
Monitor Circuits for LTL with Bounded and
Unbounded Future?

Bernd Finkbeiner and Lars Kuhtz

Universität des Saarlandes
66123 Saarbrücken, Germany

{finkbeiner|kuhtz}@cs.uni-sb.de

Abstract. Synthesizing monitor circuits for LTL formulas is expensive,
because the number of flip-flops in the circuit is exponential in the length
of the formula. As a result, the IEEE standard PSL recommends to re-
strict monitoring to the simple subset and use the full logic only for static
verification. We present a novel construction for the synthesis of monitor
circuits from specifications in LTL. In our construction, only subformulas
with unbounded-future operators contribute to the exponential blowup.
We split the specification into a bounded and an unbounded part, ap-
ply specialized constructions for each part, and then compose the results
into a monitor for the original specification. Since the unbounded part in
practical specifications is often very small, we argue that, with the new
construction, it is no longer necessary to restrict runtime verification to
the simple subset.

1 Introduction

In runtime verification, we monitor the running system and check on-the-fly
whether the desired properties hold. Unlike in static verification, where the ver-
ification algorithm is executed at design-time and can therefore afford to spend
significant time and resources, runtime verification algorithms must run in syn-
chrony with the monitored system and usually even share the resources of the
implementation platform.

For specifications in succinct temporal logics, such as LTL this is problematic,
because one can easily specify properties that are hard to monitor. For example,
a simple cache property like “it is always the case that if the present input vector
has previously been seen in the last 100 steps, a cache hit is reported” can be
specified with an LTL formula that is linear in the size of the input vector, but the
construction of a deterministic monitor automaton would yield an intractable
number of states, because every possible combination of the vectors needs a
separate state (cf. [1]).

In the IEEE standard PSL [2], which is based on LTL, these considerations
have led to the recommendation that only a restricted sublogic, the so-called
? This work was partly supported by the German Research Foundation (DFG) as

part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

simple subset, is to be used in runtime verification (cf. [3]). The simple subset
restricts the use of disjunctions in the specification. While the simple subset
has been shown to lead to small monitoring circuits, the restriction is often
unfortunate, especially when specifications are shared between model checking
and runtime verification. Rather than stating, for example, that a disjunction of
temporal output patterns is safe, the simple subset requires that every output
pattern be described as a deterministic consequence of a specific input pattern.

From an automata-theoretic standpoint, the temporal formulas in the simple
subset correspond to universal automata, where the transitions relate states to
conjunctions of successor states. There is a linear translation from temporal
formulas in the simple subset to universal automata, and universal automata can
be implemented with a linear number of flip-flops. For unrestricted formulas, on
the other hand, a direct translation results in an alternating automaton, whose
transitions have both conjunctions and disjunctions. It is the translation from
alternating to universal automata that causes the exponential blow-up.

However, it is well-known that the membership problem for alternating au-
tomata can be solved directly, without a translation to universal automata and
in linear time, as long as the relevant part of the input word is available in re-
verse order. Rather than evaluating in a forward manner, which corresponds to
determinization, the automaton is simply evaluated backward, like a combina-
torial circuit. The question arises, if, by using this alternative membership test,
one can avoid the exponential blow-up in the size of the monitoring circuit. Is
the restriction to the simple subset in fact unnecessary?

In this paper, we present a new monitoring approach for general temporal
specifications that avoids the translation to universal automata when possible.
For example, the truth value of the cache specification at some position i is
determined by the observations at positions i, i+ 1, . . . , i+ 99. The specification
can therefore be evaluated by unrolling the alternating automaton over 100 steps,
avoiding the exponential increase in the size of the circuit.

To make this idea precise, we define, for each subformula of a specification, its
temporal horizon, which indicates a future point in time by which the value of the
subformula for the present position is guaranteed to be determined. Subformulas
with finite horizons define languages that are finite themselves.

The study of events characterized by finite languages goes back to Kleene’s
definite events [4] and the locally testable events of McNaughton and Papert [5].
In the terminology of McNaughton and Papert, a set E of words is called a
locally testable event in the strict sense if there exists a finite language L, such
that all subwords of each word in E have a prefix in L. McNaughton and Papert
construct an automaton that maintains an input buffer that is large enough to
capture the largest words in L. In each step, a combinatorial circuit checks if the
pipeline content belongs to L.

In our setting, the languages recognizable by such an automaton correspond
to LTL formulas of the form Gφ, where φ contains only bounded future oper-
ators. In this paper, we extend this idea to allow the bounded subformulas to
occur within general temporal formulas. For each subformula with finite horizon

� σ

i−H i

M(ϕp)

µP

σ0,now |= ϕ

prefix transducer (P)

suffix transducer (S)

µS

Fig. 1. Overview of the monitor construction.

t we introduce a pipeline and a combinatorial circuit that computes, online as
new elements enter the pipeline, a Boolean value that corresponds to the truth
of the formula from the perspective of t steps ago in the past. From the de-
layed truth values of the subformulas we extrapolate the current truth value
of the formula. This is possible because the truncated-path semantics [6] (as
used, for example, in PSL) provides default values for subformulas that refer
to the future beyond the current cut-off point. The truncated-paths semantics
distinguishes between strong and weak subformulas: for example, the strong
specification “X X p” is true only if the visible trace is at least two positions long
and p holds in the second position. Negation flips between the strong and weak
interpretation. Given a pipeline that contains the delayed truth values of the
subformulas, we can therefore construct an extrapolation circuit that applies, at
each position, the truncated-trace semantics instantly to the entire path suffix
stored in the pipeline.

