
Saarland University
Faculty of Mathematics and Computer Science

Master’s Thesis

NeuRes: A Neural Resolution
Prover of Unsatisfiability

Author
Mohamed Abdelhamid
Ghanem

Supervisor
Prof. Bernd Finkbeiner,

PhD

ii

Advisors
Frederik Schmitt

Julian Siber

Reviewers
Prof. Bernd Finkbeiner, PhD

Dr. Christopher Hahn

Submitted: 24th January 2024

iii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.
Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 24th January, 2024

iv

Erklärung

Ich erkläre hiermit, dass die vorliegende Arbeit mit der elektronischen Version
übereinstimmt.
Statement

I hereby confirm the congruence of the contents of the printed data and the elec-
tronic version of the thesis.

Saarbrücken, 24th January, 2024

Abstract

We introduce NeuRes, a neuro-symbolic generative model for proving Boolean un-
satisfiability using resolution. A resolution proof is a sequence of case distinctions
ending in the empty clause (falsum). Similar propositional logic tasks have proven
fertile grounds for neuro-symbolic methods such as NeuroSAT. However, these
methods often lack easily verifiable certificates for unsatisfiability to support their
predictions, whereby verifying their output effectively requires solving the satisfi-
ability problem again. In contrast, resolution proofs produced by NeuRes provide
an easily checkable certificate for unsatisfiability. We introduce a general architec-
ture that adapts elements from Graph Neural Networks and Pointer Networks to
autoregressively select pairs of nodes from a dynamic graph structure. Our model
is trained and evaluated on a dataset of expert proofs that we compiled with the
same formula distribution used by NeuroSAT. Compared to previous methods, we
demonstrate NeuRes to be more data efficient, requiring only 8K training formulas
to concisely prove unsatisfiability for 92.84% of unseen test formulas. In addition
to the high success rate of our model, we further demonstrate its ability to largely
shorten teacher proofs in a bootstrapped fashion with no extra guidance.

Acknowledgements

I would like to express my gratitude to Frederik Schmitt and Julian Siber for their
insightful discussions and remarks over the course of this thesis. Also, I would
like to give special thanks to Frederik for his amazing support on this project on
technical and formal logistics. My thanks also go to Dr. Christopher Hahn for
reviewing my thesis. Last but not least, I would like to thank Prof. Finkbeiner for
giving me the opportunity to do my thesis in the Reactive Systems group, and for
showing great support and interest in this project which I found deeplymotivating.

Contents

Abstract v

1 Introduction 1

2 Related Work 4

3 Preliminaries 6
3.1 SAT . 6
3.2 Resolution . 8
3.3 Graph Neural Networks . 9

4 Models 11
4.1 General Architecture . 11
4.2 Message-Passing Embedder . 12
4.3 Encoder-Decoder Network . 14
4.4 Selector Networks . 16

4.4.1 Cascaded Pointer-Attention (Casc-Attn) 16
4.4.2 Full Self-Attention (Full-Attn) 17
4.4.3 Anchored Self-Attention (Anch-Attn) 18

5 Training and Hyperparameters 21
5.1 Dataset . 21
5.2 Loss Function . 21
5.3 Proof-Reduction Bootstrapping . 22
5.4 Hyperparameters . 22

6 Experiments 24
6.1 Attention Variants . 25
6.2 Out-Of-Distribution Performance . 26
6.3 Number of Message-Passing Rounds 27
6.4 Shortening Teacher Proofs . 28

viii Contents

6.5 Bootstrapped Training . 30

7 Conclusion 33

A Appendix 35
A.1 Constant vs. Linearly Annealed Learning Rate 35
A.2 Network Parameters . 36

Bibliography 39

Chapter 1

Introduction

Boolean satisfiability (SAT) is a fundamental problem in computer science. For
theory, this stems from SAT being the first problem proven to be NP-complete [8].
For practice, this is due to many highly optimized SAT solvers used as flexible rea-
soning engines in many practical tasks such as hardware verification [5]. Recently,
SAT has also served as a litmus test for assessing the symbolic reasoning capabili-
ties of neural models, with neuro-symbolic models such as NeuroSAT [27] gener-
alizing to the semantics of propositional logic, and its predictions even leading to
considerable speed-ups in industrial-strength solvers [26]. Since SAT solvers are
often employed where correctness is critical and are complex systems with a docu-
mented history of bugs [6, 17], a key problem has long been providing certificates
that verify their outputs. This is evenmore crucial for neural solvers because, unlike
algorithmic solvers, we do not currently possess the means to prove their correct-
ness. For neural models, certification1 provides an opportunity to build a sound-
by-design solver: Combining neural prediction with a cheap algorithmic check of
the produced solution has, for instance, been proposed for circuit synthesis [24].
Figure 1.1 outlines the ideal neural solver in the sense that it follows its SAT verdict
with a certificate. In this work, we focus on designing a neural model capable of
generating such certificates for unsatisfiable formulas of propositional logic.
For a satisfiable formula, the witnessing variable assignment is an easily verifiable
certificate that classical solvers and even NeuroSAT can produce. For an unsatisfi-
able formula, however, both classical solvers and NeuroSAT struggle with provid-
ing a comparably useful certificate. We refer to the annual SAT competitions [4] for
a comprehensive overview on the ever-evolving landscape of SAT solvers, bench-
marks, and proof checkers. Notably, certificates for proofs of unsatisfiability have
been partially required in this competition since 2013 [3]. The first approaches

1We use the term certification here in the context of outputting witnesses for SAT predictions,
not in the sense of machine learning certification, where the models themselves, not the outputs, are
certified.

2 Introduction

Figure 1.1: Ideal Neural Solver

aimed at certification of unsatisfiability were based on resolution [33, 13]. The
main appeal to resolution proofs lies in their simplicity and low verification cost
[10]. However, it is non-trivial to output resolution proofs from modern solvers
which are almost universally based on the paradigm of conflict-driven clause learn-
ing [21] and employ complex preprocessing and inprocessing techniques that can-
not always be mapped neatly to resolution steps. Moreover, resolution proofs can
get quite large to the point where they require rather huge amounts of disk space.

The solution for the SAT-solving community has been to resort to the more relaxed
notion of clausal proofs, i.e., sequences of formulas where a formula at a given in-
dex has to be implied by the original formula unifiedwith all formulas at preceding
indices. Themost common format to represent clausal proofs is arguably theDRAT
format [31]. This format is able to capture most of the optimizations employed by
modern SAT solvers and is particularly storage-efficient. However, this comes at a
cost in complexity of verifying a DRAT certificate, which can take longer than proof
discovery. This complexity has practical ramifications on its human interpretability
and interestingly, the standard tool for DRAT checking, drat-trim, has been shown
to have bugs before [19].

Towards proving unsatisfiability, the neural model NeuroSAT only provides an un-
satisfiable core, i.e., a subset of formulas that are already unsatisfiable. Checking
the correctness of both clausal proofs and unsatisfiable cores requires again solving
SAT problems and may often take longer than the original proof discovery [16].

Given that NeuroSATwas only trained on predicting satisfiability and neural mod-
els are not as fundamentally barred from reproducing resolutionproofs as industrial-
strength solvers, we study the following question in this thesis: Can neural models
learn to produce resolution proofs as easily checkable certificates of unsatisfi-
ability? We answer this question affirmatively and present a novel architecture
drawing inspiration from the Graph Neural Network approach of NeuroSAT and
the selection mechanism of pointer networks. After only being trained on a rela-
tively small number of formulas and expert proofs, the resulting model, NeuRes,
is able to produce resolution proofs of comparable size for 92.84% of unseen test
formulas.

3

Our contributions. In this thesis, we make the following main contributions:
1. We introduce three novel neural architectures for generating resolutionproofs

of unsatisfiability for CNF formulas. We then evaluate them in terms of suc-
cess rate and optimality to determine the most effective variant.

2. We show our model’s ability to largely shorten expert proofs given by an ad-
vanced solver with no external guidance. In essence, we show that by simply
training on solver proofs, our model is able to learn novel insights into the
redundancy involved in those proofs and ultimately shortcut them.

3. Having established such reduction capabilities, wedevise a bootstrapped train-
ing procedurewhere ourmodel progressively becomes its own teacherwhich
further boosts its success rate and optimality beyond those obtained by reg-
ular teacher-forcing. We further showcase the potency of this procedure to
shorten a dataset of resolution proofs by simply training on it – a feature that
stands great potential value in alleviating the storage constraints of resolution
proofs.

