X : ρe(q,x)∧∀y ∈ 2Y : (¬ρs(q,〈x,y〉)∨〈x,y〉 ∈ R)}.

The set of environment wining states is given by the following formula using µ-calculus notation:

Wenv = µZ.
m⋃

j=1

νY.
n⋂

i=1

µX .(¬Js
j ∪ (Z))∩ (Y)∩ (Je

i ∪ (X)) (2)

The algorithm from [25] (extended to handle Je as implemented in JTLV [29]) for computing the
set Wenv is shown in Alg. 2. Again, the algorithm already implements some optimizations over the
naive implementation of Eqn. (2), e.g., the early update of Z in L. 18. Algorithm 2 stores intermediate
computation results in arrays Z[] (L. 19) and X[][][] (L. 13) for strategy construction.

Delta Debugging (DDMin) The Delta Debugging algorithm [35] (DDMin) finds a locally minimal
subset of a set E for a given monotonic criterion check. We show the DDMin algorithm in Alg. 3. The
input of the algorithm are a set E and the number n of partitions of E to check. The algorithm starts with
n = 2 and refines E and n in recursive calls according to different cases (L. 6, L. 11, and L. 14). The
computation starts by partitioning E into n subsets and evaluating check on each subset part (L. 4) and
its complement (L. 10). If check holds (L. 6 or L. 11), the search is continued recursively on the subset

PRE-proceedings version; check www.eptcs.org for final version

E. Firman, S. Maoz, & J.O. Ringert 5

part (or its complement), until part (or its complement) has no subsets that satisfy check. If check
neither holds on any subset part nor on the complements the algorithm increases the granularity of the
partitioning to 2n (L. 14) and restarts.

One application of DDMin is to find an unrealizable core, a locally minimal subset of system guar-
antees for which a specification is unrealizable. To compute an unrealizable core the method check

performs a realizability check for the given subset part of system guarantees.

Algorithm 3 Delta Debugging algorithm DDMin from [35] as a recursive method that minimizes a set
of elements E by partitioning it into n partitions (initial value n = 2)

1: if n> |E| then
2: return E
3: end if
4: for part ∈ partition(E,n) do
5: if check(part) then
6: return ddmin(part, 2)
7: end if
8: end for

9: for part ∈ partition(E,n) do
10: if check(E \ part) then
11: return ddmin(E \ part, n−1)
12: end if
13: end for
14: return ddmin(E, min(|E|,2n))

Syntax in Examples Throughout the paper we present listings with example specifications that de-
scribe GR(1) synthesis problems. We use the following syntax in these specifications:

• X ,Y : variables are either environment controlled (X) and introduced by the keyword env or
system controlled (Y) and introduced by the keyword sys; variables have a type and a name, e.g.,
sys boolean[4] button declares a system variable of boolean array type of size 4 with the
name button.
• θ e,ρe,Je: assumptions are introduced by the keyword asm; initial assumptions, i.e., conjuncts of

θ e, are propositional expressions over X , safety assumptions, i.e., conjuncts of ρe, start with the
temporal operator G and are propositional expressions over X and Y that may contain the operator
next to refer to successor values of variables in X , and justice assumptions, i.e., elements Je

i , start
with the temporal operators GF and are propositional expressions over X and Y .
• θ s,ρs,Js: guarantees are introduced by the keyword gar; guarantees are defined analogously to

assumptions with the difference that θ s may also refer to variables in Y and ρs may apply the
operator next also to variables in Y .

We denote propositional operators by standard symbols, i.e, conjunction (∧) by &, disjunction (∨) by
|, and negation (¬) by !.

3 Suggested Performance Heuristics

We now present a list of heuristics for optimizing running times. The first list applies to the GR(1)
and Rabin(1) fixed-point algorithms (Sect. 3.1). The second list applies to computing unrealizable cores
(Sect. 3.2). For each heuristics we present a rationale including a source of the heuristics, the heuristics
and how we implemented it in Alg. 1-3, and two examples for specifications where (1) the heuristics is
effective and where (2) it does not yield an improvement.

PRE-proceedings version; check www.eptcs.org for final version

6 Performance Heuristics for GR(1) Synthesisand Related Algorithms

3.1 GR(1) and Rabin(1) Fixed-Point Algorithm

3.1.1 Early detection of fixed-point

Rationale. The GR(1) game and the Rabin(1) game iterate over the justice guarantees in the outermost
fixed-point. Each iteration refines the set of winning states based on the justice guarantee and the calcu-
lated set from the previous iteration (for-loop in Alg. 1, L. 3 and Alg. 2, L. 3). Computing a fixed-point
for the same justice guarantee Js

j and the same set Z always yields the same set of winning states. We
can exploit the equality to detect if we will reach a fixed-point without completing the for-loop, i.e.,
without computing the fixed-points for all justice guarantees. We found this heuristics implemented in
the Rabin(1) game in JTLV [29]. We have not seen a similar implementation for the GR(1) game.

Heuristics. For each iteration of the justice guarantees Js we save the resulting set of winning states
for justice Js

j as Z[j] (Rabin(1), Z[cz]). Starting in the second iteration of the outermost fixed-point we
compare for each justice Js

j the resulting Z of its iteration to the previously computed Z[j] (Rabin(1),
Z[cz− |Js|]). If the sets are equal the algorithm reached a fixed-point with winning states Z. The
heuristics is correct since the next iteration of justice Js

j⊕1 will start from the set Z[j] (Rabin(1), Z[cz−
|Js|]), which is the same set it started from when it was previously computed. Hence, ∀k> j : Z[k]=Z[j]
(Z[cz−|Js|]=Z[cz−|Js|+k]), so by definition we reached a fixed-point for k = n (all justice guarantees).

Examples. Given the realizable GR(1) specification in Listing 1, the standard GR(1) algorithm com-
putes the set of winning states in two iterations of the outer-most loop (Alg. 1, L. 2). The value of Z
becomes a[0]∧a[1]∧a[2]∧a[3] after the first step of the loop over the justice guarantees Js (L. 3). Early
fixed-point detection allows the algorithm to stop after checking Js

1 for the second time (|Js|+ 1 execu-
tions of body of loop in L. 3) instead of going over all justice guarantees again (2 · |Js| executions of body
of loop in L. 3). For the similar specification in Listing 2 with a different order of justices early fixed-
point detection does not yield any improvement (2 · |Js| executions of body of loop in L. 3 are required)
because the last justice guarantee changed the fixed-point.