Figure 1 gives an overview of our construction. We say a subformula is
bounded if its horizon is finite, and unbounded otherwise. We call the part of the
monitor that deals with the pipeline storage and the evaluation of the bounded
formulas the suffix transducer S: for some infinite trace σ, the suffix transducer
evaluates the suffix of σ, from the delayed position in the trace onward, to derive
the truth value of the bounded-future formulas.

Correspondingly, the part of the monitor that deals with unbounded formulas
is called the prefix transducer P: the prefix transducer evaluates the prefix of σ,
up to the currently observed position i, to derive the truth value of the complete
specification. The prefix transducer is based on a universal automaton U(ϕ),
which checks whether a given prefix of the trace satisfies ϕ.

The extrapolation function, denoted by µP in Figure 1, evaluates the part of
the trace that is currently stored in the pipeline, i.e., the difference between the
delayed position considered by U(ϕ) and the present position i.

The resulting circuit has the following properties. If the specification is
(1) simple, (2) bounded, or (3) a combination thereof (a formula that is simple
except for subformulas that are not simple but bounded), the circuit is polyno-
mial in the specification. If the specification is (4) neither simple nor bounded,
then the circuit is exponential in the size of the specification after removing all
bounded subformulas.

While the possibility of an exponential blow-up is thus not excluded, it is
our experience that even case (4) rarely leads to a blow-up in practice. Spec-
ifications that are neither simple nor bounded mostly occur when the cor-
rect behavior is specified in terms of a correlation of different events such
as “G((AorB) U(CorD)),” where the events A,B,C and D are specified by
bounded formulas expressing certain finite input or output patterns that consti-
tute events. Once the bounded subformulas have been removed, the specification
becomes very small and the resulting monitoring circuit typically fits easily on
an FPGA board.

Related Work. Monitoring LTL is a key problem in runtime verification (cf.
[7,8,9,10,11]). The two most prominent tools for the synthesis of monitor circuits
from the simple subset of PSL are FoCs [12], developed at IBM Haifa, and MBAC
by Boulé and Zilic [13]. For unrestricted temporal logic, an automata-theoretic
construction (based on determinization) is due to Armoni et al. [14]. Our prefix
transducer is inspired by this construction.

More generally, the problem of translating LTL and logics based on LTL to
automata occurs in both runtime verification and model checking. Constructions
aimed at model checking (cf. [15,16,17,18]) are, however, not immediately ap-
plicable to runtime verification. First, such constructions typically only produce
nondeterministic automata, rather than deterministic monitors. Hence, a fur-
ther exponential determinization step is required to obtain a monitor. Second,
these constructions typically produce automata over infinite words rather than
automata or transducers over finite words.

Our approach is based on the truncated-path semantics [6] used in PSL. The
truncated-path semantics differs from the bad-prefix semantics used in several
monitoring approaches (cf. [8,19,20]), where a finite-word automaton is con-
structed that recognizes the “bad prefixes” of the language of an infinite-word
automaton, i.e., the set of prefixes that cannot be extended to accepted infinite
words [1]. In the truncated-path semantics, strong specifications may be violated
on a prefix even if a satisfying extension exists.

Locally testable events were introduced by [21] and [5] and broadly studied in
the literature (refer e.g. to [22]). In [23] Kupferman, Lustig, and Vardi point out
the particular relevance of locally testable events in a strict sense (as introduced
in [5]), which they call locally checkable properties. They emphasize the low
memory footprint of monitors for locally checkable properties, since their size
depend only on the number of variables and the length of the pipeline.

The key contribution of this paper is to exploit the local testablility of
bounded subformulas that occur within general temporal properties by the intro-
duction of a pipeline into the monitoring circuit. Because bounded subformulas
are evaluated directly, based on the pipeline content, rather than folded into the
determinization of the prefix transducer, the resulting circuit can be exponen-
tially smaller than the circuits constructed by previous approaches.

2 Temporal Specifications

Our approach is based on LTL with an bounded and an unbounded version of
the temporal operators.1

Definition 1 (Syntax). Given a set of atomic propositions AP, let ϕ1 and ϕ2

be temporal formulas, and let i, j ∈ N ∪ {∞}. Then the following are temporal
formulas over AP:

all p ∈ AP ¬ϕ1 ϕ1 ∧ ϕ2 ϕ1 U(i,j) ϕ2.

The main operator of the logic is the Until operator ϕ1 U(l,u) ϕ2, which we
use in its parameterized form, where l, u ∈ N ∪ {∞} indicate a lower and upper
bound, respectively, of the interval within which ϕ2 must hold. As usual, the
Until operator subsumes the Next, Eventually, and Always operators:

Xϕ ≡ true U(1,1) ϕ Fϕ ≡ true U(0,∞) ϕ Gϕ ≡ ¬F¬ϕ

We call a formula simple if the operand of every negation and the right-hand
operand of every Until is a Boolean expression over AP . The size |ϕ| of a formula
ϕ is the number of subformulas plus, for parameterized subformulas, the sum of
all constants.