Chapter 2

Related Work

SupervisedNeural SATSolvers. NeuroSAT [27]was the first study of the Boolean
satisfiability problem as an end-to-end learning problem. Building upon the Neu-
roSAT architecture, [26] trained a simplified version to predict unsatisfiable cores
and successfully integrated it in a state-of-the-art SAT solver. [7] showed that both
theNeuroSAT architecture and a newly introduced deep exchangeable architecture
can outperform SAT solvers on instances of 3-SAT problems and be trained to addi-
tionally provide a satisfying assignment. The NeuroSAT architecture has also been
applied on special classes of crypto-analysis problems [28].
UnsupervisedNeural SAT Solvers. In addition to supervised learning, unsuper-
visedmethods have been proposed for solving propositional satisfiability problems
with deep learning. For Circuit-SAT a deep-gated DAG recursive neural architec-
ture has been proposed together with a differentiable training objective to optimize
towards solving the Circuit-SAT problem and finding a satisfying assignment [2].
For Boolean satisfiability, a differentiable training objective has been proposed to-
gether with a query mechanism that allows for recurrent solution trials [22].

Deep learning has been further used in the deep generative neural network G2SAT
for generating SAT formulas [32].
Certificates in Neuro-symbolic Computing. Below are some examples of prior
work on training neural networks on formally verifiable certificates:

• Symbolic integration inmathematics: [20] define a syntax to represent sym-
bolic integration and differential equation problems inmathematics and train
a sequence-to-sequence neural network to produce step-by-step solutions for
these tasks.

• Proof generation/repair: [23] explored the use of transformer-based large
language models (LLMs) for automated theorem proving where they man-
aged to produce new concise proofs that were accepted into the main Meta-

5

math library. [12] utilizes LLMs to generate whole proofs at once (not step
by step) and then use a fine-tuned repair model to fix the generated proofs.

Chapter 3

Preliminaries

3.1 SAT
The satisfiability problem, often abbreviated as SAT, is a classical problem in com-
puter science andmathematical logic. The problem is to determinewhether a given
logical formula, expressed in Boolean logic, can ever be true (satisfied) by some as-
signment of truth values to its variables. In the following, we cover the relevant
concepts around SAT.
A Boolean formula is an expression constructed using Boolean variables joined
by logical connectives. For example, given Boolean variables A,B,C, we can con-
struct a Boolean formula as: (A∨ B)∧ (B∨ ¬C).

Syntax of Boolean Formulas

1. Boolean variables are symbolic tokens that can take the truth value
of either be true (1, ⊤) or false (0, ⊥). A Boolean literal is a variable
occurrence either positively (e.g., A) or negatively (e.g., ¬A).

2. Connectives: A set of logical operators, typically including conjunc-
tion (∧), disjunction (∨), and negation (¬).

3. Formation rules: A Boolean formula is defined recursively as follows:
• The empty formula with no variables represents falsehood (⊥).
• A unit Boolean formula only contains a single Boolean variable.
• If F and G are Boolean formulas, then (F∧G), (F∨G), ¬F, and ¬G

are Boolean formulas.

A truth assignment (also known as an interpretation) is a function I : V → {⊥,⊤}

where V is the set of Boolean variables.

The truth value of a boolean formula is recursively defined:

• The truth value of a variable vi ∈ V is I(vi).eit

3.1. SAT 7

• I(F∧G) = ⊤ if I(F) = I(G) = ⊤, and ⊥ otherwise.
• I(F∨G) = ⊥ if I(F) = I(G) = ⊥, and ⊤ otherwise.
• I(¬F) = ⊥ if I(F) = ⊤, and ⊤ otherwise.

There are multiple standard forms, termed normal forms, to express Boolean formu-
las, and they are all pairwise convertible. The two most common normal forms are
arguably the Conjunctive Normal Form (CNF) and the Disjunctive Normal Form
(DNF). CNF formulas are expressed as a conjunction of disjunctions (commonly
referred to as clauses) as follows:

k∧
i=1

mi∨
j=1

Lij


where Lij is the j-th literal in the i-th clause, whose length is mi.
DNF formulas are a disjunction of conjunctions compactly expressed as:

k∨
i=1

mi∧
j=1

Lij


As such, to satisfy a CNF formula, a variable assignment should satisfy every single
clause in the formula while for a DNF formula, it suffices to satisfy one conjunctive
clause. Any Boolean formula can be converted to an equivalent formula in either for-
mats [11]. However, the conversion can result in a formula size that is exponential
in the size of the original formula. That being said, for the purposes of determin-
ing satisfiability, we need not worry about equivalence but rather equisatisfiability.
Two formulas F and G are equisatisfiable when F is satisfiable if and only if G is
satisfiable. Fortunately, any Boolean formula can be converted to an equisatisfiable
CNF formula in polynomial time using the Tseytin transformation [29]. No sim-
ilar polynomial-time reduction has been found for DNF formulas. Therefore, we
operate on CNF formulas.

8 Preliminaries

3.2 Resolution
Resolution reasons about propositional formulas in clausal normal form, e.g., (x1∨
x2 ∨ ¬x4) ∧ (¬x1 ∨ x3). As previously explained, such a formula is called satisfi-
able if there is an assignment to the Boolean variables that renders it true, and it is
called unsatisfiable otherwise. We will use a simplified notation of such formulas
as sets of sets, e.g., {{1, 2,−4}, {−1, 3}}. An inner set such as {−1, 3}, called a clause,
corresponds to a disjunction of literals. Literals are variables, such as 3 (for x3)
or their negation, such as −1 (for ¬x1). The resolution rule picks clauses with two
complementary literals and performs the following inference:

C1 ∪ {x} C2 ∪ {x̄}
Res

C1 ∪ C2

Resolution effectively performs a case distinction on the value of variable x: Either
it is assigned to false, then C1 has to evaluate to true, or it is assigned to true, then C2

has to evaluate to true. Hence, we may infer the clause C1 ∪C2. A resolution proof
of unsatisfiability for a formula F is a sequence of applications of the resolution
rule Res to pairs of clauses that either appear in F or were inferred in previous
applications of Res, and that endswith the empty clause. Proof systems based only
on propositional resolution are already complete [15]: applying the resolution rule
until no longer possible implies satisfiability if the empty clause is not inferred, and
unsatisfiability otherwise. They are also evidently sound based on the soundness
of the resolution rule itself.

Figure 3.1: Resolution Tree Example

Figure 3.1 shows an example of a resolution proof tree. For the scope of this thesis,
we only use binary resolution although our architecture can, in principle, be ex-
tended to cover generalized resolution (involving more than two clauses) as well.

3.3. Graph Neural Networks 9

3.3 Graph Neural Networks
Graph Neural Networks (GNNs) are a family of neural networks designed to han-
dle graph-structured data. In theory, data entities are featurized byGNNs similarly
to regular feed-forward networks; it is the arbitrary nature of the relationships be-
tween those entities that prompts the use of GNNs.

Graph representation

In graph structures, data entities are referred to as nodes, and the relation-
ships between nodes are represented by edges. For instance, nodes can rep-
resent individuals in a social network where edges represent personal con-
nections between them.

One challenge that graphs pose for neural models is that they are of arbitrary size,
and they cannot be standardized into data structures of fixed dimensions like im-
ages or matrices1. To address this challenge, the key concept of message passing
protocols in GNNs is devised. These protocols allow the network to capture neigh-
bourhood information for each node into a local feature vector, often referred to as
the node embedding. Figure 3.2 shows an example of one message passing round in
action. During the round k, neighbouring nodes exchange their current embedding
state vectors hk

i , then each nodes aggregates the incoming embedding vectors into
its own to produce its updated embedding vector to be used in the next round.

Figure 3.2: Message Passing Embedding

1Even adjacency matrices will be of variable dimensions based on the number of nodes.

10 Preliminaries

The aggregation function is typically a neural network that gets trained as part of
the larger GNN model, and can be formally expressed in the update rule as:

h
(k+1)
v =F

(
{h

(k)
u |u ∈ N(v)}

)
(3.1)

where:
• h

kl)
v is the representation of node v at round k,

• N(v) is the set of neighbors of node v,
• F is the aggregation function, which can be a sum, mean, max, or a neural

operation.
There are several message passing protocols in the literature such as Structure2Vec
[9] and GraphSAGE [14]. These embedding techniques provide a neural represen-
tation for input graphs that can be operated on by the later stages of the network.
After the embedding phase, GNN architectures start to differentiate themselves
based on their target objective/task. These tasks include, but are not limited to:

• Node classification: e.g., labelling malicious individuals on a social network
• Graph classification: e.g., whether a given graph is a clique
• Graph clustering: e.g., partition a social network into friend circles
• A combination of the above

In this thesis, we employ a GNN to embed CNF formulas in form of a set of clause
embeddings, which we then use to make selections over clauses or pairs of clauses
for resolution. The details of the formula graph construction and embedding will
be discussed in Section 4.2.