3.1.2 Early detection of unrealizability

Rationale. The GR(1) game and the Rabin(1) game compute all winning states of the system and
environment. When running GR(1) synthesis or checking realizability we are interested whether there
exists a winning system output for all initial inputs from the environment. When running Rabin(1)
synthesis or checking unrealizability we are interested whether there is one initial environment input

Examples: Early Detection of Fixed-Point

1 sys boolean [4] a;

2 gar G (a[0] = next(a[0])) &

3 (a[1] = next(a[1])) &

4 (a[2] = next(a[2])) &

5 (a[3] = next(a[3]));

6 gar GF a[0] & a[1] & a[2] & a[3];

7 gar GF a[0];

8 gar GF a[1];

9 gar GF a[2];

Listing 1: Heuristics very effective

1 sys boolean [4] a;

2 gar G (a[0] = next(a[0])) &

3 (a[1] = next(a[1])) &

4 (a[2] = next(a[2])) &

5 (a[3] = next(a[3]));

6 gar GF a[0];

7 gar GF a[1];

8 gar GF a[2];

9 gar GF a[0] & a[1] & a[2] & a[3];

Listing 2: Heuristics does not yield improvement

PRE-proceedings version; check www.eptcs.org for final version

E. Firman, S. Maoz, & J.O. Ringert 7

Examples: Early Detection of Unrealizability

1 sys Int (0..10000) c;

2 gar c=10000;

3 gar G next(c)=c+1;

4 gar GF (c mod 2 = 1);

Listing 3: Heuristics very effective

1 sys Int (0..10000) c;

2 gar c=0; // only difference

3 gar G next(c)=c+1;

4 gar GF (c mod 2 = 1);

Listing 4: Heuristics does not yield improvement

such that the environment wins for all system outputs. Thus, in both cases it is not necessary to compute
all winning states, instead we can stop computation once we can determine the outcome for the initial
states.

Heuristics. The outermost fixed-point in the GR(1) game is a greatest fixed-point. The game starts
from the set of all states and refines it to the winning states. Thus, after the computation of the winning
states for a justice guarantee we check whether the system still wins from all initial inputs. We imple-
mented this check in Alg. 1 after L. 19. If the system loses for at least one initial environment input we
stop the computation of winning states.

The outermost fixed-point in the Rabin(1) game is a least fixed-point. The game starts from an
empty set of states and extends it to the winning states. Thus, after the computation of the winning
states for a justice guarantee we check whether the environment now wins from some initial input. We
implemented this check in Alg. 2 after L. 19. If the environment wins for at least one initial input we
stop the computation of winning states.

Examples. Given the unrealizable GR(1) specification in Listing 3, the standard GR(1) algorithm com-
putes the system winning states starting with all possible values of c. In every iteration of the Z fixed-
point (see Alg. 1, L. 2) two states are removed (the states with largest uneven and even value of c). For
an integer domain 0..n (n=10000 in Listing 3) the GR(1) algorithm will compute n/2 justice guaran-
tee iterations. Our heuristics will compute only 2 justice guarantee iterations for the example shown in
Listing 3. The heuristics will not yield an improvement over the regular GR(1) implementation for the
example shown in Listing 4. Here the losing initial state is only detected in iteration n/2.

The same examples are also effective and non-effective examples for the Rabin(1) game algorithm.

3.1.3 Fixed-point recycling

Rationale. The GR(1) game and the Rabin(1) game are solved by computing nested fixed-points of
monotonic functions (see Eqn. (1) and Eqn. (2)). The time complexity of a straightforward implementa-
tion of the fixed-point computation is cubic in the state space and can be reduced to quadratic time [2],
as mentioned in [1]. This method can also be applied to the Rabin(1) game. Interestingly, although
fixed-point recycling is used to obtain quadratic instead of cubic time complexity of the GR(1) algorithm
[1], to the best of our knowledge no GR(1) tool has implemented it following [2] and it has never been
systematically evaluated.

Heuristics. Fixed-points are usually computed by fixed-point iteration starting from ⊥ (least fixed-
points) or > (greatest fixed-points) until a fixed point is reached. The same principle works for the
evaluation of nested fixed-points where for each iteration step of the outer fixed-point, the inner fixed-
point is computed from scratch. The main idea of [2] is to exploit the monotonicity of fixed-point

PRE-proceedings version; check www.eptcs.org for final version

8 Performance Heuristics for GR(1) Synthesisand Related Algorithms

Examples: Fixed-Point Recycling

1 sys Int (0..10000) c;

2 sys boolean two;

3 gar G two; // force two Z- iterations

4 gar G (next(c) = c+1) |

5 (c=10000 & next(c) = 0);

6 gar GF c = 0;

7 asm GF c = 10000;

Listing 5: Heuristics very effective

1 sys Int (0..10000) c;

2 sys boolean two;

3 gar G two; // force two Z- iterations

4 gar G (next(c) = c+1) |

5 (c=10000 & next(c) = 0);

6 gar GF c = 0;

7 asm GF c = 0; // only difference

Listing 6: Heuristics does not yield improvement

computations and start nested fixed-point calculations from approximations computed in earlier nested
computations. Consider the formula µZ.νY.µX .ψ(Z,Y,X), iteration k + 1 of Z, and iteration l of Y :
due to monotonicity Zk ⊆ Zk+1 and Y of Zk

l ⊆ Y of Zk+1
l . Thus, the fixed-point X for Zk and Y of Zk

l is an
under-approximation of the fixed-point X for Zk+1 and Y of Zk+1

l (see [2] for more details).
In both, the GR(1) algorithm and the Rabin(1) algorithm, the fixed-point computations also depend

on justice assumptions Je
i and justice guarantees Js

j . This dependence does not interfere with monotonic-
ity of the computation. However, the algorithms compute |Je| · |Js| values of the fixed-point X for each
iteration of Y (stored in array X[][][] in Alg. 1, L. 14).

We implemented this heuristics in the GR(1) game Alg. 1 with a modified start value for the fixed-
point computation of X in L. 9. Unless the algorithm computes the first iteration of Z the value of
X is set to the previously computed result for the same justice assumption Je

i and justice guarantee Js
j

and same iteration cy of Y , i.e., X is set to memory cell X[j][i][cy] intersected with Z. This value
is an over-approximation of the greatest fixed-point X and its computation likely terminates after fewer
iterations.

Similarly, we implemented the fixed-point recycling heuristics in the Rabin(1) game Alg. 2 with a
modified start value for the fixed-point computation of X in L. 10. Unless the algorithm computes the
first iteration of Z the value of X is set to the previously computed result for the same justice assumption
Je

i and justice guarantee Js
j for the same iteration of Y . This value is an under-approximation of the least

fixed-point X and its computation likely terminates after fewer iterations. Note that in Alg. 2 the fixed
point value of X is only stored for the last iteration of Y (L. 13). We had to change the implementation
to store X for all iterations of Y to use fixed-point recycling as described in [2].

It is important to note that this heuristics changes the worst-case running time of both algorithms
from O(|Je| · |Js| · |N|3) to O(|Je| · |Js| · |N|2) [1, 2].

