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Abstract. HyperLTL is a temporal logic that can express hyperprop-
erties, i.e., properties that relate multiple execution traces of a system.
Such properties are becoming increasingly important and naturally oc-
cur, e.g., in information-flow control, robustness, mutation testing, path
planning, and causality checking. Thus far, complete model checking
tools for HyperLTL have been limited to alternation-free formulas, i.e.,
formulas that use only universal or only existential trace quantification.
Properties involving quantifier alternations could only be handled in an
incomplete way, i.e., the verification might fail even though the property
holds. In this paper, we present AutoHyper, an explicit-state automata-
based model checker that supports full HyperLTL and is complete for
properties with arbitrary quantifier alternations. We show that language
inclusion checks can be integrated into HyperLTL verification, which al-
lows AutoHyper to benefit from a range of existing inclusion-checking
tools. We evaluate AutoHyper on a broad set of benchmarks drawn from
different areas in the literature and compare it with existing (incomplete)
methods for HyperLTL verification.

1 Introduction

Hyperproperties [16] are system properties that relate multiple executions of
a system. Such properties are of increasing importance as they naturally oc-
cur, e.g., in information-flow control [36], robustness [22], linearizability [30,31],
path planning [39], mutation testing [27], and causality checking [18]. A promi-
nent logic to express hyperproperties is HyperLTL, which extends linear-time
temporal logic (LTL) with explicit trace quantification [15]. HyperLTL can, for
instance, express generalized non-interference (GNI) [34], stating that the high-
security input of a system does not influence the observable output.

∀π. ∀π′. ∃π′′.
( ∧
a∈H

aπ ↔ aπ′′

)
∧

( ∧
a∈L∪O

aπ′ ↔ aπ′′

)
(GNI)

Here, H is a set of high-security input, L is a set of low-security inputs, and O is
a set of low-security outputs. The formula states that for any traces π, π′ there
exists a third trace π′′ that agrees with the high-security inputs of π and with the
low-security inputs and outputs of π′. Any observation made by a low-security
attacker is thus compatible with every possible high-security input.
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We are interested in the model checking (MC) problem of HyperLTL, i.e.,
whether a given (finite-state) system satisfies a given property. For HyperLTL,
the structure of the quantifier prefix directly impacts the complexity of this
problem. For alternation-free formulas (i.e., formulas that only use quantifiers of
a single type), verification is well understood and is reducible to the verification
of a trace property on a self-composition of the system [3]. This reduction has,
for example, been implemented in MCHyper [29], a tool that can model check
(alternation-free) HyperLTL formulas in systems of considerable size (circuits
with thousands of latches).

Verification is much more challenging for properties involving quantifier al-
ternations (such as GNI from above). While MC algorithms supporting full
HyperLTL exist (see [15,29]), they have not been implemented yet. Instead,
over the years, a number of approaches to the verification of such properties in
practice have been made: Finkbeiner et al. [29] and D’Argenio et al. [22] man-
ually strengthen properties with quantifier alternation into properties that are
alternation-free and can be checked by MCHyper. Coenen et al. [19] instantiate ex-
istential quantification in a ∀∗∃∗ property (i.e., a property involving an arbitrary
number of universal quantifiers followed by an arbitrary number of existential
quantifiers, such as GNI) with an explicit (user-provided) strategy, thus reducing
to the verification of an alternation-free formula. Alternatively, the strategy that
resolves existential quantification can be automatically synthesized [7]. Hsu et
al. [31] present a bounded model checking (BMC) approach for HyperLTL that
is implemented in HyperQube. See Section 4 for more details.

While all these verification tools can verify (or refute) interesting properties,
they all suffer from the same fundamental limitation: they are incomplete. That
is, for all the tools above, we can come up with verification instances where they
fail, not because of resource constraints but because of inherent limitations in the
underlying verification algorithm. Moreover, such instances are not rare events
but are encountered regularly in practice. For example, many of the benchmarks
used to evaluate HyperQube (by Hsu et al. [31]) do not admit a strategy to resolve
existential quantification. Conversely, many of the properties verified by Coenen
et al. [19] (such as GNI) cannot be verified using BMC [31].