Chapter 4

Models

Our approach is inspired mostly by two works in the neuro-symbolic literature,
namelyNeuroSAT [27] for Boolean formula embedding andPointerNetworks (Ptr-
Net) [30] for clause selection. However, our setting and objective are fundamen-
tally different from both models. Firstly, while NeuroSAT predicts satisfiability
with no certificate, our model proves unsatisfiability by generating a certificate.
As such, NeuroSAT is a classifier while NeuRes is a generative network. Secondly,
PtrNet can only select from the set of input tokens while NeuRes can select be-
tween pairs (and possibly tuples) of input tokens. We present several variations of
NeuRes in our study, which we describe in this section. We start by outlining the
overall architecture shared by all variants in Section 4.1. The main difference be-
tween our variants is the selection mechanism for choosing a pair of input tokens.
We present these variations in Section 4.4.
4.1 General Architecture
NeuRes is a neural network that takes an unsatisfiable Boolean CNF formula as a
set of clauses and outputs an unsatisfiability proof as a sequence of resolution steps

Figure 4.1: Overall NeuRes architecture

12 Models

Figure 4.2: Embedding Sub-network

(pairs of clauses). As such, our model comprises a formula embedder followed by
an encoder-decoder LSTM-based network connected to an attention sub-network
responsible for selecting clause pairs. See Figure 4.1 for an overview of the NeuRes
architecture. After obtaining the initial clause embeddings (representing the in-
put formula), they are passed through the encoder to get the initial hidden state
of the decoder, which marks the proof phase. Each time step, the model selects a
clause pair which gets resolved into a new clause to append to the current formula
graph. The model keeps deriving new clauses until either the empty clause is de-
rived (marking proof completion) or the limit on proof length is reached (marking
timeout).

4.2 Message-Passing Embedder

Similar to NeuroSAT, we use a message-passing GNN to obtain clause and lit-
eral embeddings by performing a predetermined number of rounds. Our formula
graph is constructed in a similar fashion to NeuroSAT graphs as shown in Figure
4.3. For a formula F in n∗ clauses andm variables, the ultimate output of this GNN
is two matrices: EL ∈ Rm×d for literal embeddings and EC ∈ Rn×d for clause
embedding, where n ⩾ n∗ is the current number of clauses (input+derived) and
d ∈ N+ is the embedding vectorwidth. Herewehave twokeydifferences fromNeu-
roSAT. Firstly, NeuroSAT uses these embeddings as voters to predict satisfiability
through a classification MLP. In our case, we use these embeddings as attention to-
kens for clause pair selection. Secondly, since our model derives new clauses with
every application of the resolution rule Res, we need to embed these new clauses,
as well as update existing embeddings to reflect their relation to the newly inferred
clauses. Consequently, we need to introduce a newphase to themessage-passing of
NeuroSAT, for whichwe explore two approaches: static embeddings and dynamic
embeddings.

4.2. Message-Passing Embedder 13

(a) Literal-to-Clause Phase (b) Clause-to-Literal Phase

Figure 4.3: NeuroSAT Graph 2-Phase Message-Passing Round

Static Embeddings. In this approach, we do not change the embeddings of old
clauses upon inferring a new clause. Instead, we exchange local messages between
the node corresponding to the new clause and its literal nodes, in both directions.
We do this for a predetermined number of times. The main advantage of this ap-
proach is its low cost. Amajor drawback is that old clauses never learn information
about their relation to newly inferred clauses, which might not be critical for res-
olution steps involving an old clause and a derived one since the derived clause
is aware of the old one. It would be problematic, however, when we consider res-
olution between two input clauses since neither of them would know about any
derived clauses which makes it harder for our attention-based selector network to
properly assign a score to that step as these two clauses are missing information
about other clauses in the network.
Dynamic Embeddings. In this approach, we do not only generate a new clause
and its embedding, we further update the embeddings of all other clauses. This
accounts for the fact that the utility of an old clause may change with the intro-
duction of a new clause. We do this by performing one message-passing round on
the mature graph for every newly derived clause, which produces the new clause
embedding and updates other clauses. Since message-passing rounds are parallel
across clauses, a single update to the whole embedding matrix is reasonably effi-
cient. An alternative is to repeat the entire message-passing protocol with every
new clause, but this is vastly more expensive. Further, it is mostly redundant: Our
new clause embeddings mature over time as they will get involved in the message
passing rounds of subsequent inferences.
An upside for dynamic embeddings is that they encode the problem state along
with the decoder hidden state as these two are the only changing components dur-
ing the derivation phase. As such, having static embeddings places a heavier bur-
den on the decoder hidden state to capture all changes to the problem state after
each step1. From a decision-making perspective, the model often needs to select

1One caveat to that statement is that with static embeddings, newly generated embeddings also

14 Models

largely different/distant pairs of clauses at consecutive steps, which means that
our token selection scores should vary significantly from one step to the next. Up-
dates to decoder hidden state induce this variance locallywhereas updates to clause
embeddings induce it more globally. Last but not least, performing one message-
passing round after each step potentially mitigates overfitting on a fixed number of
rounds.
Message-passing Rounds. For message passing, we need a way to determine the
number of rounds to perform for each formula F. In our evaluation, we experi-
ment with two settings for the number of rounds: a fixed number (16, 32, 64), and
|VF|+ 1where VF is the set of variables of formula F. One could make the argument
that unlike classical graph embedding tasks that place an emphasis on exploring
node connectivity, our NeuroSAT-style graphs for UNSAT formulas have an unsat-
isfiable core that is very dense (with short diameters) since clauses in these cores
are highly interdependent. Consequently, effectively embedding these formulas
boils down to embedding these dense UNSAT cores, whose connectivity does not
require many message-passing rounds to capture. This means that only a small
portion of message-passing rounds are used to discover node connectivity leaving
the larger remaining portion for learning useful relations between clauses other
than mere reachability. Nevertheless, the model does not know this UNSAT core
beforehand, so it needs to fully capture the formula graph to be able to recognize
clauses that are part of this UNSAT subgraph from others that are not. Therefore,
our choice of message-passing rounds should guarantee full exploration of graph
connections. That is essentially the rationale behind the adaptive (|VF| + 1)-round
configuration as it is the maximum number of rounds needed to explore the whole
graph. Note that this is a guaranteed upper bound by construction of the formula
graph where clause nodes are anchored to their constituent literal nodes.
4.3 Encoder-Decoder Network
Following the embedding stage, we use a bidirectional LSTM encoder to summa-
rize the formula using the clause embeddings as a token sequence. The last en-
coder hidden state is then used as the initial state for the decoder, which initially
takes the start token as input. Subsequently, the input to the decoder becomes the
embeddings for newly derived clauses. In our design, the decoder state encodes
the solver decision at each step while the subsequent attention network interprets
this decision into a concrete resolution step. It is noteworthy that the way infor-
mation flows into the decoder encourages a stateful approach towards resolution
proofs. That is, each step the decoder receives the previous hidden state contain-
ing formula summary as state and the last clause embedding as input. As such,
the decoder answers the question: Given the current formula and the fact that you just

capture some state change, albeit somewhat minor.

4.3. Encoder-Decoder Network 15

Figure 4.4: Encoder-Decoder Sub-network

derived this clause, what is the next step? as opposed to Given the current formula, what
is the next step? Though both queries entail the same information about the current
formula, the former explicitly prompts themodel to build on its previous decisions.

16 Models

4.4 Selector Networks

After producing clause and literal embeddings followed by the encoder phase, our
model enters the derivation stage highlighted in Figure 4.5. For each step, our
model needs to select two input clauses to resolve, produce the resultant clause,
and add it to the current formula. We tokenize clauses by their embeddings as
opposed to their encoder outputs as in PtrNet. The reason for that is that our em-
beddings are dynamic, and so the encoder outputs need to be dynamic, too. While
embeddings can be updated in parallel, encoder outputs are generated in sequence,
which is rather costly.

Figure 4.5: Selector Sub-network

To realize our clause-pair selection mechanism, we employ three attention-based
designs. With the decoder as the main driver for our model, at each step t we use
the decoder hidden state vector ht for querying our attention networks over the set
of tokens (clauses or literals).

4.4.1 Cascaded Pointer-Attention (Casc-Attn)

This is arguably the most naive approach. In this design, pairs are selected bymak-
ing two consecutive attention queries on the clause pool. This is, however, not ideal
because the two clauses are interdependent, which makes the selection more about
the pair than each clause independently. This can be mitigated by conditioning the
second attention query on the outcome (i.e., the clause) of the first query. Figure
4.6 shows this schemewherewe perform the first query using ht concatenatedwith
a zero token vector while performing the second query using ht concatenated with
the embedding vector EC

i of the clause selected in the first query.