We use a truncated semantics [6], defined over finite words from the alphabet
2AP . We denote the length of a finite or infinite word σ by |σ|, where the empty
word has length |ε| = 0, a finite word σ = σ(0), σ(1), σ(2), . . . σ(n−1) has length
|σ| = n and an infinite word σ = σ(0), σ(1), σ(2), . . . has length |σ| = ∞. For a
finite or infinite word σ and i < j ≤ |σ|, σ(i,j) = σ(i), σ(i+ 1), . . . , σ(j) denotes
the subword of length j − i + 1 starting at index i. σ(i,...) = σ(i), σ(i + 1), . . .
denotes the suffix of σ starting at index i.

The truncated semantics is defined with respect to a context indicating either
weak or strong strength. We use σ s|=ϕ to denote that σ satisfies formula ϕ
strongly, and σ w|=ϕ to denote that σ satisfies ϕ weakly. We say σ satisfies ϕ,
denoted by σ |= ϕ, iff σ satisfies ϕ strongly. Negation switches between the weak
and strong contexts:
1 Our implementation is based on the Property Specification Language PSL, defined

in the IEEE standard 1850 [2]. PSL is a rich logic defined on top of the hardware
description languages VHDL and Verilog, which combines temporal operators with
extended regular expressions. It is straightforward to extend the approach presented
in this paper with standard constructions for SEREs etc. (cf. [16]).

Definition 2 (Semantics). A finite word σ over AP satisfies a temporal for-
mula ϕ, denoted by σ |= ϕ, iff σ s|=ϕ, where s|= and w|= are defined as follows:

σ s|= p iff |σ| > 0 and p ∈ σ(0),
σ s|=¬ϕ iff not σ w|=ϕ,

σ s|=ϕ1 ∧ ϕ2 iff σ s|=ϕ1 and σ s|=ϕ2,

σ s|=ϕ1 U(l,u) ϕ2 iff there is an i such that l ≤ i ≤ u < |σ|
and σ(i,...)

s|=ϕ2 and σ(j, . . .) s|=ϕ1 for all l ≤ j < i,

σ w|= p iff |σ| = 0 or p ∈ σ(0),
σ w|=¬ϕ iff not σ s|=ϕ,

σ w|=ϕ1 ∧ ϕ2 iff σ w|=ϕ1 and σ w|=ϕ2,

σ w|=ϕ1 U(l,u) ϕ2 iff for u′ = min{u, |σ|},
there is an i such that l ≤ i ≤ u′ and σ(i,...)

w|=ϕ2

and σ(j,...)
w|=ϕ1 for all l ≤ j < i,

or σ(k,...)
w|=ϕ1 for all for all l ≤ k ≤ u′,

where p ∈ AP and ϕ1 and ϕ2 are temporal formulas.

3 Monitoring Temporal Specifications

Monitoring a specification ϕ means to decide for each prefix of a (possibly infi-
nite) word over 2AP whether the prefix satisfies ϕ.

Definition 3 (The Monitoring Problem). Given a temporal formula ϕ over
a set of atomic propositions AP, and a word σ over 2AP , the monitoring problem
consists of constructing a word σ′ over 2{ϕ} such that ϕ ∈ σ′(i) iff σ(0, i) |= ϕ.

A characteristic of the monitoring problem is that, since the length of the
trace σ may grow beyond any bound, the space complexity of any reasonable
solution must be constant in |σ|. This entails that the problem should be solved
online, i.e., by reading new observations as they become available.

We now give an overview of our monitoring approach. As shown in Figure 1,
our construction is split into two parts: the suffix transducer S, which evaluates
the bounded subformulas on the suffix of the trace, and the prefix transducer P,
which evaluates the complete specification on the prefix that has been seen so
far. To formally describe the interface between the two transducers, we need a
few auxiliary definitions.

Let ϕ be a temporal formula. The set of strong subformulas Subs(ϕ) contains
all subformulas that occur in the scope of an even number of negations (includ-
ing 0). The set of weak subformulas Subw(ϕ) contains all subformulas that occur
in the scope of an odd number of negations. The set of subformulas is the union
Sub(ϕ) = Subs(ϕ) ∪ Subw(ϕ).

For each temporal formula ϕ, we define the horizon of ϕ as the number of
steps into the future the truth value of the formula may depend on, i.e.,

h(p) = 0, h(ϕ1 ∧ ϕ2) = max {h(ϕ1), h(ϕ2)} ,
h(¬ϕ) = h(ϕ), h(ϕ1 U(l,u) ϕ2) = max {u− 1 + h(ϕ1), u+ h(ϕ2)} ,

where p ∈ AP and ϕ1 and ϕ2 are temporal formulas. A temporal formula ϕ
is called unbounded if h(ϕ) = ∞. Otherwise, ϕ is called bounded. A formula
ψ ∈ Subs(ϕ) or ψ ∈ Subw is a maximal bounded (strong or weak, respec-
tively) subformula of ϕ if it is bounded and has a (strong or weak, respectively)
occurrence that is not within another bounded subformula. We call the sets
Γ s ⊆ Subs(ϕ) and Γw ⊆ Subw(ϕ) of maximal bounded (strong and weak) sub-
formulas the separation formulas of ϕ. Let Γ = Γ s ∪ Γw. The maximal horizon
of the formulas in Γ is called the separation horizon H.