AutoHyper. In this paper, we present AutoHyper, a model checker for Hyper-
LTL. Our tool checks a hyperproperty by iteratively eliminating trace quantifi-
cation using automata-complementations, thereby reducing verification to the
emptiness check of an automaton [29]. Importantly – and different from previ-
ous tools for HyperLTL verification such as MCHyper [29,19] and HyperQube [31]
– AutoHyper can cope with (and is complete for) arbitrary HyperLTL formulas.
Model checking using AutoHyper does not require manual effort (such as writing
an explicit strategy in MCHyper [19]), nor does a user need to worry if the given
property can even be verified with a given method. AutoHyper thus provides a
“push-button” model checking experience for HyperLTL.1

1 The name of AutoHyper is derived from the fact that it is both Automata-based
and Automatic (i.e., it is complete and does not require any user intervention).
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To improve AutoHyper’s efficiency, we make the (theoretical) observation
that we can often avoid explicit automaton complementation and instead reduce
to a language inclusion check on Büchi automata (cf. Proposition 1). On the
practical side, this enables AutoHyper to resort to a range of mature language
inclusion checkers, including spot [26], RABIT [17], BAIT [25], and FORKLIFT [24].

Evaluation. Using AutoHyper, we extensively study the practical aspects of
model checking HyperLTL properties with quantifier alternations. To evalu-
ate the performance of explicit-state model checking, we apply AutoHyper to
a broad range of benchmarks taken from the literature and compare it with
existing (incomplete) tools. We make the surprising observation that – at least
on the currently available benchmarks – explicit-state MC as implemented in
AutoHyper performs on-par (and frequently outperforms) symbolic methods such
as BMC [31]. Our benchmarks stem from various areas within computer science,
so AutoHyper should – thanks to its “push-button” functionality, completeness,
and ease of use – be a valuable addition to many areas.

Apart from using AutoHyper as a practical MC tool, we can also use it as
a complete baseline to systematically evaluate existing (incomplete) methods.
For example, while it is known that replacing existential quantification with a
strategy (as done by Coenen et al. [19]) is incomplete, it was, thus far, unknown
if this incompleteness occurs frequently or is merely a rare phenomenon. We use
AutoHyper to obtain a ground truth and evaluate the strategy-based verification
approach in terms of its effectiveness (i.e., how many instances it can verify
despite being incomplete) and efficiency.

Structure. The remainder of this paper is structured as follows. In Section 2, we
introduce HyperLTL. We recap automata-based verification (which we abbrevi-
ate ABV) and our new approach utilizing language inclusion checks in Section 3.
We discuss alternative verification approaches for HyperLTL in Section 4. In Sec-
tion 6, we compare different backend solving techniques and study the complexity
of HyperLTL MC with multiple quantifier alternations in practice; In Section 7,
we evaluate ABV on a set of benchmarks from the literature and compare with
the bounded model checker HyperQube [31]; In Section 8 we use AutoHyper for
a detailed analysis of (and comparison with) strategy-based verification [19,7].

2 Preliminaries

We fix a set of atomic propositions AP and define Σ := 2AP . HyperLTL [15]
extends LTL with explicit quantification over traces, thereby lifting it from a logic
expressing trace properties to one expressing hyperproperties [16]. Let V be a
set of trace variables. We define HyperLTL formulas by the following grammar:

ψ := aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ
φ := ∃π. φ | ∀π. φ | ψ

where π ∈ V and a ∈ AP .
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We assume that the formula is closed, i.e., all trace variables that are used
in the body are bound by some quantifier. The semantics of HyperLTL is given
with respect to a trace assignment Π : V ⇀ Σω mapping trace variables to
traces. For π ∈ V and t ∈ Σω, we write Π[π 7→ t] for the trace assignment
obtained by updating the value of π to t. Given a set of traces T ⊆ Σω, a trace
assignment Π, and i ∈ N, we define:

Π, i |= aπ iff a ∈ Π(π)(i)

Π, i |= ¬ψ iff Π, i ̸|= ψ

Π, i |= ψ1 ∧ ψ2 iff Π, i |= ψ1 and Π, i |= ψ2

Π, i |= ψ iff Π, i+ 1 |= ψ

Π, i |= ψ1 U ψ2 iff ∃j ≥ i.Π, j |= ψ2 and ∀i ≤ k < j.Π, k |= ψ1

Π |=T ψ iff Π, 0 |= ψ

Π |=T ∃π. φ iff ∃t ∈ T. Π[π 7→ t] |=T φ

Π |=T ∀π. φ iff ∀t ∈ T. Π[π 7→ t] |=T φ

A transition system is a tuple T = (S, S0, κ, L) where S is a set of states,
S0 ⊆ S is a set of initial states, κ ⊆ S×S is a transition relation, and L : S → Σ

is a labeling function. We write s T−→ s′ whenever (s, s′) ∈ κ. A path is an infinite
sequence s0s1s2 · · · ∈ Sω, s.t., s0 ∈ S0, and si

T−→ si+1 for all i. The associated
trace is given by L(s0)L(s1)L(s2) · · · ∈ Σω. We write Traces(T ) ⊆ Σω for the
set of all traces generated by T . We say T satisfies a HyperLTL property φ,
written T |= φ, if ∅ |=Traces(T ) φ, where ∅ denotes the empty trace assignment.