Formally, Casc-Attn selects a clause index pair (c1, c2) as follows:

4.4. Selector Networks 17

Figure 4.6: Cascaded Attention

Qr =

{
ht ∥ 0 if r = 1

ht ∥ EC
c1

if r = 2
(4.1)

cr = argmax
i

[
uT tanh(W1Qr +W2E

C
i)

] (4.2)

where W1 ∈ R2d×d,W2 ∈ Rd×d, u ∈ Rd are trainable network parameters.
One upside of this design is that it is not limited to pair selection, as it can be used to
select a tuple of arbitrary length. Nevertheless, this design still chooses each clause
independently from the subsequent ones, which is undesirable.
4.4.2 Full Self-Attention (Full-Attn)
To address the downside of independent clause selection, this variant performs
self-attention between all clauses to obtain a matrix S ∈ Rn×n where Si,j represents
the attention score of the clause pair (Ci, Cj) as shown in Figure 4.7. Thus, the
model selects clause pairs in tandem by choosing the cell with the maximal score.
In this attention scheme, clause embeddings are used as keyswhile queries are con-
structed by concatenating the decoder hidden state ht with all clause embeddings.
In one experimental variant, we compute a value matrix for clause embeddings to
build a context vector from theweighted softmax average of clause values. We then
blend this context vector with the decoder hidden state using a GRU cell with the
aim of refreshing the problem state. Doing so, however, did not empirically result
in any notable improvements.
Formally, Full-Attn selects a clause index pair (c1, c2) as follows:

Qr = WQ(ht ∥ EC
r); Kr = WKE

C
r (4.3)

S =
QKT

√
d

(4.4)

(c1, c2) = argmax
(i,j)

Si,j (4.5)

18 Models

Figure 4.7: Full Self-Attention

whereWQ ∈ R2d×d,WK ∈ Rd×d are trainable network parameters. Since S contains
many cells that correspond to invalid resolution steps (i.e., two clauses that cannot
be resolved), we mask out the invalid cells from the attention grid in ensure the
network selection is valid at every step.

In Section 4.2, we stated that under static embeddings for a derived clause, as the
embedder creates its embedding, it only updates the representations of the vari-
ables involved in it – leaving other clause embeddings intact. This might present a
problem for Full-Attn where the attention grid contains all clauses including dis-
connected2 pairs. An example of such a pair would be two derived clauses that
do not share a variable. This could potentially lower the efficacy of the attention
mechanism as it tries to match clauses that are unaware of each other.
4.4.3 Anchored Self-Attention (Anch-Attn)

Effective as full self-attention is, the attention grid grows quadratically with the
number of clauses, which is arguably expensive. In this variant, we relax this cost by
exploiting a property of binary resolution where each step targets a single variable
in the two resolvent clauses. This allows us to narrow down candidate clause pairs
by first selecting a variable as an anchor on which our clauses should be resolved.
As such, we do not need to consider the full clause set at once, only the clauses
containing the chosen variable v. We further compress the attention grid by lining
clauses containing the literal v on rows while lining clauses containing the literal
v̄ on columns. This reduces the redundancy of the attention grid since clauses
containing the variable v with the same parity cannot be resolved on v, so there is
no point in matching them. In the worst case, this relaxed grid is of size n

2 × n
2 =

n2

4 instead of n2. In this scheme, we have two attention modules: one pointer-
attention network to choose an anchor variable followed by a self-attention network
to produce the anchored score grid.

In light of Figure 4.8, this approach combines structural elements from Casc-Attn
2We use the terms connected and disconnected here to refer to the fact of whether two nodes have

exchanged messages (in either direction) or not, respectively.

4.4. Selector Networks 19

Figure 4.8: Anchored Self-Attention

(pointer attention) Full-Attn (self-attention); however, both elements are used dif-
ferently inAnch-Attn. Firstly, pointer-attention inCasc-Attn is used to select clauses
whereas in Anch-Attn, it is used to select variables. Secondly, self-attention in Full-
Attn matches any pair of clauses (ci, cj) in both directions as the row and column
dimensions in the attention score grid reflect the same clauses (all clauses). By
contrast, Anch-Attn only computes self-attention scores for clause pairs in only one
order (positive instance to negative instance).
Formally, Anch-Attn selects an anchor variable v as follows:

v = argmax
i

[
uT tanh(W1ht +W2(E

L+

i + EL−

i))
]

(4.6)

where W1 ∈ Rd×d,W2 ∈ Rd×d, u ∈ Rd are trainable network parameters. The
clause index pair (c1, c2) is then selected according to the same equations of Full-
Attn (Eq. 4.5) using the v-anchored set of clause embeddings. Note that, unlike
Full-Attn, the indices on the self-attention grid in Anch-Attn need to be mapped
back to the original indices.
Despite being a relaxation on Full-Attn, Anch-Attn has a distinct edge over Full-
Attn under static embeddings in form of the following property:
Lemma 4.1 Clauses in the variable-anchored attention grid of Anch-Attn are guaranteed
to be connected under both static and dynamic embeddings.

Proof Let v be a variable in the input formula, and the set of clauses of a v-anchored
attention grid be A. We show that we always have at least one clause Ai ∈ A that
reaches all other clauses inA on the formula graph. Wemake two case distinctions:
Case 1: All clauses in A are input clauses (in the original formula). Here, the
lemma follows trivially since all these clause were connected during the input-
phase message-passing protocol as they share at least one variable v.
Case 2: A contains derived clauses. LetAi be the most recently derived clause inA.
SinceAi shares variable vwith all other clauses inA, thenAi would be connected to
them all during the derivation-phase message-passing protocol immediately after

20 Models

Ai was derived. This is becauseAi receives amessage from v (under both static and
dynamic embeddings) containing information about all other clauses containing v,
which is precisely A \ {Ai}. Therefore, the lemma holds. □

Chapter 5

Training and Hyperparameters

5.1 Dataset
For our training and testing data, we adopt the same formula generation method
as NeuroSAT, namely SR(n) where n is the number of variables in the formula.
This method was designed to generate a generalized formula distribution that is
not limited to a particular domain of SAT problems. The generation starts with
an empty formula then each turn, it adds a random clause and checks the SAT
status of the resulting formula using a classical SAT solver. Clauses are generated
by sampling k variables (with a preset mean of k̄ = 4) where a variable is negated
with a 50% probability. Once an added clause makes the formula unsatisfiable, the
generation stops and the resulting unsatisfiable formula F is added to the dataset
along with its satisfiable conjugate F

′ obtained by negating one literal in the last
clause. For the purposes of NeuRes, we are only interested in the unsatisfiable
formulas, so F

′ is discarded. To control our data distributions, we vary the range
on the number of Boolean variables involved in each formula. For our training data,
we use formulas in SR(U(10, 40))where U(10, 40) denotes the uniform distribution
on integers between 10 and 40 (inclusive). For our out-of-distribution dataset, we
generate formulas in SR(U(40, 80)). As for our teacher resolution proofs, we use a
BooleForce[1] solver on the formulas generated on the SR distribution.
5.2 Loss Function
We train our model in a supervised fashion using teacher forcing on expert proofs.
During training, expert actions (clause pairs) are imposed throughout a formula
run (i.e., episode). The length of the teacher proof dictates the length of the re-
spective episode, denoted as T . Model parameters θ are trained to maximize the
likelihood of expert choices yt as shown in Eq 5.1. These likelihoods are weighted
by a time-horizon discounting factor γ < 1.0 in order to assign higher weights to
later stages of the run as themodel gets closer to deriving the empty clause (t → T).
In addition, discounting step-wise losses gives higher mean episodic weights to

22 Training and Hyperparameters

shorter proofs, which is beneficial since shorter proofs have less room for redun-
dancy and variance – making them clearer learning signals. This discounting was
also empirically observed to yield better results than using unweighted likelihoods.

max
θ

1

T

T∑
t

log(p(yt; θ)) · γ(T−t) (5.1)