The separation formulas form the interface between the prefix and suffix
transducers. Reading an input word σ over 2AP , the suffix transducer computes,
for each separation formula γ ∈ Γ c (where c ∈ {s, w}), each position i, and
each offset j ≤ H, the value of the additional propositions 〈γ, j, c〉, such that
〈γ, j, c〉 is true iff the truncated suffix σ(i−H+j,i) satisfies γ (strongly or weakly,
depending on c). Reading an input word over 2AP ′

, where

AP ′ = {〈γ, j, s〉 | γ ∈ Γ s, 0 ≤ j ≤ H} ∪ {〈γ, j, w〉 | γ ∈ Γw, 0 ≤ j ≤ H} ,

the prefix transducer then treats the separation formulas as atomic propositions.

Example 1. Consider the temporal formula ¬(true U(0,∞) ((¬(a U(0,1) b)) ∧
(true U(0,∞) b))). The maximal bounded subformulas are ¬(a U(0,1) b) and b,
where h(¬(a U(0,1) b)) = 1 and h(b) = 0. Hence, H = 1. Subformula ¬(a U(0,1) b)
is weak, b occurs both as a strong and a weak subformula, but only as a maximal
weak subformula. Reading an input word over AP = {a, b}, the suffix transducer
produces an output word over AP ′ = {〈¬(a U(0,1) b), 0, w〉, 〈¬(a U(0,1) b), 1, w〉,
〈b, 0, w〉, 〈b, 1, w〉}. ut

The overall monitoring problem is solved by the functional composition of the
suffix and prefix transducers. The resulting transducer is implemented in hard-
ware through a linear translation to a circuit built from flip-flops and Boolean
gates. In the following sections we describe the construction of the prefix and
suffix transducers and the translation to the circuit in more detail.

4 Automata and Transducers

4.1 Alternating and Universal Automata

While our constructions are based on automata transformations, our target is a
circuit that monitors the given specification. For this reason we define automata
in a symbolic setting that facilitates the eventual translation to a circuit: rather

than referring to an explicit alphabet, our automata are defined over the set AP
of atomic propositions. We use AP to denote the set {a,¬a | a ∈ AP} of literals.

An alternating automaton on finite words over a set AP of atomic propo-
sitions is a tuple A = (Q, I, F, δ), where Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is a subset of final states, and δ : Q → B+(Q ∪ AP)
is the transition condition, where B+(X) denotes the set of positive Boolean
expressions over X, i.e., the formulas built from elements of X using ∨,∧, true
and false. An alternating automaton A is called universal, if δ(q) can be written
as a conjunction where each conjunct is an element of B+(AP ∪ {q′}) for some
q′ ∈ Q.

The direction of evaluation in an automaton is backward. A run of A on a
finite input word σ is a Q-labeled tree, such that (1) all nodes at level |σ| (i.e.,
all nodes where the path from the root has length |σ| + 1) are childless and
are labeled with states in F ; (2) the root is labeled with q0; and the following
condition holds for every node n on some level i = 0, . . . , |σ|−1: let n be labeled
with state q. Then the set S, consisting of the states on the children of n and the
elements of σ(i) satisfies δ(q), i.e., replacing every state or atomic proposition
in δ(q) with true if it is an element of S and with false if it is not, results in a
Boolean expression equivalent to true. The set of words that are accepted by A
is called the language of A, denoted by L(A).

Corresponding to an evaluation in a strong or weak context, we translate
a temporal formula ϕ into one of two alternating automata As(ϕ) or Aw(ϕ):
automaton As(ϕ) accepts a finite word σ iff σ satisfies ϕ strongly; analogously,
Aw(ϕ) accepts σ iff σ satisfies ϕ weakly. As detailed in the following theorem,
the translation is a simple linear-time induction:

Theorem 1. For each temporal formula ϕ over AP there are two alternating
automata As(ϕ) and Aw(ϕ) over AP such that, for every finite word σ,

σ s|=ϕ iff σ ∈ L(As(ϕ)) and σ w|=ϕ iff σ ∈ L(Aw(ϕ)).

The sizes of As(ϕ) and Aw(ϕ) are linear in the size of ϕ. If ϕ is simple, then
As(ϕ) and Aw(ϕ) are universal.

Since the context of a temporal formula is, by default, strong, we define the
alternating automaton associated with a formula ϕ as A(ϕ) = As(ϕ).

Example 2. Consider the temporal formula ϕ = F a ∨ G b, which is equiva-
lent to true U(0,∞) a ∨ ¬(true U(0,∞) ¬b). The alternating automaton A(ϕ) =
({s0, s1, s2}, s0, δ, F = {s2}), with δ : s0 7→ (s1 ∨ a) ∨ (s2 ∧ b), s1 7→ s1 ∨ a, and
s2 7→ s2∧b, has three states s0, s1, s2, where s0 corresponds to ϕ, s1 corresponds
to F a, and s2 corresponds to G b. ut

Every alternating automaton can be translated into an equivalent universal
automaton by a simple subset construction.

Theorem 2. For each alternating automaton A there exists a universal au-
tomaton U such that L(A) = L(U). The size of U is exponential in the size
of A.

4.2 Transducers

Automata evaluate the words in a backward manner: the transition expression
δ(q) is a Boolean expression over the input and the successor states. We now
change the direction of the evaluation. In order to evaluate a word in forward
direction, a state machine is equipped with a next-state function τ which defines
for each state q′ a Boolean expression over the input and the predecessor states.