3 Automata-based HyperLTL Model Checking

Given a system T and HyperLTL property φ, we want to decide whether T |= φ.
In this section, we recap the automata-based approach to the model checking
of HyperLTL [29]. We further show how language inclusion checks can be incor-
porated into the model checking procedure to make use of a broad collection of
mature language inclusion checkers.

3.1 Automata-based Verification

The idea of automata-based verification (ABV) [29] is to iteratively eliminate
quantifiers and thus reduce MC to the emptiness check on an automaton. A
non-deterministic Büchi automaton (NBA) is a tuple A = (Q,Q0, δ, F ) where
Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q × Σ → 2Q is
a transition function, and F ⊆ Q is a set of accepting states. We write L(A) ⊆
Σω for the language of A, i.e., all infinite words that have a run that visits
states in F infinitely many times (see, e.g., [2]). For traces t1, . . . , tn ∈ Σω, we
write zip(t1, . . . , tn) ∈ (Σn)ω as the pointwise product, i.e., zip(t1, . . . , tn)(i) :=
(t1(i), . . . , tn(i)).
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Let T = (S, S0, κ, L) be a fixed transition system and let φ̇ be some fixed
closed HyperLTL formula (we use the dot to refer to the original formula and
use φ,φ′ to refer to subformulas of φ̇). For some subformula φ that contains
free trace variables π1, . . . , πn, we say an NBA A over Σn is T -equivalent to φ,
if for all traces t1, . . . , tn it holds that [π1 7→ t1, . . . , πn 7→ tn] |=Traces(T ) φ iff
zip(t1, . . . , tn) ∈ L(A). That is, A accepts exactly the zippings of traces that
constitute a satisfying trace assignment for φ.

To check if T |= φ̇, we inductively construct an automation Aφ that is T -
equivalent to φ for each subformula φ of φ̇. For the (quantifier-free) LTL body
of φ̇, we can construct this automaton via a standard LTL-to-NBA construction
[29,2]. Now consider some subformula φ′ = ∃π.φ where φ′ contains free trace
variables π1, . . . , πn and so φ contains free trace variables π1, . . . , πn, π. We are
given an inductively constructed NBA Aφ = (Q,Q0, δ, F ) over Σn+1 that is T -
equivalent to φ. We define the automaton Aφ′ over Σn as Aφ′ := (S ×Q,S0 ×
Q0, δ

′, S × F ) where δ′ is defined as

δ′
(
(s, q),

〈
l1, . . . , ln

〉)
:=

{
(s′, q′) | s T−→ s′ ∧ q′ ∈ δ

(
q,
〈
l1, . . . , ln, L(s)

〉)}
.

Informally, Aφ′ reads the zippings of traces t1, . . . , tn and guesses a trace t ∈
Traces(T ) such that zip(t1, . . . , tn, t) ∈ L(Aφ). It is easy to see that Aφ′ is
T -equivalent to φ′. To handle universal trace quantification, we consider a for-
mula φ′ = ∀π.φ as “φ′ = ¬∃π.¬φ” and combine the construction for existential
quantification with an automaton complementation.

Following the inductive construction, we obtain an automaton Aφ̇ over the
singleton alphabet Σ0 that is T -equivalent to φ̇. By definition of T -equivalence,
T |= φ̇ iff ∅ |=Traces(T ) φ̇ iff Aφ̇ is non-empty (which we can decide [21]).

3.2 HyperLTL Model Checking by Language Inclusion

The algorithm outlined above requires one complementation for each quantifier
alternation in the HyperLTL formula. While we cannot avoid the theoretical
cost of this complementation (see [36,15]), we can reduce to a, in practice, more
tamable problem: language inclusion.