5.3 Proof-Reduction Bootstrapping
Advanced as industrial resolution solvers are, they are still algorithmically sub-
optimal. One important implication of that is their proofs having a significant mar-
gin of redundancy which varies from case to case. That is, the expert behaves on
some problem instancesmore optimally than others. Since ourmodel tries tomaxi-
mize expert-action likelihoods on average, that results in the model learning strate-
gies that are less optimal than most-optimal expert proofs as well as ones more op-
timal than least-optimal expert proofs. We exploit the latter fact in our training by
pre-rolling each input problem using model actions only, and whenever the model
proof is shorter than the expert’s, this shorter proof replaces the expert’s in the
dataset. In other words, we maximize the likelihood of the shorter proof (between
model and expert). In doing so recursively, the model progressively becomes its
own teacher by exploiting redundancies in the expert algorithm. Naturally, this in-
troduces a bias towards themodel’s own actionswhile reducing variance by having
a more concise learning signal in form of shorter proofs. It is, of course, uncertain
whether training on shorter proofs necessarily leads to an improved performance,
but it is a hypothesis we explore in our experiments.
To mitigate the introduced bias effect, we train several model generations, each
trained on the reduced data pool of its predecessor. In doing so, each fresh model
gets trained on proofs shortened by a different model, which allows the later gener-
ations to both exploit the existing reduction insights while having room for finding
new ones. In the case of a single generation, the latter effect gets throttled, as the
model matures, due to that self-bias, which gets reset in each new generation.
5.4 Hyperparameters
Ourneural solver has fourmain hyperparameters that influence network size, depth,
and loss weighting.
Latent VectorWidths. Embedding and hidden state vectors have a fixedwidth of
512, which was experimentally found to yield the best trade-off between memory
and learning capacity.
Training hyperparameters. We train our model with a batch size of 1 and an
Adam optimizer [18] for 50 epochs. We linearly anneal the learning rate from

5.4. Hyperparameters 23

5 × 10−5 to zero over the training episodes. This was shown to yield notably bet-
ter results than using a constant learning rate (cf. Appendix A.1). We use a time
discounting factor λ = 0.99 for the episodic loss.

Chapter 6

Experiments

There are twomain obstacles towards establishing a fair comparison betweenNeuRes
and other neural methods in the literature. On one hand, there are currently no
standard UNSAT benchmark datasets used across the neuro-symbolic literature,
so comparing baselines on different datasets would compromise the fairness and
reliability of the evaluation. On the other hand, to the best of our knowledge, ex-
isting neural methods either do not produce formal certificates to support their
predictions or produce ones that are expensive to check (most commonly UNSAT
cores), which further undermines the fairness of comparing against them. As such,
in this section, we compare the test performance of our different NeuRes variants
in terms of success rate (i.e., problems solved before timeout) and proof length rel-
ative to expert, denoted as p-Len =

|PNeuRes|
|Pexpert| . Although we tend to care more about

the success rate than optimality, p-Len is still a crucial metric to report, and it be-
comes particularly relevant in the context of our model’s ground-truth reduction
capabilities. There are several ways to set a timeout on proof length as a function
of the input formula. To get a more precise comparison to expert performance, we
set our maximum proof length as 4 · |Pexpert|. Note that we measure p-Len only for
solved formulas to avoid diluting the average with resolution trails that timed out.
For our evaluation, overall problem difficulty is quantified by the number of vari-
ables involved in the formula. To further demonstrate the reliability of our model
learning, we test our models on 10K test formulas, which is more than the num-
ber of formulas they were trained on (8K). Experiments in this chapter are ordered
in such a way that only the best performer of each experiment carries over to the
subsequent ones in order to have a more focused evaluation.

6.1. Attention Variants 25

6.1 Attention Variants
To assess the basic performance of NeuRes, we test it on a test set comprising 10K
formulas belonging to the same distribution as the training dataset. We evaluate
each attention variant using both static and dynamic embeddings to measure the
effect of embedding dynamicity on each of them.

Variant
Static Embedding Dynamic Embedding
Solved (%) p-Len Solved (%) p-Len

Casc-Attn 13.62 1.8 38.98 1.97
Full-Attn 23.68 1.59 87.19 1.74
Anch-Attn 26.28 1.99 48.63 1.6

Table 6.1: In-Distribution Performance

As shown in Table 6.1, dynamic embedding is decisively superior for all three atten-
tion variants, thereby confirming its conceptual merit. While Anchored-Attention
leads over other variants under static embeddings, the shift to dynamic embed-
dings unlocks the potential of Full-Attention where it has a much higher success
rate than the other two variants, albeit at the cost of somewhat longer proofs on
average.

In Section 4.4.3, we presented Anch-Attn as a compromise between Casc-Attn and
Full-Attn with the expectation that it would perform somewhere higher than Casc-
Attn and lower than Full-Attn. This appears to be the case under dynamic embed-
dings; however, under static embeddings, Anch-Attn performs better than Full-
Attn. Numerically, the difference between their success rates in the static setting
might not be large enough to warrant an explanation. Nonetheless, a potential way
to explain it lies in Lemma 4.1 stating the guaranteed connectivity of all clauses
in the self-attention grids of Anch-Attn – a property that clearly does not hold for
Full-Attn under static embeddings.

One orthogonal takeaway from Figure 6.1 is that the number of variables is a more
truthful indicator of problemdifficulty than the number of clauses as increasing the
former leads to a nearly monotonic decline in success rates while the latter does not
present the same consistent inverse proportionality with success rates.

Havingdemonstrated dynamic-embedding Full-Attn to be the best-performing con-
figuration (highest success rate by far) over in-distribution test settings, the remain-
ing evaluation experiments will be exclusively demonstrated on this variant.

26 Experiments

(a) Success Rate vs. #Variables (b) Success Rate vs. #Clauses

(c) p-Len vs. #Variables (d) p-Len vs. #Clauses

Figure 6.1: In-Distribution Performance Breakdown

6.2 Out-Of-Distribution Performance

To further test the generalizability of NeuRes to unseen formulas, we evaluate our
best model on a test set following a different distribution from that of the training
data. Our out-of-distribution (OOD) test set contains 10K formulas inSR(U(40, 80))

while training formulaswere in SR(U(10, 40)). Thus, ourOOD test formulas are not
only of a different distribution, but they are also larger in size than our training for-
mulas. In doing so, we evaluate our model’s ability to generalize to larger problem
instances. OOD learning is a prominent problem in machine learning, so gener-
ally speaking, machine learning models should not be expected to perform equally
well on unseen input distributions. As shown in Figure 6.2, although NeuRes still
manages to perform reasonably well on formulas twice the sizes it was trained on,
its performance still drops substantially from its in-distribution mark. This finding
suggests that NeuRes learns a generally effective resolution strategy that applies to
arbitrary formulas.

6.3. Number of Message-Passing Rounds 27

(a) Success Rate vs. #Variables (b) p-Len vs. #Variables

Figure 6.2: Out-Of-Distribution Performance Breakdown (Dynamic Full-Attn)

Data Solved (%) p-Len
In-Distribution 87.19 1.74

Out-of-Distribution 30.58 2.25

Table 6.2: Overall Out-Of-Distribution Performance (Dynamic Full-Attn)

6.3 Number of Message-Passing Rounds
As we discussed in Section 4.2, the number of message-passing rounds is an im-
portant hyperparameter for our model. We experiment with 4 different configu-
rations for the length of the message-passing protocol. In light of Table 6.3, we
find that performing as many message-passing rounds as the maximum formula
graph diameter (i.e., |VF|+ 1) yields better results in terms of both success rate and
optimality.

#Rounds Solved (%) p-Len
16 82.12 1.83
32 87.19 1.74
64 52.11 1.77

|VF|+ 1 89.43 1.71

Table 6.3: Performance On Different Numbers of Message-Passing Rounds

Aside from boosting our previous best performer, this finding is also a practical re-
lief because it removes the need to search for an ideal number of rounds for a given
dataset distribution, as it already adapts to the problem sizes contained therein.

28 Experiments

6.4 Shortening Teacher Proofs
AsNeuRes is solving a much harder problem than NeuroSAT, it also requires more
supervision since it is trained with expert proofs. While these proofs are cheap
to obtain using industrial solvers, it is still of interest to know how much NeuRes
can absorb from a small pool of expert proofs. Although the model should not be
expected to outperform the teacher on average, it would be somewhat uninspiring
if all NeuRes did was encode the teacher strategy as is, only to play it back less
optimally without any novelty. To investigate this, we check how often (if ever)
NeuRes produces proofs shorter than the expert proof (i.e., p-Len < 1.0) on both
training and unseen test problems. We perform this analysis on our previous best
performer trained with regular teacher-forcing. We find that, on average, NeuRes
manages to shorten ∼ 18% of expert proofs by a notable factor – sometimes solving
problems in less than half as many steps as the expert. This shows that NeuRes
is capable of learning novel strategies to find shortcuts unseen by its teacher. To
further quantify this effect, we report the maximum and average reduction ratios
relative to teach proof length, on the pool of reduced proofs. Finally, we report the
total reduction made to the dataset size in terms of total proof steps.