A state machine over a set AP of atomic propositions is a tuple M =
(Q,Q0, τ), where Q is a set of states, Q0 ⊆ Q is a subset of initial states,
and τ : Q→ B+(Q ∪AP) is the next-state function.

The motivation for this definition is that we wish to simulate universal au-
tomata in hardware, by representing each state as a flip-flop. The states of the
state machine can thus be seen as the states of a universal automaton, and sets
of states as the states of an implicit determinization.

For an input word σ, the state machine defines a run R0, R1, . . ., where each
Ri is a set of states. The run starts with the set of initial states R0 = Q0, and
for all i > 0, the set Ri includes all states whose next-state function (with true
substituted for all states in Ri−1 and false substituted for all states not in Ri−1

is satisfied: i.e.,

q′ ∈ Ri iff si |= τ(q′) [q 7→ true for q ∈ Ri−1 and q 7→ false for q 6∈ Ri−1] .

For a given universal automaton U = (Q, q0, F, δ), we define the state machine
M = (Q,Q0, τ) that simulates U : the next-state function τ is chosen to precisely
provide those successor states that are needed to satisfy the transition function δ:

– Q0 = {q0};
– τ(q′) =

∨
δ(q)=...∧q′∧... q.

Finally, we define transducers, which are state machines that are additionally
equipped with an output function: Let AP = API ·∪APO be a set of atomic
propositions that is partitioned into a set API of input propositions and a set
APO of output propositions. A transducer T = (Q,Q0, τ, {ϑp}p∈APO

) over AP
is a state machine over API with an output function ϑp : Q→ B+(API ∪Q) for
each p ∈ APO.

For an input word σ over 2API , the run R0, R1, . . . of the transducer is the run
of the state machine. The transducer additionally defines an output word σ′ over
2APO , where, for all i ≥ 0, and all p ∈ APO, p ∈ σ′(i) iff σ(i) |=

∧
q∈Ri

ϑp(q).

5 The Suffix Transducer

We start by translating the specification into automata, using Theorems 1 and 2.
Let ϕ be a temporal formula and let A(ϕ), U(ϕ), and M(ϕ) be the alternating
automaton, the universal automaton, and the state machine, respectively, that
are defined by ϕ.

When the transducer reads position i, it produces the truth values for all
positions from i−H to the cut-off position i. For this purpose, the suffix trans-
ducer contains a pipeline, which stores, for each atomic proposition p, H copies

p0, p1, . . . , pH−1, where pj indicates the truth value of p at position i −H + j.
Since pH is the the value of p at the currently available position i, there is no
need to store pH in the pipeline.

Let π ⊆
⋃
p∈AP{p0, p1, . . . ph−1} denote the pipeline content, and let As(γ) =

(Qs, qs0, F
s, δs) and Aw(γ) = (Qw, qw0 , F

w, δw) be the alternating automata for
formula γ in strong and weak context, respectively. We define, for each state
q ∈ Q and each offset j ∈ {0, . . . ,H}, Boolean expressions λs(π, q, j), λw(π, q, j)
that indicate if the strong and weak automaton, respectively, starting in state
q, accept the word represented by the pipeline content starting from position j.
For c ∈ {s, w}:

λc(π, q,H) = δc(q)

[
q′ 7→

{
true, if q ∈ F c,
false, otherwise;

, q′ ∈ Qc
]

λc(π, q, j) = δc(q)

[
q′ 7→ λc(π, q′, j + 1), q′ ∈ Qc,
p 7→ π(pj), p ∈ AP

]
for j < H.

The truth value of the atomic proposition 〈γ, j, c〉 in AP ′ is then defined by
the Boolean expression µc(π, γ, j), where µc(π, γ, j) = λc(π, qc0, j).

Example 3. The weak subformula ψ = ¬(a U(0,1) b) from Example 1 can be
translated into the alternating automaton Aw(ψ) = ({s0, s1}, s0, δ : s0 7→ (¬a ∨
s1)∧¬b; s1 7→ ¬b, F = {s0, s1}). Since H = 1, the pipeline stores the values of a
and b for one step (as a0 and b0). We obtain µw(π, ψ, 0) = (¬π(a0)∨¬b)∧¬π(b0).

ut

We construct the suffix transducer T (ϕ):

Theorem 3. For each temporal formula ϕ with separation formulas Γ s, Γw,
there exists a transducer T (ϕ) with input propositions AP and output proposi-
tions AP ′, such that the following holds for each 〈γ, j, c〉 ∈ AP ′, j ∈ {0, . . . ,H},
i ≥ H − j, and each input word σ and output word O0, O1, . . .:

〈γ, j, c〉 ∈ Oi iff σ(i−H + j, i) |=c γ.

The set of states is formed by the possible pipeline contents. The transition
function shifts the contents of the pipeline by one position and adds the new
observation. The output interprets each atomic proposition 〈γ, j, c〉 in AP ′ as
µc(π, γ, j).

6 The Prefix Transducer

The prefix transducer computes the truth value of the specification ϕ based
on the extended trace provided by the suffix transducer. For this purpose, the
separation formulas in the specification are replaced by atomic propositions. To
ensure that the substitution respects the context, we introduce, in addition to the

standard substitution operator ϕ[ψ 7→ ψ′], which replaces every occurrence of ψ
in ϕ with ψ′, a strong and a weak version: In the strong substitution ϕ[ψ 7→ ψ′]s,
all occurrences of ψ that are in the scope of an even number of negations are
replaced by ψ′, in the weak substitution ϕ[ψ 7→ ψ′]s, all occurrences of ψ that
are in the scope of an odd number of negations are replaced by ψ′. We generalize
the substitution operators to sets of replacement pairs in the obvious way.