For a system T , and a natural number n ∈ N we define An
T as an NBA over

Σn such that for any traces t1, . . . , tn ∈ Σω we have zip(t1, . . . , tn) ∈ L(An
T ) if

and only if ti ∈ Traces(T ) for every 1 ≤ i ≤ n. We can construct An
T by building

the n-fold self-composition of T [3] and convert this to an automaton by moving
the labels from states to edges and marking all states as accepting. We can now
state a formal connection between language inclusion and HyperLTL MC (a
proof can be found in the full version [9]):

Proposition 1. Let φ̇ = ∀π1. . . . ∀πn.φ be a HyperLTL formula (where φ may
contain additional trace quantifiers) and let Aφ be an automaton over Σn that
is T -equivalent to φ. Then T |= φ̇ if and only if L(An

T ) ⊆ L(Aφ).

We can use Proposition 1 to avoid a complementation for the outermost quan-
tifier alternation. For example, assume φ̇ = ∀π1.∀π2.∃π3.ψ where ψ is quantifier-
free. Using the construction from Section 3.1, we obtain an automaton A∃π3.ψ
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that is T -equivalent to ∃π3.ψ (we can construct A∃π3.ψ in linear time in the size
of T ). By Proposition 1, we then have T |= φ̇ iff L(A2

T ) ⊆ L(A∃π3.ψ).
Note that complementation and subsequent emptiness check is a theoreti-

cally optimal method to solve the (PSPACE-complete) language inclusion prob-
lem. Proposition 1 thus offers no asymptotic advantages over “standard” ABV
in Section 3.1. In practice constructing an explicit complemented automaton is
often unnecessary as the language inclusion or non-inclusion might be witnessed
without a complete complementation [26,25,17,24]. This makes Proposition 1
relevant for the present work and the performance of AutoHyper.

4 Related Work and HyperLTL Verification Approaches

HyperLTL [15] is the most studied logic for expressing hyperproperties. A range
of problems from different areas in computer science can be expressed as Hyper-
LTL MC problems, including (optimal) path panning [39], mutation testing [27],
linearizability [31], robustness [22], information-flow control [36], and causality
checking [18], to name only a few. Consequently, any model checking tool for
HyperLTL is applicable to many disciples within computer science and provides
a unified solution to many challenging algorithmic problems. In recent years, dif-
ferent (mostly incomplete) methods for the verification of HyperLTL have been
developed. We discuss them below (see the full version [9] for details).

Automata-based Model Checking. Finkbeiner et al. [29] introduce the automata-
based model checking approach as presented in Section 3.1. For alternation-free
formulas, the algorithms corresponds to the construction of the self-composition
of a system [3] and is implemented in the MCHyper tool [29]. MCHyper can handle
systems of significant size (well beyond the reach of explicit-state methods) but is
unable to handle any quantifier alternation (the main motivation for AutoHyper).
htltl2mc [15] is a prototype model checker for HyperLTL2 (a fragment of Hy-
perLTL with at most one alternation) built on top of GOAL [38]. In contrast to
htltl2mc, AutoHyper supports properties with arbitrarily many quantifier al-
ternations and features automata with symbolic alphabets – which is important
to handle large systems with many atomic propositions, cf. Footnote 7.

Strategy-based Verification. Coenen et al. [19] verify ∀∗∃∗ properties by instan-
tiating existential quantification with an explicit strategy. This method – which
we refer to as strategy-based verification (SBV) – comes in two flavors: either the
strategy is provided by the user or the strategy is synthesized automatically. In
the former case, model checking reduces to checking an alternation-free formula
and can thus handle large systems, but requires significant user effort (and is
thus no “push-button” technique). In the latter case, the method works fully au-
tomatically [8,7] but requires an expensive strategy synthesis. SBV is incomplete
as the strategy resolving existentially quantified traces only observes finite pre-
fixes of the universally quantified traces. While SBV can be made complete by
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adding prophecy variables [7], the automatic synthesis of such prophecies is cur-
rently limited to very small systems and properties that are temporally safe [5].
We investigate both the performance and incompleteness of SBV in Section 8.

Bounded Model Checking. Hsu et al. [31] propose a bounded model checking
(BMC) procedure for HyperLTL. Similar to BMC for trace properties [11], the
system is unfolded up to a fixed depth, and pending obligations beyond that
depth are either treated pessimistically (to show the satisfaction of a formula)
or optimistically (to show the violation of a formula). While BMC for trace
properties reduces to SAT-solving, BMC for hyperproperties naturally reduces to
QBF-solving. As usual for bounded methods, BMC for HyperLTL is incomplete.
For example, it can never show that a system satisfies a hyperproperty where
the LTL body contains an invariant (as, e.g., is the case for GNI).2 We compare
AutoHyper and BMC (in the form of HyperQube [31]) in Section 7.