(%) Train Test
Proofs Reduced 17.82 18.29
Max. Reduction 86.11 76.4
Avg. Reduction 23.55 23.65
Total Reduction 3.07 3.15

Table 6.4: Teacher Proof Reduction Statistics

Note that all rows in Table 6.4, except for Total Reduction, are computed over the
reduced portion of the dataset, i.e., the proofs that were successfully shortened by
NeuRes. Figure 6.3 shows an example for a teacher proof that NeuRes reduced by
half (from 20 steps to 10 steps). There are examples of major reductions on much
larger proofs (e.g., from ∼ 800 to 400 steps), but due to size constraints, we only
include this small example.

On rather interesting observation onTable 6.4 is that themodel appears to bemarginally
better at producing shorter proofs for unseen (test) formulas than for training for-
mulas. While we would normally expect the opposite, a fair speculation would be
that the trained model was teacher-forced to match teacher proofs during training
over multiple epochs while the same does not hold for unseen formulas where the
bias towards teacher behavior is significantly lower. To definitively confirm this
would require a more in-depth investigation.

6.4. Shortening Teacher Proofs 29

(a) Teacher Proof

(b) NeuRes Proof

Figure 6.3: Teacher Proof Reduction Example

30 Experiments

This is, in fact, the founding rationale behind bootstrapped training (introduced
in Section 5.3), that is, that strict teacher-forcing throttles the model’s exploration,
which can allow it to learn better strategies while using teacher trajectories as a
guide as opposed to a golden standard.
6.5 Bootstrapped Training
Having demonstrated the model’s ability to produce shorter proofs than those of
the expert, it is only natural to explore the impact of using the model as its own
teacher during training on the success rate and optimality of the solver. The ratio-
nale here is that a combination of the model and expert is on average better than
the expert alone. As such, training proofs can be progressively shortened by im-
mediately putting intermediate model updates to use. Table 6.5 shows the per-
formance comparison between the base non-bootstrapped Full-Attn model to its
bootstrapped counterparts. In Section 5.3, we hypothesize a decline in the overall
model performance as a result of the self-bias introduced by bootstrapping. Our
experiments do indeed confirm this decline in the first and second bootstrapped
generations.

Variant Solved (%) p-Len
Non-bootstrapped Base 89.43 1.71
Bootstrapped Gen-1 76.87 1.505
Bootstrapped Gen-2 88.27 1.367
Bootstrapped Gen-3 92.84 1.23

Table 6.5: Bootstrapped Models Performance (on in-distribution test formulas)

To put this in perspective, bootstrapping encourages the model to specialize in a
subset of the training formulas, improving the model performance on this subset
at the expense of limiting the model’s generality. From a numerical standpoint,
this effect can be seen as a byproduct of time-discounting our mean-based teacher
forcing loss (Eq. 5.1) by a factor γ < 1.0, which results in shorter episodes having
a higher mean weight Et[γ

t]. As such, shortening the guide proof for a particu-
lar formula increases its contribution to the loss function, placing higher emphasis
on it, hence incentivizing the model to further optimize these proofs since they are
easier to optimize because the intermediate model strategy alreadyworks on them.
While this enhances the model’s depth (p-Len), it limits its breadth over the prob-
lem space1. Therefore, to alleviate this, we train three bootstrapped generations,
each trained on the dataset reduced by its predecessor with a fresh model to re-
set this bias. Table 6.5 shows that the performance loss caused by bootstrapping

1Breadth represents how often the model solves a given formula while depth represents how well
the model solves a formula (given that it solves it).

6.5. Bootstrapped Training 31

in Gen-1 is gradually overcome through Gen-2 and Gen-3 into beating the non-
bootstrapped baseline in terms of both success rate and optimality with a notable
margin. Particularly, the sharp decline patterns in test p-Len show that the proof
shortcutting insights, learned by the model on training formulas, are transferable
to unseen test formulas as opposed to overfitting to training formulas.

In addition to success rate and p-Len, we inspect the reduction performance of our
bootstrapped generations in light of the same metrics in Table 6.4. However, since
during training, Gen-x models perform multiple reduction scans over the training
dataset, we add a new metric of reduction depth computed as the number of pro-
gressive2 reductions made to a proof.

Gen-1 Gen-2 Gen-3 Overall
Max. Depth 8 7 6 11
Avg. Depth 2.1 1.76 1.46 2.24

Proofs Reduced (%) 45.19 45.29 35.94 70.53
Max. Reduction (%) 86.11 63.68 55.0 86.11
Avg. Reduction (%) 27.20 15.95 11.19 30.8
Total Reduction (%) 9.46 7.28 4.18 19.56

Table 6.6: Bootstrapped Training Dataset Reduction Statistics. Gen-2 and Gen-3
metrics are computed relative to their predecessor-shrunk dataset. Gen-1 andOver-
all are evaluated relative to the original training dataset.

Naturally, we should expect reductions to yield diminishing returns, which can be
seen across all metrics in Table 6.6 with each new generation. Nonetheless, observ-
ing the overall reduction statistics, we find that this bootstrapped reduction process
manages to reduce 70.53% of our training proofs by nearly one third on average. In
terms of raw size, NeuRes effectively reduces the whole training proofs dataset by
nearly 20%. Figure 6.4 shows the progression of the total reduction made by each
generation to their given training dataset. We observe that Gen-1 has the highest
slope as it operated on the original unreduced dataset whereas Gen-2 and Gen-3
operated on already-reduced datasets where there is less room for further reduc-
tions. Indeed, we already see that effect in miniature for all three progressions as
their slope tends to attenuate near the end.

2Remember that each reduced proof replaces its predecessor on the fly, so these reductions are
recursive.

32 Experiments

Figure 6.4: Train Dataset Reduction Over Number of Training Episodes

It would be interesting to find a cut-off on the number of generations where we no
longer get any significant reductions with newer generations. However, owing to
the sequential nature of this experiment3, we defer this to a future work.

3Each generation can only start training after its predecessor finishes.

Chapter 7

Conclusion

In this thesis, we have presented NeuRes, the first approach to utilize neural net-
works for generating resolution proofs of unsatisfiability. Structurally, NeuRes is a
fusion between PtrNet and NeuroSAT that advances their functional capabilities.
On the one hand, it extends PtrNet by not only generating solutions composed of
input tokens but also combinations of a growing pool thereof. On the other hand, it
goes beyond NeuroSAT by generating sound-by-design resolution certificates and
realizing a more exploratory mode of operation. Furthermore, being a resolution
prover, NeuRes is sound and complete as it will always eventually solve the input
formula given enough time.
Despite its promising benchmark performance, NeuRes still cannot solely outper-
form highly engineered industrial solvers. This is generally the case for neuro-
symbolic methods as standalone tools. Nevertheless, neural models were shown
to improve symbolic solvers when used as an auxiliary component. For instance,
[25] modifies existing SAT solvers by replacing variable activity scores with Neu-
roSAT’s predictions, which resulted in solving notably more problems within stan-
dard timeout. Similarly, NeuRes attention scores can be used as a branching guide
for a SAT-solving algorithm such as CDCL.
In addition to its value as a resolution prover, NeuRes can also be used as a proof
reducer. We have established this capability of NeuRes models trained with both
regular teacher-forcing and bootstrapped training – with the latter being largely
more powerful. This is indeed a feature we find of great practical and conceptual
import as it points to an inherent ability to find and reduce redundancies in teacher
proofs by simply training on them with no extra guidance.
For future extensions, NeuRes – though trained in a supervised fashion – can also
operate as a reinforcement learning agent given the action-based nature of its pre-
dictions along with having a singular well-defined goal: deriving the empty clause
from an input formula. In its current form, NeuRes can be simply trained with a

34 Conclusion

policy-gradient algorithm such as REINFORCE or Actor-Critic. Nonetheless, care-
fully crafted reward functionsmight be necessary since a binary outcome-based re-
ward, on whether or not the agent derives the empty clause, is arguably too sparse
given the huge action space. This is a curious path to explore with our method as
it stands the potential of finding more optimal strategies than those of a human-
crafted algorithm.

Implementation Source Code: We provide the full source code of our imple-
mentation including the experiment scripts on the following GitHub repository:
https://github.com/Oschart/NeuRes

https://github.com/Oschart/NeuRes

Appendix A

Appendix

A.1 Constant vs. Linearly Annealed Learning Rate
Here we show the effect of linearly annealing the Adam optimizer base learning
rate to zero over the number of training episodes on the validation success rate
throughout training. As shown in Figure A.1, linear annealing brings considerable
gains to themodel performance. Consequently, we use a linearly annealed learning
rate for all our main experiments.