Let ϕ be a temporal formula. The prefix transducer is based on a simplified
prefix formula ϕp, where we replace every separation formula with a proposition
from Γ s × {s} ∪ Γw × {w}, i.e., with a proposition indicating the separation
formula together with the strong or weak context.

ϕp = ϕ[γ 7→ 〈γ, s〉 | γ ∈ Γ s][γ 7→ 〈γ,w〉 | γ ∈ Γw].

Example 4. Consider again the specification from Example 1:
ϕ = ¬(true U(0,∞) ((¬(a U(0,1) b)) ∧ (true U(0,∞) b))).

Hence, ϕp = ¬(true U(0,∞) (〈¬(a U(0,1) b), w〉 ∧ (true U(0,∞) 〈b, w〉))).
ut

The idea for the construction of the prefix transducer is to check for the
existence of a run of the universal automaton U(ϕp) on the prefix up to position i.
Intuitively, the prefix is split into two parts. The first part, up to position (i −
H), is handled by the state machine M(ϕp), which we run with a delay of H
steps. In the transition function of the state machine, we therefore replace every
proposition 〈γ, c〉 with the proposition 〈γ, 0, c〉 delivered by the suffix automaton.

The second part, from position (i − H) to position i, is handled by the
output function of the transducer. For this purpose, we unroll the transition
function of U(ϕp) for H steps, and accordingly replace, in the jth unrolling, the
proposition 〈γ, c〉 with the proposition 〈γ, j, c〉 provided by the suffix automaton.
Let U(ϕp) = (Q, q0, δ, F). We define inductively:

ν(q,H) = δ(q) [〈γ, c〉 7→ 〈γ,H, c〉 | γ ∈ Γ, c ∈ {s, w}][
q′ 7→

{
true, if q ∈ F,
false, otherwise;

∣∣∣∣∣ q′ ∈ Q
]

;

ν(q, j) = δ(q) [〈γ, c〉 7→ 〈γ, j, c〉 | γ ∈ Γ, c ∈ {s, w}]
[q′ 7→ ν(q′, j + 1) | q′ ∈ Q] for j < H.

Suppose the state machine has computed the state set S when reaching its
delayed position (i−H). Then this partial run can be completed into an accepting
run on the full prefix iff ν(q, 0) is true for all states q ∈ S.

The prefix transducer P with input propositions AP ′ and output propositions
AP ′′ is obtained from the state machineM(ϕp) by encoding the delay ofH steps.
For this purpose, the transducer starts by counting H steps. In the ith step the
output is {ϕ} if ν(q,H−i) is true for all intial states ofM(ϕp). Then it proceeds
with the initial states of M(ϕp). The output is {ϕ} if the ν(q, 0) is true for all
active states.

Theorem 4. For each temporal formula ϕ with separation formulas Γ s, Γw,
there exists a transducer P(ϕ) with input propositions AP ′ and output proposi-
tions APO = {ϕ}, such that for all words σ over 2AP , σ′ over 2AP ′

, and σ′′ over
2AP ′′

, if T (ϕ) produces output σ′ reading input σ, and P(ϕ) produces output σ′′

reading input σ′, then for all i ≤ |σ|, ϕ ∈ σ′′(i) iff σ(0, i) |= ϕ.

7 The Monitor Circuit

As shown in Figure 1, the monitor circuit is built from four main components:
the pipeline circuit for the the suffix transducer S, the output function of the
suffix transducer, the state machine of the prefix transducer P, and the output
function of the prefix transducer. The circuits for the pipeline and the prefix
state machine maintain their internal state via D flip-flops, interconnected via
Boolean circuits that implement the next-state function. The circuits for the
output functions are pure Boolean circuits without internal state.

The pipeline circuit. The states of the suffix transducer S are defined by the
pipeline that buffers the truth values of the atomic propositions. For each atomic
proposition p ∈ AP and each offset j, 0 ≤ j < H, the pipeline contains a D flip-
flop fp,j . The input to fp,H−1 is the current input signal for p. The output of
fp,j is connected to the input of fp,j−1, thus shifting the values of p in each
clock-cycle by one position.

The state machine of the prefix transducer. Each state q of the state machine of
the prefix transducer P is implemented by a D flip-flop. The next-state function
is translated into Boolean circuits that are connected to the outputs of the flip-
flops representing the states and the output gates of the circuit for the output
functions of the suffix transducer S.

The output functions of the transducers. The output functions of the transducers
are implemented in hardware as pure Boolean circuits. The input gates of the
circuit for the output function of the suffix transducer S are connected to the
output of the flip-flops of the state machine of the suffix transducer S and with
the signals of the atomic propositions in AP .

The input gates of the output function of the prefix transducer P are con-
nected to the outputs of the flip-flops for the state machine of P and the output
gates of the output function of S. Its single output gate represents the output
of the monitor for ϕ on the prefix of the current input.

This implementation of the monitor circuit is well-suited for reprogrammable
hardware such as FPGAs. The actual translation of the Boolean functions into
the specific hardware can be realized by standard tools for the computer-aided
design of digital circuits.