Examples. Consider the realizable GR(1) specification in Listing 5. The variable c models a counter
from 0 to 10,000 that increases and resets to 0 when reaching 10,000. The second variable two serves
only the purpose of ensuring two iterations of the Z fixed-point (recycling cannot happen in the first
iteration). In the first iteration of Z and Y the nested computation of the X fixed-point requires 10,000
iterations (in each iteration losing one state to end with two & x=0). In the second Z and first Y iter-
ation the same computation repeats. Here, the fixed-point recycling heuristics starts from two & x=0

and finishes after one iteration instead of additional 10,000. It is important to note that on the same
specification without variable two the heuristics would not yield an improvement because a single Z
iteration is enough to detect that all states are winning states. As another example for no improvement,
consider the slightly modified specification from Listing 6. Here the single justice guarantee and justice
assumption coincide and each nested computation of the X fixed-point requires two iterations with and
without recycling.

PRE-proceedings version; check www.eptcs.org for final version

E. Firman, S. Maoz, & J.O. Ringert 9

Examples: Contained Sets in DDMin

1 sys boolean x;

2 gar g1: x;

3 gar g2: G TRUE;

4 gar g3: G TRUE;

5 gar g4: G !x;

Listing 7: Heuristics very effective

1 sys boolean x;

2 gar g1: FALSE;

3 gar g2: G TRUE;

4 gar g3: G TRUE;

5 gar g4: G TRUE;

Listing 8: Heuristics does not yield improvement

3.2 Unrealizable Core Calculation

3.2.1 Contained sets

Rationale. The delta debugging algorithm DDMin shown in Alg. 3 might check subsets of guarantees
which are contained in previously checked realizable subsets (e.g., after increasing the number of parti-
tions to 2n when all other checks failed). In these cases we don’t have to execute the costly realizability
check: a subset part of a realizable set E (failure of check(E)) is also realizable.

This heuristics was mentioned in [36] and also implemented for unrealizable core calculation in [14].

Heuristics. We extend the generic DDMin algorithm shown in Alg. 3. Before checking a candidate set
E ′, i.e., executing check(E ′), we look up whether E ′ is a subset of any previously checked set E with
negative evaluation of check(E).

Examples. Given the unrealizable GR(1) specification in Listing 7, the computation of an unrealizable
core based on DDMin from Alg. 3 calls the method check with the following subsets of guarantees
(positive results of check are underlined): {g1,g2} (L. 5, n = 2), {g3,g4} (L. 5, n = 2), {g3,g4}∗
(L. 10, n = 2), {g1,g2}∗ (L. 10, n = 2), {g1}∗ (L. 5, n = 4), {g2}∗ (L. 5, n = 4), {g3}∗ (L. 5, n = 4),
{g4}∗ (L. 5, n = 4), {g2,g3,g4} (L. 10, n = 4), {g1,g3,g4} (L. 10, n = 4), {g1}∗ (L. 5, n = 3), {g3}∗
(L. 5, n = 3), {g4}∗ (L. 5, n = 3), {g3,g4}∗ (L. 10, n = 3), {g1,g4} (L. 10, n = 3), {g1}∗ (L. 5, n = 2),
{g4}∗ (L. 5, n = 2), {g4}∗ (L. 10, n = 2), and {g1}∗ (L. 10, n = 2). Out of these 19 calls to check

the described heuristics will avoid running the realizability check in the 13 cases marked with a star
(∗). Given the similar unrealizable specification in Listing 8, the described heuristics does not yield any
improvement. The method check is never invoked on a subset that it failed on. It is invoked on: {g1,g2}
(L. 5, n = 2) and {g1} (L. 5, n = 2).

3.2.2 Incremental GR(1) for similar candidates

Rationale. Due to the nature of the DDMin algorithm (Alg. 3), there are multiple calls to check real-
izability of subsets of guarantees. Some of the subsets share elements. We can try to reuse computation
results from previous calls to check for related subsets of guarantees to speed up the computation of
fixed-points, both in Rabin(1) and GR(1) games.

Heuristics. The main idea is to reuse results of previous computations of the GR(1) game (Alg. 1) or
the Rabin(1) game (Alg. 2). We identified three cases in DDMin (Alg. 3). In each case we use different
methods to reuse the computations from previous rounds.

PRE-proceedings version; check www.eptcs.org for final version

10 Performance Heuristics for GR(1) Synthesisand Related Algorithms

Examples: Incremental GR(1) in DDMin

1 sys boolean x;

2 sys boolean y;

3 gar g1: G !y;

4 gar g2: G !x;

5 gar g3: GF !y;

6 gar g4: G x;

Listing 9: Heuristics very effective

1 sys boolean x;

2 sys boolean y;

3 gar g1: G !y;

4 gar g2: G next(!x); // changed

5 gar g3: GF !y;

6 gar g4: GF x; // changed

Listing 10: Heuristics does not yield improvement

Case 1: An unrealizable subset parent was found (the set part in Alg. 3, L. 5) and DDMin descends
to perform the search on subsets of parent, starting with n = 2. We examine the differences between
parent and its current subset of guarantees to check. We have the following scenarios:

1. Only initial guarantees were removed from parent: In both the GR(1) and Rabin(1) games we
can reuse the winning states (Z in Alg. 1 and Alg. 2) that were computed for parent, and preform only
a simple check for realizability. For GR(1) we check if the system can win from all its initial states. For
Rabin(1) we check if the environment can win for some of its initial state.

2. Only safety guarantees were removed from parent: Since there are less constraints the attractors
Y are larger, hence the set of winning states Z can be larger. In GR(1) we compute Z using greatest fixed-
point, so we cannot reuse the previously computed Zprev to initialize Z. However, Zprev is equivalent to
the values Y stored as Z[j]in Alg. 1, L. 19 in the last fixed-point iteration of Z. Thus, Zprev is a safe
under-approximation of the least fixed-point Y and we change the initialization of Y in line 4 to Y = Zprev.

3. Only justice guarantees were removed from parent: We can reuse all information of the previous
computation up to the first removed justice guarantee. We reuse the memory Zprev, Yprev, and Xprev

from the first iteration of Z on parent up to the first removed justice guarantee. Then we continue the
computation.

Case 2: All subsets part of parent are realizable and DDMin continues with complements in Alg. 3,
L. 9: In this case and for n > 2 the candidates E \ part contain previously checked and realizable can-
didates. Our main observation is that the system winning states for guarantees E \ part cannot be more
than for any of its subsets. We can check realizability of a GR(1) game by initializing its greatest fixed-
point Z to the intersection of system winning states Zprev of previously computed subsets. Alternatively,
we can check realizability with a Rabin(1) game by initializing its least fixed point Z to the union of
environment winning states Zprev of previously computed subsets.

Case 3: All subsets and complements are realizable and DDMin increases search granularity in
Alg. 3, L. 14: For the new run Case 1 applies (with the previous parent) and Case 2 applies when
checking complements of the sets with higher granularity.