Figure A.1: Validation Success Rate With Different LR Schedules

36 Appendix

A.2 Network Parameters

Modules Shape #Parameters
embedder.Linit.weight 512x1 512
embedder.Linit.bias 512 512
embedder.Cinit.weight 512x1 512
embedder.Cinit.bias 512 512
embedder.Lmsg.l1.weight 512x512 262,144
embedder.Lmsg.l1.bias 512 512
embedder.Lmsg.l2.weight 512x512 262,144
embedder.Lmsg.l2.bias 512 512
embedder.Lmsg.l3.weight 512x512 262,144
embedder.Lmsg.l3.bias 512 512
embedder.Cmsg.l1.weight 512x512 262,144
embedder.Cmsg.l1.bias 512 512
embedder.Cmsg.l2.weight 512x512 262,144
embedder.Cmsg.l2.bias 512 512
embedder.Cmsg.l3.weight 512x512 262,144
embedder.Cmsg.l3.bias 512 512
embedder.Lupdate.weightih−l0 2048x1024 2,097,152
embedder.Lupdate.weighthh−l0 2048x512 1,048,576
embedder.Lupdate.biasih−l0 2048 2,048
embedder.Lupdate.biashh−l0 2048 2,048
embedder.Cupdate.weightih−l0 2048x512 1,048,576
embedder.Cupdate.weighthh−l0 2048x512 1,048,576
embedder.Cupdate.biasih−l0 2048 2,048
embedder.Cupdate.biashh−l0 2048 2,048
encoder.weightih−l0 2048x512 1,048,576
encoder.weighthh−l0 2048x512 1,048,576
encoder.biasih−l0 2048 2,048
encoder.biashh−l0 2048 2,048
encoder.weightih−l0−rev 2048x512 1,048,576
encoder.weighthh−l0−rev 2048x512 1,048,576
encoder.biasih−l0−rev 2048 2,048
encoder.biashh−l0−rev 2048 2,048
decoder.weightih 2048x512 1,048,576
decoder.weighthh 2048x512 1,048,576
decoder.biasih 2048 2,048
decoder.biashh 2048 2,048
Cselector.WQ.weight 512x1024 524,288
Cselector.WK.weight 512x512 262,144
Total 13,919,232

Table A.1: Full Self-Attention Network Parameters

A.2. Network Parameters 37

Modules Shape #Parameters
embedder.Linit.weight 512x1 512
embedder.Linit.bias 512 512
embedder.Cinit.weight 512x1 512
embedder.Cinit.bias 512 512
embedder.Lmsg.l1.weight 512x512 262,144
embedder.Lmsg.l1.bias 512 512
embedder.Lmsg.l2.weight 512x512 262,144
embedder.Lmsg.l2.bias 512 512
embedder.Lmsg.l3.weight 512x512 262,144
embedder.Lmsg.l3.bias 512 512
embedder.Cmsg.l1.weight 512x512 262,144
embedder.Cmsg.l1.bias 512 512
embedder.Cmsg.l2.weight 512x512 262,144
embedder.Cmsg.l2.bias 512 512
embedder.Cmsg.l3.weight 512x512 262,144
embedder.Cmsg.l3.bias 512 512
embedder.Lupdate.weightih−l0 2048x1024 2,097,152
embedder.Lupdate.weighthh−l0 2048x512 1,048,576
embedder.Lupdate.biasih−l0 2048 2,048
embedder.Lupdate.biashh−l0 2048 2,048
embedder.Cupdate.weightih−l0 2048x512 1,048,576
embedder.Cupdate.weighthh−l0 2048x512 1,048,576
embedder.Cupdate.biasih−l0 2048 2,048
embedder.Cupdate.biashh−l0 2048 2,048
encoder.weightih−l0 2048x512 1,048,576
encoder.weighthh−l0 2048x512 1,048,576
encoder.biasih−l0 2048 2,048
encoder.biashh−l0 2048 2,048
encoder.weightih−l0−rev 2048x512 1,048,576
encoder.weighthh−l0−rev 2048x512 1,048,576
encoder.biasih−l0−rev 2048 2,048
encoder.biashh−l0−rev 2048 2,048
decoder.weightih 2048x512 1,048,576
decoder.weighthh 2048x512 1,048,576
decoder.biasih 2048 2,048
decoder.biashh 2048 2,048
Cselector.varQ.weight 512x512 262,144
Cselector.varK.weight 512x512 262,144
Cselector.varattn.weight 1x512 512
Cselector.WQ.weight 512x1024 524,288
Cselector.WK.weight 512x512 262,144
Total 14,444,032

Table A.2: Anchored Self-Attention Network Parameters

38 Appendix

Modules Shape #Parameters
embedder.Linit.weight 512x1 512
embedder.Linit.bias 512 512
embedder.Cinit.weight 512x1 512
embedder.Cinit.bias 512 512
embedder.Lmsg.l1.weight 512x512 262,144
embedder.Lmsg.l1.bias 512 512
embedder.Lmsg.l2.weight 512x512 262,144
embedder.Lmsg.l2.bias 512 512
embedder.Lmsg.l3.weight 512x512 262,144
embedder.Lmsg.l3.bias 512 512
embedder.Cmsg.l1.weight 512x512 262,144
embedder.Cmsg.l1.bias 512 512
embedder.Cmsg.l2.weight 512x512 262,144
embedder.Cmsg.l2.bias 512 512
embedder.Cmsg.l3.weight 512x512 262,144
embedder.Cmsg.l3.bias 512 512
embedder.Lupdate.weightih−l0 2048x1024 2,097,152
embedder.Lupdate.weighthh−l0 2048x512 1,048,576
embedder.Lupdate.biasih−l0 2048 2,048
embedder.Lupdate.biashh−l0 2048 2,048
embedder.Cupdate.weightih−l0 2048x512 1,048,576
embedder.Cupdate.weighthh−l0 2048x512 1,048,576
embedder.Cupdate.biasih−l0 2048 2,048
embedder.Cupdate.biashh−l0 2048 2,048
encoder.weightih−l0 2048x512 1,048,576
encoder.weighthh−l0 2048x512 1,048,576
encoder.biasih−l0 2048 2,048
encoder.biashh−l0 2048 2,048
encoder.weightih−l0−rev 2048x512 1,048,576
encoder.weighthh−l0−rev 2048x512 1,048,576
encoder.biasih−l0−rev 2048 2,048
encoder.biashh−l0−rev 2048 2,048
decoder.weightih 2048x512 1,048,576
decoder.weighthh 2048x512 1,048,576
decoder.biasih 2048 2,048
decoder.biashh 2048 2,048
Cselector.W1.weight 512x512 262,144
Cselector.W2.weight 512x1024 524,288
Cselector.vt.weight 1x512 512
Total 13,919,744

Table A.3: Cascaded Pointer-Attention Network Parameters

Bibliography

[1] Booleforce sat solver. https://fmv.jku.at/booleforce/.

[2] Saeed Amizadeh, Sergiy Matusevych, andMarkusWeimer. Learning to solve
circuit-sat: An unsupervised differentiable approach. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-
9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
BJxgz2R9t7.

[3] Adrian Balint, Anton Belov, Marijn J.H. Heule, and Matti Järvisalo, editors.
Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions, volume
B-2013-1 of Department of Computer Science Series of Publications B. University
of Helsinki, Finland, 2013.

[4] Tomas Balyo,MarijnHeule,Markus Iser,Matti Järvisalo, andMartin Suda, ed-
itors. Proceedings of SAT Competition 2023: Solver, Benchmark and Proof Checker
Descriptions. Department of Computer Science Series of Publications B. De-
partment of Computer Science, University of Helsinki, Finland, 2023.

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. Adv. Comput., 58:117–148,
2003. doi: 10.1016/S0065-2458(03)58003-2. URL https://doi.org/10.1016/
S0065-2458(03)58003-2.

[6] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing
and debugging of SAT and QBF solvers. In Ofer Strichman and Stefan Szei-
der, editors, Theory and Applications of Satisfiability Testing - SAT 2010, 13th
International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010. Proceed-
ings, volume 6175 of Lecture Notes in Computer Science, pages 44–57. Springer,
2010. doi: 10.1007/978-3-642-14186-7_6. URL https://doi.org/10.1007/
978-3-642-14186-7_6.

[7] Chris Cameron, Rex Chen, Jason S. Hartford, and Kevin Leyton-Brown. Pre-
dicting propositional satisfiability via end-to-end learning. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second

https://fmv.jku.at/booleforce/
https://openreview.net/forum?id=BJxgz2R9t7
https://openreview.net/forum?id=BJxgz2R9t7
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6

40 Bibliography

Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages 3324–3331. AAAI Press,
2020. doi: 10.1609/aaai.v34i04.5733. URL https://doi.org/10.1609/aaai.
v34i04.5733.

[8] Stephen A. Cook. The complexity of theorem-proving procedures. In
Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5,
1971, Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971. doi: 10.1145/
800157.805047. URL https://doi.org/10.1145/800157.805047.

[9] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent vari-
able models for structured data. In International conference on machine learning,
pages 2702–2711. PMLR, 2016.