The size of the circuits. The size of the pipeline circuit is linear in H · |ϕ|.
The output circuit of S consists of sub-circuits for each separation formula and

each position within the delayed fragment of the input trace. Each of these sub-
circuits is linear in the size of H and linear in the size of ϕ. Hence, the overall
size for the output circuit is quadratic in H · |ϕ|.

The size of the circuit for the state machine of P is linear in |U(ϕ)| and
hence linear in |ϕ| if ϕ is simple and exponential in |ϕ| otherwise. The size of
the Boolean circuit that computes the output function of P is of the same order
as the state machine of P multiplied by H.

Theorem 5. The number of gates of the monitoring circuit for a temporal spec-
ification ϕ is quadratic in H · |ϕ| if ϕ is simple except for bounded subformulas;
otherwise, the number of gates is exponential in |ϕ|.

8 Experimental Results

Our implementation takes as input an LTL formula and produces synthesizable
VHDL code for a cirucit that monitors the input formula. The code is then
passed to a synthesis tool for a specific hardware platform. In this section we
report on experimental results obtained with our implementation in conjunction
with the Xilinx Virtex-5 FPGA synthesis tool.

Our benchmarks, shown in Figure 2, include Etessami and Holzmann’s list
of commonly used LTL specifications [24] (formulas 1–12, adapted to our setting
by the introduction of parametric bounds), as well as a variation of the cache
specification from the introduction (formulas cn). The formulas rn specify fair
bounded response, a recurring pattern in many specifications. Table 1 shows the
results for the formuals from Figure 2. The number of signals and the number of
flip-flops are with respect to the VHDL description of the monitor circuit. The
MHz values are computed by the Xilinx Virtex-5 tool.

The first two sections of the table compare, for formulas with bound 2, the
performance of our construction (b = 2) with a direct approach (b = 2 direct),
based on building a universal automaton without pipeline. The presence of al-
ready very moderate bounds or a small number of nested Next-modalities can
yield a direct universalization of the alternating automaton of the specification
infeasable. As long as the bounds (or Next-modalities) are properly nested within
the unbounded operators, our construction circumvents the combinatorial blow-
up of the forward universalization and produces rather small monitors. Even for
bounds up to several dozens or even hundreds of steps, our approach produces
monitor circuits that fit on standard FPGAs. Bounds of this size are clearly far
beyond what a forward universalization can handle with an reasonable amount
of computational resources.

Our results also provide evidence that introducing bounds into a given speci-
fication can be helpful in order to simplify the monitoring. The third and fourth
section of the table report on the performance for higher bounds (b = 40) and
unbounded (b = ∞) formulas. For small specifications, bounds complicate the
monitoring problem. For larger specifications, however, the combinatorial over-
head introduced by the bounds, which is just polynomial, outplays the exponen-
tial blow-up caused by the richer combinatorial structure of the specification.

1. p U(0,3b) (q ∧ G(0,3b) r)
2. p U(q ∧X(r U(0,2b) s))
3. p U(q ∧X(r ∧ F(0,2b) (s ∧X F(0,2b) (t ∧X F(0,2b) (u ∧X F(0,2b) v)))))
4. F(0,3b) (p ∧X G(0,2b) q)
5. F(p ∧X(q ∧X(F(0,b) r)))
6. F(q ∧X(p U(0,2b) r))
7. (F G(0,3b) q) ∨ (F G(0,3b) p)
8. G(¬p ∨ (q U(0,b) r))
9. F(p ∧X F(0,b) (q ∧X F(0,b) (r ∧X F(0,b) s)))

10. (G F(0,2b) p) ∧ (G F(0,2b) q) ∧ (G F(0,2b) r) ∧ (G F(0,2b) s) ∧ (G F(0,2b) t)
11. (p U(0,2b) q U(0,2b) r) ∨ (q U(0,2b) r U(0,2b) p) ∨ (r U(0,2b) p U(0,2b) q)
12. G(¬p ∨ (q U(0,b) ((G(0,3b) r) ∨ (G(0,3b) s))))

cn = F(¬x ∧
^

0≤i≤n

(vi ↔ F(0,b) (vi ∧ x))) ∧G(x→X G¬x) ∧ F x

rn = G((
^

0≤i<n

(G F∀(0,3b) fi))→(a→(F∀(0,b) b)))

Fig. 2. Benchmark formulas.

b = 2 b = 2 direct b = 40 b = ∞
#signals #ffs MHz #signals #ffs MHz #signals #ffs MHz #signals #ffs MHz

1. 165 7 358 5274 192 309 43876 159 169 81 6 468
2. 86 9 442 1367 66 338 997 199 145 141 10 468
3. 545 12 204 – – – 89339 316 75 5792 97 383
4. 109 6 463 1705 128 336 19614 120 215 52 6 468
5. 41 7 467 168 18 468 532 159 253 97 10 468
6. 53 7 440 568 34 432 661 159 143 65 6 468
7. 70 6 467 – – – 7299 120 203 70 6 468
8. 39 8 467 52 6 468 344 160 191 47 5 468
9. 114 8 357 10746 514 297 10893 198 123 418 24 468

10. 180 14 467 173 28 449 7224 242 184 95 12 468
11. 279 7 467 – – – 78547 159 467 1240 66 367
12. 134 9 373 3984 231 301 22888 199 132 193 11 468

c3 202 13 431 8702 88 258 3101 203 188 35273 263 256
c5 259 15 314 27232 176 336 4966 281 179 – – –
c7 316 17 295 63080 296 289 5821 359 173 – – –

c10 405 21 274 – – – 8042 515 169 – – –

r3 180 10 382 – – – 5555 238 241 308 11 468
r5 280 12 402 – – – 7607 316 228 9368 62 361

r10 475 17 367 – – – 12646 511 214 – – –
Table 1. Experimental results.