Examples. The specification in Listing 9 is unrealizable because the system cannot satisfy g2 and g4

together. The first set that includes both guarantees in a check of DDMin (Alg. 3, L. 9) is {g2,g3,g4}.
Previously computed winning states are states with x=true for {g2} and x=false for {g3, g4}. Their
intersection is empty and determines that {g2,g3,g4} is unrealizable without even playing a game. The
second specification in Listing 10 is very similar. Again the reason for unrealizability are guarantees g2
and g4. However, at the same DDMin step as before the previously computed winning states for subsets
of {g2,g3,g4} are all states for {g2} and all states for {g3, g4}. The intersection of these winning
states is still the set of all states. In this case our incremental heuristics does not yield improvement.

PRE-proceedings version; check www.eptcs.org for final version

E. Firman, S. Maoz, & J.O. Ringert 11

Examples: GR(1) game vs. Rabin(1) game

1 env boolean y;

2 sys Int (0..127) x;

3 asm GF !y;

4 gar G y -> next(x)=x+1;

Listing 11: Heuristics very effective

1 env boolean y;

2 sys Int (0..127) x;

3

4 gar G y -> next(x)=x+1;

Listing 12: Heuristics does not yield improvement

3.2.3 GR(1) game vs. Rabin(1) game

Rationale. GR(1) games and Rabin(1) games are determined: each game is either unrealizable for the
system player or unrealizable for the environment player. To check for unrealizability, it is thus equally
possible to play the Rabin(1) game or GR(1) game.

The implementations of Könighofer et al. [14] and Cimatti et al. [4] use the GR(1) game for checking
realizability during unrealizable core computation.

Heuristics. We replace the implementation of check. Instead of playing the GR(1) game we play the
Rabin(1) game and negate the result.

Examples. The specification in Listing 11 is unrealizable because the environment can force the system
to a deadlock state: the states x = 127 have no successor for environment input y = true. Both the
Rabin(1) game and the GR(1) game require O(n) (here n = 127) Z iterations to compute the Z fixed-
point. Each Z iteration requires two Y iterations. In the Rabin(1) game, each Y iteration requires two X
iterations. However, in the GR(1) game2 another O(n) X iterations are required for each Y iteration. For
the similar specification in Listing 12 the numbers of fixed-point iterations of the Rabin(1) game are the
same and here also coincide with the number of iterations of the GR(1) game and the heuristics does not
contribute.

4 Evaluation

Our evaluation is divided into two parts following the division of heuristics into performance heuristics
for the GR(1) and the Rabin(1) algorithm from Sect. 3.1 and performance heuristics for calculating
unrealizable cores from Sect. 3.2. For both, we address the following two research questions:

RQ1 What is the effectiveness of each of the heuristics individually and together?

RQ2 Is there a difference in effectiveness with regard to different sets of specifications?

4.1 Procedure

We used the GR(1) game and Rabin(1) game implementations shown in Alg. 1 and Alg. 2 as reference
(recall that these algorithms already contain performance improvements over naive implementations fol-
lowing the fixed-point formulation, see Sect. 2). We have implemented these two algorithms and all our
suggested heuristics in C using CUDD 3.0 [32]. We measure running-times in nanoseconds using C

2For this example we assume initialization of X = true in Alg. 1, L. 9 instead of Z. Note that the optimization of X = Z
from [1], that we used in all our experiments as base case, achieves fewer X iterations.

PRE-proceedings version; check www.eptcs.org for final version

12 Performance Heuristics for GR(1) Synthesisand Related Algorithms

APIs. Our implementation starts with the BDD variable order as it appears in the specification. We use
the default dynamic variable reordering of CUDD.

We have executed each realizability check for every specification 50 times (see Sect. 4.5). We aggre-
gated the 50 runs of each specification as a median. The ratios we report are ratios of medians of each
heuristics compared to a base case (original implementations of algorithms as shown in Alg. 1-3) for the
same specification.

4.2 Evaluation Materials

Only few GR(1) specifications are available and these were usually created by authors of synthesis algo-
rithms or extensions thereof.

For the purpose of evaluation, we have used specifications created by 3rd year CS students in a
workshop project class that we have taught. Over the course of a semester, the students have created
specifications for the following systems, which they actually built and run: ColorSort – a robot sorting
Lego pieces by color; Elevator – an elevator servicing different floors; Humanoid – a mobile robot
of humanoid shape; PCar – a self parking car; Gyro – a robot with self-balancing capabilities; and
SelfParkingCar - a second version of a self parking car. We call this set of specifications SYNTECH15.

The specifications were not created specifically for the evaluation in our paper but as part of the ordi-
nary work of the students in the workshop class. During their work spanning one semester, the students
have committed many versions of their specifications to the repository. In total, we have collected 78
specifications. We consider these GR(1) specifications to be the most realistic and relevant examples one
could find for the purpose of evaluating our work.

In addition to the specifications created by the students, we considered the ARM AMBA AHB Ar-
biter (AMBA) and a Generalized Buffer from an IBM tutorial (GenBuf), which are the most popular
GR(1) examples in literature, used, e.g., in [1, 4, 14, 31]. We included 5 different sizes of AMBA (1 to
5 masters) and 5 different sizes of GenBuf (5 to 40 requests), each in its original version plus the 3 vari-
ants of unrealizability described in [4] (justice assumption removed, justice guarantee added, and safety
guarantee added). We have thus run our experiments also on 20 AMBA and 20 GenBuf specifications.

All specifications used in our evaluation, the raw data recorded from all runs, and the program to
reproduce our experiments are available from [37].

4.3 Evaluation Results

We now present aggregated data from all runs on all specifications with different heuristics and their
combination. We decided to present for all experiments minimum, maximum, and quartiles of ratios.

4.3.1 Results for GR(1)/Rabin(1) Fixed-Point Algorithms

We present the ratios of running times for heuristics from Sect. 3.1 separately for realizable and unre-
alizable specifications from the set SYNTECH15 and AMBA and GenBuf. The different heuristics are
abbreviated as follows: efp is the early fixed point detection from Sect. 3.1.1, eun is the early unrealiz-
ability detection from Sect. 3.1.2, and fpr is the fixed-point recycling from Sect. 3.1.3. By all we refer
to the use of all heuristics together. All results are rounded to two decimals. Tbl. 1 shows the ratios of
running times for 61 realizable SYNTECH15 specifications (top) and for 10 realizable AMBA and Gen-
Buf specifications (bottom). Tbl. 2 shows the ratios of running times for 17 unrealizable SYNTECH15
specifications (top) and for 30 unrealizable AMBA and GenBuf specifications (bottom). All tables show

PRE-proceedings version; check www.eptcs.org for final version

E. Firman, S. Maoz, & J.O. Ringert 13

SY
N

T
E

C
H

15
re

al
iz

ab
le

GR(1) algorithm Rabin(1) algorithm Rabin(1) / GR(1)
Quartile efp eun fpr all efp eun fpr all orig all
MIN 0.61 0.94 0.6 0.53 0.59 0.92 0.6 0.52 0.52 0.46
Q1 0.95 1 0.93 0.9 0.94 0.99 0.94 0.9 0.84 0.85
Q2 0.99 1 0.96 0.95 0.98 1 0.96 0.95 0.91 0.91
Q3 1 1.02 1 0.98 1 1 0.99 0.99 0.96 0.97
MAX 1.09 1.11 1.1 1.12 1.04 1.08 1.04 1.05 1.29 1.34

A
M

B
A

/G
en

B
uf

re
al

iz
ab

le

GR(1) algorithm Rabin(1) algorithm Rabin(1) / GR(1)
Quartile efp eun fpr all efp eun fpr all orig all
MIN 0.83 0.97 0.74 0.66 0.84 0.99 0.6 0.58 0.83 0.82
Q1 0.93 0.99 0.83 0.82 0.91 1 0.86 0.84 0.88 0.88
Q2 0.99 1 0.92 0.9 0.99 1 0.92 0.91 0.92 0.92
Q3 1 1 0.95 0.94 1 1 0.96 0.96 0.95 0.94
MAX 1 1.01 0.96 0.96 1.01 1.02 0.99 0.97 1.05 1.04

Table 1: Ratios of the heuristics to the original GR(1) and Rabin(1) running times for realizable specifications.