5 AutoHyper: Tool Overview

AutoHyper is written in F# and implements the automata-based verification ap-
proach described in Section 3.1 and, if desired by the user, makes use of the
language-inclusion-based reduction from Section 3.2. AutoHyper uses spot [26]
for LTL-to-NBA translations and automata complementations. To check lan-
guage inclusion, AutoHyper uses spot (which is based on determinization), RABIT
[17] (which is based on a Ramsey-based approach with heavy use of simulations),
BAIT [25], and FORKLIFT [24] (both based on well-quasiorders). AutoHyper is
designed such that communication with external automata tools is done via es-
tablished text-based formats (opposed to proprietary APIs), namely the HANOI
[1] and BA automaton formats. New (or updated) tools that improve on fun-
damental automata operations, such as complementation and inclusion checks,
can thus be integrated easily. Internally we represent automata using symbolic
alphabets (similar to spot). We store transition formulas as DNFs as this allows
for very efficient SAT checks, which are needed during the product construction.

All experiments in this paper were conducted on a Mac Mini with an Intel
Core i3 (i3-8100B) and 16GB of memory. We used spot version 2.11.1; RABIT
version 2.4.5; BAIT commit 369e1a4; and FORKLIFT commit 5d519e3.

Input Formats. AutoHyper supports both explicit-state systems (given in a
HANOI-like [1] input format) and symbolic systems that are internally converted

2 BMC for trace properties can be made complete by using bounds on the unrolling
depth (also called completeness thresholds) [14] and including loop conditions in the
encoding [11]. As remarked by Hsu et al. [31], the same is much more challenging
for hyperproperties, and no solutions have been proposed. Instead, Hsu et al. [31]
propose an alternative unrolling semantics (which they call halting semantics) that
can mitigate this incompleteness issue for programs that terminate after a fixed
number of steps. This is a strong (and often unrealistic) assumption for general
reactive systems.
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to an explicit-state representation. The support for symbolic systems includes
Aiger circuits, symbolic models written in a fragment of the NuSMV input lan-
guage [13], and a simple boolean programming language [6].

Random Benchmarks. For our evaluation, we use both existing instances from
various sources in the literature and randomly generated problems.3 We generate
random transition systems based on the Erdős–Rényi–Gilbert model [28]. Given
a size n and a density parameter p ∈ [0, 1], we generate a graph with n states,
where for every two states s, s′, there is a transition s→ s′ with probability p. To
generate a graph with n edges and, in expectation, constant outdegree of k, we
can choose p = k

n . We further ensure that the system is connected and all states
have at least one outgoing edge. We generate random HyperLTL formulas (with
a given quantifier prefix) by sampling the LTL matrix using spot’s randltl.

6 HyperLTL Model Checking Complexity in Practice

Before we turn our attention to benchmarks found in the literature, we compare
the different backend inclusion checkers supported by AutoHyper by evaluating
them on a large set of synthetic (random) benchmarks (in Section 6.1). More-
over, the random generation of benchmarks allows us to peek at formulas with
more than one quantifier alternation. The theoretical hardness of model check-
ing properties with multiple alternations has been studied extensively [15,36],
and we analyze, for the first time, how these results transfer to practice (in
Section 6.2).

6.1 Performance of Inclusion Checkers

As the first set of benchmarks, we compare the different backend inclusion check-
ers supported by AutoHyper. In Figure 1, we depict how many instances can be
solved using the inclusion checks of spot, BAIT, RABIT, and FORKLIFT within
a timeout of 10s and give the median running time used on the instances that
could be solved within the timeout. We observe that spot clearly outperforms
RABIT, BAIT, and FORKLIFT in terms of the percentage of instances that can be
checked within 10s.4 While, in general, spot solves the most instances, a manual
inspection reveals that there are also instances that can only be solved by RABIT

3 The advantage of randomly generated instances is twofold. First, it allows for the
easy generation of a large set of benchmarks. Second, the random generation is
parameterized by multiple parameters (such as system size, transition density, for-
mula size, etc.), enabling a comprehensive analysis of the exact impact of different
parameters on the model checking complexity in practice.