9 Conclusions

We have presented a novel translation of temporal specifications to monitor
circuits that saves exponential space in the size of bounded-future subformulas.
The monitors are useful in hardware solutions for high-performance simulation
and prototyping, in particular using reprogrammable hardware such as FPGAs.
The new construction should allow synthesis tools for PSL to treat at least
bounded specifications outside the simple subset. The free use of disjunctions in
temporal specifications will make the specifications shorter and more general and
will allow the user to use the same specification logic for static verification and
runtime verification, without an error-prone rewrite into a restricted sublogic.

References

1. Kupferman, O., Vardi, M.: Model checking of safety properties. In: Computer
Aided Verification, Proc. 11th Int. Conference. Volume 1633 of Lecture Notes in
Computer Science., Springer-Verlag (1999) 172–183

2. IEEE Std 1850-2007: Standard for Property Specification Language (PSL). IEEE,
New York. (2007)

3. Cohen, B., Venkataramanan, S., Kumari, A.: Using PSL/Sugar for Formal and
Dynamic Verification. VhdlCohen Publishing, Los Angeles (2004)

4. Kleene, S.: Representation of events in nerve nets and finite automata. In: Au-
tomata Studies. Princeton University Press (1956)

5. McNaughton, R., Papert, S.: Counter-Free Automata. Volume 65 of Research
Monograph. MIT Press (1971)

6. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.V.:
Reasoning with temporal logic on truncated paths. In: CAV’03. Volume 2725 of
LNCS., Springer (2003) 27–39

7. Finkbeiner, B., Sipma, H.B.: Checking finite traces using alternating automata. In
Havelund, K., Roşu, G., eds.: Runtime Verification 2001. Volume 55 of Electronic
Notes in Theoretical Computer Science., Elsevier (July 2001) 44–60

8. Geilen, M.: On the construction of monitors for temporal logic properties. Electr.
Notes Theor. Comput. Sci. 55(2) (2001)

9. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: ASE, IEEE Computer Society (2001) 412 – 416

10. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: ASE, IEEE
Computer Society (2001) 135 – 143

11. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In Sokolsky, O., Tasiran, S., eds.: RV. Volume 4839 of Lecture Notes
in Computer Science., Springer (2007) 126 – 138

12. Dahan, A., Geist, D., Gluhovsky, L., Pidan, D., Shapir, G., Wolfsthal, Y., Be-
nalycherif, L., Kamdem, R., Lahbib, Y.: Combining system level modeling with
assertion based verification. In: ISQED05, IEEE Comp. Soc. (2005) 310–315

13. Boule, M., Zilic, Z.: Automata-based assertion-checker synthesis of PSL properties.
ACM Transactions on Design Automation of Electronic Systems (TODAES) 13(1)
(2008)

14. Armoni, R., Korchemny, D., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: Deterministic
dynamic monitors for linear-time assertions. In: In Proc. Workshop on Formal
Approaches to Testing and Runtime Verification 2006. Volume 4262 of Lecture
Notes in Computer Science., Springer (2006)

15. Ruah, S., Fisman, D., Ben-David, S.: Automata construction for on-the-fly model
checking PSL safety simple subset. Technical report, IBM Research (2005)

16. Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata
construction algorithm optimized for PSL. Technical report, PROSYD (July 2005)

17. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
FM. Volume 4085 of LNCS., Springer (2006) 573–586

18. Cimatti, A., Roveri, M., Semprini, S., Tonetta, S.: From PSL to NBA: a modu-
lar symbolic encoding. In: FMCAD ’06: Proceedings of the Formal Methods in
Computer Aided Design, Washington, DC, USA, IEEE Computer Society (2006)
125–133

19. Ben-David, S., Fisman, D., Ruah, S.: The safety simple subset. In Ur, S., Bin, E.,
Wolfsthal, Y., eds.: Haifa Verification Conference. Volume 3875 of LNCS., Springer
(2005) 14–29

20. d’Amorim, M., Rosu, G.: Efficient monitoring of omega-languages. In Etessami,
K., Rajamani, S., eds.: CAV. Volume 3576 of Lecture Notes in Computer Science.,
Springer (2005) 364 – 378

21. Brzozowski, J., Simon, I.: Characterizations of locally testable events. Discrete
Math. 4 (1973) 243–271

22. Wike, T.: Locally threshold testable languages of infinite words. In: STACS’93.
LNCS, Springer (1993) 607–616

23. Kupferman, O., Lustig, Y., Vardi, M.: On locally checkable properties. In: Proc.
13th International Conference on Logic for Programming Artificial Intelligence and
Reasoning. Lecture Notes in Computer Science, Springer-Verlag (2006)

24. Etessami, K., Holzmann, G.: Optimizing Büchi automata. In: CONCUR’00. LNCS,
Springer (2000) 153–167