SY
N

T
E

C
H

15
un

re
al

iz
ab

le

GR(1) algorithm Rabin(1) algorithm Rabin(1) / GR(1)
Quartile efp eun fpr all efp eun fpr all orig all
MIN 0.94 0.36 0.87 0.36 0.92 0.61 0.9 0.61 0.51 0.5
Q1 0.98 0.73 0.97 0.74 0.96 0.84 0.96 0.87 0.84 0.96
Q2 1 0.88 0.99 0.88 0.99 0.92 0.98 0.92 0.9 1
Q3 1.02 0.91 1.01 0.91 1 0.95 1 0.94 0.96 1.04
MAX 1.13 0.95 1.15 0.96 1.01 0.97 1.12 0.98 1.04 1.48

A
M

B
A

/G
en

B
uf

un
re

al
iz

ab
le

GR(1) algorithm Rabin(1) algorithm Rabin(1) / GR(1)
Quartile efp eun fpr all efp eun fpr all orig all
MIN 0.85 0.001 0.93 0.001 0.71 0.001 0.89 0.001 0.68 0.69
Q1 0.99 0.1 0.99 0.1 0.96 0.09 0.98 0.09 0.87 0.93
Q2 1 0.54 1 0.52 1 0.62 0.99 0.57 0.93 0.97
Q3 1 0.97 1.02 0.97 1 0.98 1 0.98 1 1.01
MAX 1.33 1.07 1.06 1.07 1.3 1.01 1.03 1.01 1.85 1.86

Table 2: Ratios of the heuristics to the original GR(1) and Rabin(1) running times for unrealizable specifications.

first ratios of running times for the GR(1) algorithm, then ratios for the Rabin(1) algorithm, and finally a
comparison between the Rabin(1) and GR(1) algorithms.

RQ1: Effectiveness of heuristics The heuristics of early fixed-point detection reduces running times
by at least 5% on 25% of the realizable specifications (Tbl. 1, efp), but seems even less effective on un-
realizable specifications (Tbl. 2, efp). As expected, the early detection of unrealizability has no notable
effect on realizable specifications (Tbl. 1, eun), but on unrealizable specifications reduces running times
of 50% of the specifications by at least 12%/46% for GR(1) and more than 8%/38% for Rabin(1) (Tbl. 1,
eun). The heuristics of fixed-point recycling appears ineffective for unrealizable specifications (Tbl. 2),
but reduces running times of 25% of the realizable specifications by at least 7%/17% for GR(1) and at
least 6%/14% for Rabin(1) (Tbl. 1, fpr). As good news, the combination of all heuristics usually im-
proves over each heuristics separately (column all). Another interesting observation is that the Rabin(1)
algorithm determines realizability faster than the GR(1) algorithm for almost all specifications.

PRE-proceedings version; check www.eptcs.org for final version

14 Performance Heuristics for GR(1) Synthesisand Related Algorithms

SY
N

T
E

C
H

15
un

re
al

iz
ab

le

DDmin with GR(1) DDmin with Rabin(1) Rabin(1) / GR(1)
Quartile sets opt inc all sets opt inc all orig all
MIN 0.47 0.66 0.79 0.3 0.44 0.75 0.73 0.35 0.85 0.89
Q1 0.56 0.94 1.19 0.5 0.59 0.92 1.32 0.51 1.03 1.04
Q2 0.6 0.96 1.32 0.56 0.65 0.95 1.49 0.55 1.05 1.09
Q3 0.73 0.97 1.62 0.6 0.74 0.98 1.65 0.65 1.19 1.28
MAX 0.75 0.98 2 0.71 0.78 1.03 2.11 0.78 1.38 1.85

A
M

B
A

/G
en

B
uf

un
re

al
iz

ab
le

DDmin with GR(1) DDmin with Rabin(1) Rabin(1) / GR(1)
Quartile sets opt inc all sets opt inc all orig all
MIN 0.46 0.05 0.91 0.02 0.46 0.04 0.69 0.02 0.66 0.81
Q1 0.61 0.71 1.08 0.45 0.61 0.72 1.09 0.45 0.93 0.93
Q2 0.69 0.9 1.35 0.57 0.7 0.94 1.28 0.56 1.02 1.01
Q3 0.91 0.97 1.46 0.66 0.83 0.97 1.64 0.65 1.13 1.18
MAX 1.2 1.12 2.23 1.09 3.08 1.06 2.38 0.91 1.69 1.41

Table 3: Ratios of the heuristics to the original DDMin running times for unrealizable specifications.

RQ2: Difference between specification sets For realizable specifications, we see that the suggested
heuristics perform better on the AMBA and GenBuf set than on SYNTECH15, i.e., all heuristics (columns
all) decreases running times on 50% of the AMBA and GenBuf specifications by at least 10% and for
SYNTECH15 specifications by at least 5%. A more significant difference between the specification sets
is revealed by Tbl. 2 of unrealizable specifications. Here the speedup for 50% of the specifications,
mainly obtained by eun, is at least around 10% for SYNTECH15 but at least around 50% for AMBA and
GenBuf. We believe that this difference is due to the systematic and synthetic reasons for unrealizability
added by Cimatti et al. [4].

4.3.2 Results for Unrealizable Core Calculation

We present the ratios of running times for heuristics from Sect. 3.2 for unrealizable specifications from
the sets SYNTECH15 and AMBA and GenBuf. The different heuristics are abbreviated as follows: sets
is the contained sets in the core calculation from Sect. 3.2.1, opt uses the optimized GR(1) and Rabin(1)
algorithms from Sect. 3.1, and inc is the incremental algorithm for similar candidates from Sect. 3.2.2.
Here, by all we refer to the combination of sets and opt but not inc, because only the first two seem to
improve running times. All the results are rounded to two decimals (or more if otherwise 0). Tbl. 3 shows
the ratios of running times for 17 unrealizable SYNTECH15 specifications (top) and for 30 unrealizable
AMBA and GenBuf specifications (bottom). All tables show first ratios of running times for DDMin
with the GR(1) algorithm, then ratios for DDMin with the Rabin(1) algorithm, and finally a comparison
between the Rabin(1) and GR(1) algorithms.