[10] Ashish Darbari, Bernd Fischer, and João Marques-Silva. Industrial-strength
certified SAT solving through verified SAT proof checking. In Ana Cav-
alcanti, David Déharbe, Marie-Claude Gaudel, and Jim Woodcock, edi-
tors, Theoretical Aspects of Computing - ICTAC 2010, 7th International Collo-
quium, Natal, Rio Grande do Norte, Brazil, September 1-3, 2010. Proceedings,
volume 6255 of Lecture Notes in Computer Science, pages 260–274. Springer,
2010. doi: 10.1007/978-3-642-14808-8_18. URL https://doi.org/10.1007/
978-3-642-14808-8_18.

[11] Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cam-
bridge university press, 2002.

[12] Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur:
Whole-proof generation and repair with large language models. CoRR,
abs/2303.04910, 2023. doi: 10.48550/arXiv.2303.04910. URL https://doi.
org/10.48550/arXiv.2303.04910.

[13] Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfi-
ability for CNF formulas. In 2003 Design, Automation and Test in Europe Con-
ference and Exposition (DATE 2003), 3-7 March 2003, Munich, Germany, pages
10886–10891. IEEE Computer Society, 2003. doi: 10.1109/DATE.2003.10008.
URL https://doi.ieeecomputersociety.org/10.1109/DATE.2003.10008.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. Advances in neural information processing systems, 30,
2017.

[15] Leon Henkin. The completeness of the first-order functional calculus. The
journal of symbolic logic, 14(3):159–166, 1949.

https://doi.org/10.1609/aaai.v34i04.5733
https://doi.org/10.1609/aaai.v34i04.5733
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-642-14808-8_18
https://doi.org/10.1007/978-3-642-14808-8_18
https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.48550/arXiv.2303.04910
https://doi.ieeecomputersociety.org/10.1109/DATE.2003.10008

Bibliography 41

[16] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Bridging the gap
between easy generation and efficient verification of unsatisfiability proofs.
Softw. Test. Verification Reliab., 24(8):593–607, 2014. doi: 10.1002/stvr.1549.
URL https://doi.org/10.1002/stvr.1549.

[17] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In
Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reason-
ing - 6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-
29, 2012. Proceedings, volume 7364 of Lecture Notes in Computer Science, pages
355–370. Springer, 2012. doi: 10.1007/978-3-642-31365-3_28. URL https:
//doi.org/10.1007/978-3-642-31365-3_28.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[19] Peter Lammich. Efficient verified (UN)SAT certificate checking. J. Autom.
Reason., 64(3):513–532, 2020. doi: 10.1007/s10817-019-09525-z. URL https:
//doi.org/10.1007/s10817-019-09525-z.

[20] Guillaume Lample and François Charton. Deep learning for symbolic math-
ematics. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=S1eZYeHFDS.

[21] João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause
learning SAT solvers. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume
336 of Frontiers in Artificial Intelligence and Applications, pages 133–182. IOS
Press, 2021. doi: 10.3233/FAIA200987. URL https://doi.org/10.3233/
FAIA200987.

[22] Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Za-
kovskis, and Sergejs Kozlovics. Goal-aware neural SAT solver. In Interna-
tional Joint Conference on Neural Networks, IJCNN 2022, Padua, Italy, July 18-23,
2022, pages 1–8. IEEE, 2022. doi: 10.1109/IJCNN55064.2022.9892733. URL
https://doi.org/10.1109/IJCNN55064.2022.9892733.

[23] Stanislas Polu and Ilya Sutskever. Generative language modeling for auto-
mated theorem proving. CoRR, abs/2009.03393, 2020. URL https://arxiv.
org/abs/2009.03393.

[24] Frederik Schmitt, Christopher Hahn, Markus N. Rabe, and Bernd Finkbeiner.
Neural circuit synthesis from specification patterns. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jen-
nifer Wortman Vaughan, editors, Advances in Neural Information Process-

https://doi.org/10.1002/stvr.1549
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/s10817-019-09525-z
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10.3233/FAIA200987
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1109/IJCNN55064.2022.9892733
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393

42 Bibliography

ing Systems 34: Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 15408–
15420, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
8230bea7d54bcdf99cdfe85cb07313d5-Abstract.html.

[25] Daniel Selsam and Nikolaj Bjørner. Guiding high-performance sat solvers
with unsat-core predictions. In Theory and Applications of Satisfiability Testing–
SAT 2019: 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9–12,
2019, Proceedings 22, pages 336–353. Springer, 2019.

[26] Daniel Selsam and Nikolaj S. Bjørner. Guiding high-performance SAT
solvers with unsat-core predictions. In Mikolás Janota and Inês Lynce, ed-
itors, Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd Inter-
national Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings,
volume 11628 of Lecture Notes in Computer Science, pages 336–353. Springer,
2019. doi: 10.1007/978-3-030-24258-9_24. URL https://doi.org/10.1007/
978-3-030-24258-9_24.

[27] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo
de Moura, and David L. Dill. Learning a SAT solver from single-bit su-
pervision. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=HJMC_iA5tm.

[28] Ling Sun, David Gérault, Adrien Benamira, and Thomas Peyrin. Neu-
rogift: Using a machine learning based sat solver for cryptanalysis. In
Shlomi Dolev, Vladimir Kolesnikov, Sachin Lodha, and Gera Weiss, edi-
tors, Cyber Security Cryptography and Machine Learning - Fourth International
Symposium, CSCML 2020, Be’er Sheva, Israel, July 2-3, 2020, Proceedings,
volume 12161 of Lecture Notes in Computer Science, pages 62–84. Springer,
2020. doi: 10.1007/978-3-030-49785-9_5. URL https://doi.org/10.1007/
978-3-030-49785-9_5.

[29] Grigori S Tseitin. On the complexity of derivation in propositional calculus.
Automation of reasoning: 2: Classical papers on computational logic 1967–1970,
pages 466–483, 1983.

[30] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Ad-
vances in neural information processing systems, 28, 2015.

[31] Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. Drat-trim: Effi-
cient checking and trimming using expressive clausal proofs. In Carsten
Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing
- SAT 2014 - 17th International Conference, Held as Part of the Vienna Sum-

https://proceedings.neurips.cc/paper/2021/hash/8230bea7d54bcdf99cdfe85cb07313d5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8230bea7d54bcdf99cdfe85cb07313d5-Abstract.html
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1007/978-3-030-24258-9_24
https://openreview.net/forum?id=HJMC_iA5tm
https://doi.org/10.1007/978-3-030-49785-9_5
https://doi.org/10.1007/978-3-030-49785-9_5

Bibliography 43

mer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, vol-
ume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
2014. doi: 10.1007/978-3-319-09284-3_31. URL https://doi.org/10.1007/
978-3-319-09284-3_31.

[32] Jiaxuan You, Haoze Wu, Clark W. Barrett, Raghuram Ramanujan, and Jure
Leskovec. G2SAT: learning to generate SAT formulas. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett, editors, Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 10552–
10563, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
daea32adcae6abcb548134fa98f139f9-Abstract.html.

[33] Lintao Zhang and Sharad Malik. Validating SAT solvers using an indepen-
dent resolution-based checker: Practical implementations and other appli-
cations. In 2003 Design, Automation and Test in Europe Conference and Expo-
sition (DATE 2003), 3-7 March 2003, Munich, Germany, pages 10880–10885.
IEEE Computer Society, 2003. doi: 10.1109/DATE.2003.10014. URL https:
//doi.ieeecomputersociety.org/10.1109/DATE.2003.10014.

https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://proceedings.neurips.cc/paper/2019/hash/daea32adcae6abcb548134fa98f139f9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/daea32adcae6abcb548134fa98f139f9-Abstract.html
https://doi.ieeecomputersociety.org/10.1109/DATE.2003.10014
https://doi.ieeecomputersociety.org/10.1109/DATE.2003.10014

	Abstract
	Introduction
	Related Work
	Preliminaries
	SAT
	Resolution
	Graph Neural Networks

	Models
	General Architecture
	Message-Passing Embedder
	Encoder-Decoder Network
	Selector Networks
	Cascaded Pointer-Attention (Casc-Attn)
	Full Self-Attention (Full-Attn)
	Anchored Self-Attention (Anch-Attn)

	Training and Hyperparameters
	Dataset
	Loss Function
	Proof-Reduction Bootstrapping
	Hyperparameters

	Experiments
	Attention Variants
	Out-Of-Distribution Performance
	Number of Message-Passing Rounds
	Shortening Teacher Proofs
	Bootstrapped Training

	Conclusion
	Appendix
	Constant vs. Linearly Annealed Learning Rate
	Network Parameters

	Bibliography