RQ1: Effectiveness of heuristics The heuristics of contained sets appears very effective on all spec-
ifications and reduces running times of 50% of the specifications by at least 40%/31% for DDMin with
GR(1) and at least 35%/30% for DDMin with Rabin(1) (Tbl. 3, sets). Using the GR(1) and Rabin(1)
algorithms with all heuristics again improves running times for 50% of the specifications by at least 4%
(columns opt). Contrary to our expectation the reuse of previous BDDs for incremental game solving
slows down running times on almost all specifications (columns inc) with a maximum factor of 2.38x.
We believe that this increase in running times is due to increased BDD variable reordering times. We
use the automatic reorder of CUDD in all our tests, and the overall reordering time is directly affected by

PRE-proceedings version; check www.eptcs.org for final version

E. Firman, S. Maoz, & J.O. Ringert 15

keeping many BDDs of previous runs. As good news again, the combination of the heuristics sets and
opt usually improves running times even further and roughly obtains a speedup of at least 2x for 50% of
the specifications (column all).

RQ2: Difference between specification sets The combination of all heuristics similarly improves run-
ning times for the SYNTECH15 and the AMBA and GenBuf specifications (columns all). The heuristics
sets consistently performs a few percent better on SYNTECH15 than on AMBA and GenBuf. The heuris-
tics opt performs better on the first quartile of AMBA and GenBuf specifications. This is consistent with
the observed behavior in Tbl. 2.

4.4 Validation of Heuristics’ Correctness

Our implementation of the different heuristics might have bugs, so to ensure correctness of the code we
performed the following validation. We have computed the complete set of winning states using the
original algorithm and compared the result to the winning states computed by the modified algorithms
employing each of the three heuristics separately. As expected, only for unrealizable specifications the
heuristics for detecting unrealizability early computed less winning states.

To further ensure that the game memory allows for strategy construction (memory is different for
fixed-point recycling), we have synthesized strategies from the game memory produced when using our
heuristics. We have verified the correctness of the strategies by LTL model checking against the LTL
specifications for strict realizability of the original GR(1) and Rabin(1) specifications.

For the DDMin heuristics, we have compared the resulting core of each heuristics to the original
one. Since the heuristics are not on the DDMin itself but on the check, the core was never different.
Furthermore, we executed DDMin again on the core, to validate the local minimum.

Validation was successful on all 118 specifications used in this paper.

4.5 Threats to Validity

We discuss threats to the validity of our results.
Internal. The implementation of the different heuristics might have bugs, so to ensure correctness of the
code we performed validations as described in Sect. 4.4.

Another threat is the variation of the running times of the same test. Different runs of the same
algorithm may result in slightly different running times, so the ratios we showed in Sect. 4.3 might not
be accurate if we run each test only once. We mitigate it by performing 50 runs of each algorithm and
reporting medians as described in Sect. 4.1.
External. The results of the different heuristics might not be generalizable due to the limited number of
specifications used in our evaluation. We divided our evaluation into two sets: (1) SYNTECH15, which
are realistic specifications created by students for different robotic systems, and (2) the AMBA and Gen-
Buf specifications, which were created by researchers and systematically scaled to larger sizes. The total
number of the specifications might be insufficient. The set SYNTECH15 consists of 78 specifications
(17 unrealizable). The set AMBA and GenBuf consists of 40 specifications (30 unrealizable).

We share some observations on the sets of specifications that might have an influence of general-
izability of the results. First, the AMBA and GenBuf specifications used in literature were generated
systematically for growing parameters (number of AMBA arbiters and GenBuf requests). Thus the 40
AMBA and GenBuf specifications essentially describe only two systems. Furthermore, the reasons for
unrealizability of AMBA and GenBuf were systematically introduced [4] and consist of a single change

PRE-proceedings version; check www.eptcs.org for final version

16 Performance Heuristics for GR(1) Synthesisand Related Algorithms

each. Second, the running times of checking realizability of the SYNTECH15 specifications are rather
low and range from 1.5ms to 1300ms, with median around 30ms. In this set the specifications are biased
based on the numbers of revisions committed by students: the Humanoid has 21 specifications (8 unreal-
izable), the Gyro has 11 specifications (2 unrealizable), and the SelfParkingCar has only 4 specifications
in total. Furthermore, none of the specifications were written by engineers, so we cannot evaluate how
our results may generalize to large scale real-world specifications.

5 Related Work

Könighofer et al. [14] presented diagnoses for unrealizable GR(1) specifications. They also implemented
the heuristics for DDMin mentioned in Sect. 3.2.1. They suggest further heuristics that approximate the
set of system winning states. These heuristics are different from the ones we presented as they are riskier:
in case they fail the computation reverts to the original GR(1) algorithm. An analysis of the speed-up
obtained from their heuristics for DDMin alone was not reported.

Others have focused on strategy construction for GR(1). Strategies are constructed from the memory
stored in the X, Y, and Z arrays in Alg. 1 and Alg. 2. Schlaipfer et al. [31] suggest synthesis of separate
strategies for each justice guarantee to avoid a blow-up of the BDD representation. Bloem et al. [1]
discuss different minimization of synthesized strategies that do not necessarily minimize their BDDs.
We consider space and time related heuristics for strategy construction an interesting next step.

It is well-known that the order of BDD variables heavily influences the performance of BDD-based
algorithms [11, 34]. The GR(1) implementation of Slugs [8] uses the default dynamic variable reordering
of CUDD [32] (as we do). Slugs turns off reordering during strategy construction. Filippidis et al. [9]
reported better performance with reordering during strategy construction. We are not aware of any GR(1)
specific heuristics for (dynamic) BDD variable ordering.

As a very different and complementary approach to ours, one can consider rewriting the GR(1)
specification to speed up realizability checking and synthesis. Filippidis et al. [9] report on obtaining a
speedup of factor 100 for synthesizing AMBA by manually changing the AMBA specification of [1] to
use less variables and weaker assumptions. We have not focused on these very specific optimizations of
single specifications. Our work presents and evaluates specification agnostic heuristics.

Finally, a number of heuristics for BDD-based safety game solvers have been reported as outcome
of the SYNTCOMP reactive synthesis competitions [11, 12, 13]. Most of these optimizations are on
the level of predecessor computations (operators in Alg. 1 and in Alg. 2), while the heuristics we
implemented are on the level of fixed-points and repeated computations. It seems possible to combine
these heuristics. Notably, an approach for predicate abstraction for predecessor computation has already
been implemented for GR(1) synthesis [30, 33].

6 Conclusion

We presented a list of heuristics to potentially reduce running times for GR(1) synthesis and related
algorithms. The list includes early detection of fixed-points and unrealizability, fixed-point recycling,
and heuristics for unrealizable core computations. We implemented and evaluated the heuristics and
their combination on two sets of benchmarks, first SYNTECH15, a set of 78 specifications created by
3rd year undergraduate computer science students in a project class of one semester, and second on the
two systems AMBA and GenBuf available and well-studied in GR(1) literature.

PRE-proceedings version; check www.eptcs.org for final version

E. Firman, S. Maoz, & J.O. Ringert 17

Our evaluation shows that most heuristics have a positive effect on running times for checking re-
alizability of a specification and for unrealizable core calculation. Most importantly, their combination
outperforms the individual heuristics and even in the worst-case has no or a very low overhead. In addi-
tion, the heuristics similarly improve running times for both sets of specifications whereas the synthetic
reasons for unrealizability in AMBA and GenBuf lead to faster computations.

The work is part of a larger project on bridging the gap between the theory and algorithms of reactive
synthesis on the one hand and software engineering practice on the other. As part of this project we are
building engineer-friendly tools for reactive synthesis, see, e.g., [18, 19, 20, 21].

Acknowledgments This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No
638049, SYNTECH).

References

[1] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2012): Synthesis of Reac-
tive(1) Designs. J. Comput. Syst. Sci. 78(3), pp. 911–938. Available at http://dx.doi.org/10.1016/j.
jcss.2011.08.007.

[2] Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long & Wilfredo R. Marrero (1997): An Improved
Algorithm for the Evaluation of Fixpoint Expressions. Theor. Comput. Sci. 178(1-2), pp. 237–255, DOI:
10.1016/S0304-3975(96)00228-9. Available at http://dx.doi.org/10.1016/S0304-3975(96)

00228-9.

[3] Pavol Cerný, Viktor Kuncak & Parthasarathy Madhusudan, editors (2016): Proceedings Fourth Workshop on
Synthesis, SYNT 2015, San Francisco, CA, USA, 18th July 2015. EPTCS 202, DOI: 10.4204/EPTCS.202.
Available at https://doi.org/10.4204/EPTCS.202.

[4] Alessandro Cimatti, Marco Roveri, Viktor Schuppan & Andrei Tchaltsev (2008): Diagnostic Information
for Realizability. In: VMCAI, LNCS 4905, Springer, pp. 52–67, DOI: 10.1007/978-3-540-78163-9_9.
Available at http://dx.doi.org/10.1007/978-3-540-78163-9_9.

[5] Nicolás D’Ippolito, Vı́ctor A. Braberman, Nir Piterman & Sebastián Uchitel (2013): Synthesizing nonanoma-
lous event-based controllers for liveness goals. ACM Trans. Softw. Eng. Methodol. 22(1), p. 9. Available at
http://doi.acm.org/10.1145/2430536.2430543.

[6] Matthew B. Dwyer, George S. Avrunin & James C. Corbett (1999): Patterns in Property Specifications for
Finite-State Verification. In: ICSE, ACM, pp. 411–420. Available at http://doi.acm.org/10.1145/
302405.302672.

[7] Rüdiger Ehlers (2011): Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis. In:
NASA Formal Methods, LNCS 6617, Springer, pp. 101–115. Available at http://dx.doi.org/10.1007/
978-3-642-20398-5_9.

[8] Rüdiger Ehlers & Vasumathi Raman (2016): Slugs: Extensible GR(1) Synthesis. In Swarat Chaudhuri &
Azadeh Farzan, editors: Computer Aided Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part II, Lecture Notes in Computer Science 9780, Springer,
pp. 333–339, DOI: 10.1007/978-3-319-41540-6_18. Available at http://dx.doi.org/10.1007/
978-3-319-41540-6_18.

[9] Ioannis Filippidis, Richard M. Murray & Gerard J. Holzmann (2015): A multi-paradigm language for
reactive synthesis. In Cerný et al. [3], pp. 73–97, DOI: 10.4204/EPTCS.202.6. Available at http:
//dx.doi.org/10.4204/EPTCS.202.6.

PRE-proceedings version; check www.eptcs.org for final version

18 Performance Heuristics for GR(1) Synthesisand Related Algorithms

[10] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors (2002): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001]. Lecture Notes in Computer
Science 2500, Springer.

[11] Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timotheus Hell, Robert Könighofer,
Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan Sankur, Martina Seidl, Leander Tentrup &
Adam Walker (2015): The First Reactive Synthesis Competition (SYNTCOMP 2014). CoRR abs/1506.08726.
Available at http://arxiv.org/abs/1506.08726.

[12] Swen Jacobs, Roderick Bloem, Romain Brenguier, Ayrat Khalimov, Felix Klein, Robert Könighofer, Jens
Kreber, Alexander Legg, Nina Narodytska, Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan
Sankur, Martina Seidl, Leander Tentrup & Adam Walker (2016): The 3rd Reactive Synthesis Competition
(SYNTCOMP 2016): Benchmarks, Participants & Results. In Piskac & Dimitrova [26], pp. 149–177, DOI:
10.4204/EPTCS.229.12. Available at http://dx.doi.org/10.4204/EPTCS.229.12.

[13] Swen Jacobs, Roderick Bloem, Romain Brenguier, Robert Könighofer, Guillermo A. Pérez, Jean-François
Raskin, Leonid Ryzhyk, Ocan Sankur, Martina Seidl, Leander Tentrup & Adam Walker (2015): The Second
Reactive Synthesis Competition (SYNTCOMP 2015). In Cerný et al. [3], pp. 27–57, DOI: 10.4204/EPTCS.
202.4. Available at https://doi.org/10.4204/EPTCS.202.4.

[14] Robert Könighofer, Georg Hofferek & Roderick Bloem (2013): Debugging formal specifications: a practical
approach using model-based diagnosis and counterstrategies. STTT 15(5-6), pp. 563–583, DOI: 10.1007/
s10009-011-0221-y. Available at http://dx.doi.org/10.1007/s10009-011-0221-y.

[15] Dexter Kozen (1983): Results on the Propositional mu-Calculus. Theor. Comput. Sci. 27, pp. 333–354,
DOI: 10.1016/0304-3975(82)90125-6. Available at http://dx.doi.org/10.1016/0304-3975(82)
90125-6.

[16] Hadas Kress-Gazit, Georgios E. Fainekos & George J. Pappas (2009): Temporal-Logic-Based Reactive Mis-
sion and Motion Planning. IEEE Trans. Robotics 25(6), pp. 1370–1381. Available at http://dx.doi.org/
10.1109/TRO.2009.2030225.

[17] Gary T. Leavens, Shigeru Chiba & Éric Tanter, editors (2013): Transactions on Aspect-Oriented Software
Development X. Lecture Notes in Computer Science 7800, Springer. Available at http://dx.doi.org/
10.1007/978-3-642-36964-3.

[18] Shahar Maoz, Or Pistiner & Jan Oliver Ringert (2016): Symbolic BDD and ADD Algorithms for Energy
Games. In Piskac & Dimitrova [26], pp. 35–54, DOI: 10.4204/EPTCS.229.5. Available at http://dx.
doi.org/10.4204/EPTCS.229.5.

[19] Shahar Maoz & Jan Oliver Ringert (2015): GR(1) synthesis for LTL specification patterns. In Elisabetta Di
Nitto, Mark Harman & Patrick Heymans, editors: Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, ACM,
pp. 96–106, DOI: 10.1145/2786805.2786824. Available at http://doi.acm.org/10.1145/2786805.
2786824.

[20] Shahar Maoz & Jan Oliver Ringert (2015): Synthesizing a Lego Forklift Controller in GR(1): A Case Study.
In: Proc. 4th Workshop on Synthesis, SYNT 2015 colocated with CAV 2015, EPTCS 202, pp. 58–72, DOI:
10.4204/EPTCS.202.5.

[21] Shahar Maoz & Jan Oliver Ringert (2016): On well-separation of GR(1) specifications. In Thomas Zimmer-
mann, Jane Cleland-Huang & Zhendong Su, editors: Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,
ACM, pp. 362–372, DOI: 10.1145/2950290.2950300. Available at http://doi.acm.org/10.1145/
2950290.2950300.

[22] Shahar Maoz & Yaniv Sa’ar (2011): AspectLTL: an aspect language for LTL specifications. In Paulo Borba &
Shigeru Chiba, editors: AOSD, ACM, pp. 19–30. Available at http://doi.acm.org/10.1145/1960275.
1960280.

PRE-proceedings version; check www.eptcs.org for final version

E. Firman, S. Maoz, & J.O. Ringert 19

[23] Shahar Maoz & Yaniv Sa’ar (2012): Assume-Guarantee Scenarios: Semantics and Synthesis. In: MODELS,
LNCS 7590, Springer, pp. 335–351. Available at http://dx.doi.org/10.1007/978-3-642-33666-9_
22.

[24] Shahar Maoz & Yaniv Sa’ar (2013): Two-Way Traceability and Conflict Debugging for AspectLTL Programs.
In T. Aspect-Oriented Software Development [17], pp. 39–72. Available at http://dx.doi.org/10.1007/
978-3-642-36964-3_2.

[25] Shahar Maoz & Yaniv Sa’ar (2013): Two-Way Traceability and Conflict Debugging for AspectLTL Programs.
In T. Aspect-Oriented Software Development [17], pp. 39–72, DOI: 10.1007/978-3-642-36964-3_2.
Available at http://dx.doi.org/10.1007/978-3-642-36964-3_2.

[26] Ruzica Piskac & Rayna Dimitrova, editors (2016): Proceedings Fifth Workshop on Synthesis, SYNT at CAV
2016, Toronto, Canada, July 17-18, 2016. EPTCS 229, DOI: 10.4204/EPTCS.229. Available at http:
//dx.doi.org/10.4204/EPTCS.229.

[27] Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2006): Synthesis of Reactive(1) Designs. In: VMCAI, LNCS
3855, Springer, pp. 364–380. Available at http://dx.doi.org/10.1007/11609773_24.

[28] Amir Pnueli & Roni Rosner (1989): On the Synthesis of a Reactive Module. In: POPL, ACM Press, pp.
179–190, DOI: 10.1145/75277.75293.

[29] Amir Pnueli, Yaniv Sa’ar & Lenore D. Zuck (2010): JTLV: A Framework for Developing Verification Algo-
rithms. In: CAV, LNCS 6174, Springer, pp. 171–174, DOI: 10.1007/978-3-642-14295-6_18.

[30] Leonid Ryzhyk & Adam Walker (2016): Developing a Practical Reactive Synthesis Tool: Experience and
Lessons Learned. In Piskac & Dimitrova [26], pp. 84–99, DOI: 10.4204/EPTCS.229.8. Available at
http://dx.doi.org/10.4204/EPTCS.229.8.

[31] Matthias Schlaipfer, Georg Hofferek & Roderick Bloem (2011): Generalized Reactivity(1) Synthesis without
a Monolithic Strategy. In Kerstin Eder, João Lourenço & Onn Shehory, editors: Hardware and Software:
Verification and Testing - 7th International Haifa Verification Conference, HVC 2011, Haifa, Israel, Decem-
ber 6-8, 2011, Revised Selected Papers, Lecture Notes in Computer Science 7261, Springer, pp. 20–34, DOI:
10.1007/978-3-642-34188-5_6. Available at http://dx.doi.org/10.1007/978-3-642-34188-5_
6.

[32] Fabio Somenzi: CUDD: BDD package, University of Colorado, Boulder. http://vlsi.colorado.edu/

~fabio/CUDD/cudd.pdf.
[33] Adam Walker & Leonid Ryzhyk (2014): Predicate abstraction for reactive synthesis. In: Formal Methods

in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014, IEEE, pp. 219–
226, DOI: 10.1109/FMCAD.2014.6987617. Available at http://dx.doi.org/10.1109/FMCAD.2014.
6987617.

[34] Bwolen Yang, Randal E. Bryant, David R. O’Hallaron, Armin Biere, Olivier Coudert, Geert Janssen, Ra-
jeev K. Ranjan & Fabio Somenzi (1998): A Performance Study of BDD-Based Model Checking. In Ganesh
Gopalakrishnan & Phillip J. Windley, editors: Formal Methods in Computer-Aided Design, Second Inter-
national Conference, FMCAD ’98, Palo Alto, California, USA, November 4-6, 1998, Proceedings, Lecture
Notes in Computer Science 1522, Springer, pp. 255–289, DOI: 10.1007/3-540-49519-3_18. Available at
http://dx.doi.org/10.1007/3-540-49519-3_18.

[35] Andreas Zeller (1999): Yesterday, My Program Worked. Today, It Does Not. Why? In: ESEC/FSE, LNCS
1687, Springer, pp. 253–267, DOI: 10.1007/3-540-48166-4_16. Available at http://dx.doi.org/10.
1007/3-540-48166-4_16.

[36] Andreas Zeller & Ralf Hildebrandt (2002): Simplifying and Isolating Failure-Inducing Input. IEEE Trans.
Software Eng. 28(2), pp. 183–200, DOI: 10.1109/32.988498. Available at http://dx.doi.org/10.
1109/32.988498.

[37] SYNTECH GR(1) Performance Website. http://smlab.cs.tau.ac.il/syntech/performance/.

PRE-proceedings version; check www.eptcs.org for final version

	Synthesis Challenges in Building a Multi-Robot Task Server (Keynote Talk)
	Quantitative Assume Guarantee Synthesis (Invited Talk)
	Synthesizing Universally-Quantified Inductive Invariants (Invited Talk)
	SyGuS Techniques in the Core of an SMT Solver (Invited Talk)
	CTL* Synthesis via LTL Synthesis
	Symbolic vs. Bounded Synthesis for Petri Games
	A Class of Control Certificates to Ensure Reach-While-Stay for Switched Systems
	Performance Heuristics for GR(1) Synthesis and Related Algorithms