4 We remark that spot operates on automata with a symbolic alphabet (i.e., tran-
sitions are defined as boolean formulas over AP). In contrast, RABIT, BAIT, and
FORKLIFT only support explicit alphabets (i.e., automata with one symbol for each
element in 2AP ).
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Fig. 1: We evaluate different backend solvers on instances of varying system size
with an (on average) constant outdegree of 10 and a fixed property size of 20.
We generate 20 samples per system size. We display both the success rate of
each solver within a timeout of 10s (on the left axis) and the median running
time on the solved instances (on the right axis).

or BAIT/FORKLIFT. This justifies why AutoHyper supports multiple backed in-
clusion checkers that implement different algorithms and thus excel on different
problems (we will confirm this in Section 7). Moreover, our experiments pro-
vide evidence that HyperLTL MC is a natural source for challenging language
inclusion benchmarks (see the full version [9]).
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Fig. 2: For properties with a vary-
ing number of quantifier alterations,
we display the average time spent on
the automata complementation dur-
ing model checking.

We remark that we set the timeout of
10s deliberately low to compute (and re-
produce) the plots in a reasonable time
(computing Figure 1 took about 3.5h). If
a user wants to verify a given instance and
does not require a result within a few sec-
onds, running the solver for even longer
will likely increase the success rate further
(see also the evaluation in Section 7).

6.2 Model Checking Beyond ∀∗∃∗

Using randomly generated benchmarks,
we can also peek at the practical com-
plexity of model checking in the presence
of multiple quantifier alternations. In the-
ory, the model checking complexity of Hy-
perLTL increases by one exponent with
each quantifier alternation [15,36]. Using
AutoHyper, we can, for the first time, in-
vestigate the model checking complexity
in practice.

We model check randomly generated formulas with 1 to 4 quantifier alterna-
tions and visualize the total running time based on the cost of each complementa-
tion (using spot) in Figure 2 (recall that checking a formula with k alternations
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Table 1: We depict the running time of AutoHyper when verifying GNI on the
boolean programs taken from [6] and [10]. We give the program, the bitwidth
(bw), the size of the intermediate explicit-state representation (Size), and the
time taken by each solver. The timeout is set to 60s and indicated by a “-”. The
property holds in all cases. Times are given in seconds.

Program bw Size tspot tRABIT tBAIT tFORKLIFT

[6].1
1-bit 17 0.52 0.59 0.80 0.61
3-bit 65 0.56 0.86 - 22.73
4-bit 129 0.99 5.51 - -

[6].2 1-bit 55 0.53 0.69 - 5.49

[6].3
1-bit 20 0.52 0.61 3.05 0.98
3-bit 80 0.61 1.31 - -

[6].4
1-bit 29 0.52 0.56 0.58 0.57
3-bit 113 0.67 1.74 - -

Program bw Size tspot tRABIT tBAIT tFORKLIFT

[10].1 1-bit 5 0.52 0.56 0.58 0.57

[10].2
1-bit 11 0.51 0.57 0.72 0.61
2-bit 27 0.52 0.65 35.7 5.43
4-bit 291 1.46 - - -

[10].3
1-bit 21 0.52 0.60 3.15 1.00
3-bit 225 - 45.2 - -

[10].4
1-bit 25 0.52 0.71 12.8 1.63
3-bit 193 0.98 - - -

using ABV requires k automaton complementations). Although the number of
quantifier alternations has an undeniable impact on the total running time (the
cumulative height of each bar), the increase in runtime is not proportional to the
(non-elementary) increase suggested by the theoretical analysis. Different from
the theoretical analysis (where the (k + 1)th complementation is exponentially
more expensive than the kth), the cost of each complementation barely increases
(or even decreases). This suggests that the T -equivalent automata constructed
in each iteration are, in practice, much smaller than indicated by the worst-case
theoretical analysis. Verification of properties beyond one alternation is thus less
infeasible than the theory suggests (at least on randomly generated test cases).

7 Evaluation on Symbolic Systems

In this section, we challenge AutoHyper with complex model checking prob-
lems found in the literature. Our benchmarks stem from a range of sources,
including non-interference in boolean programs [6], symmetry in mutual exclu-
sion algorithms [19], non-interference in multi-threaded programs [37], fairness
in non-repudiation protocols [32], mutation testing [27], and path planning [39].

7.1 Model Checking GNI on Boolean Programs

We use AutoHyper to verify GNI on a range of boolean programs that process
high-security and low-security inputs (taken from [6,10]). Table 1 depicts the
runtime results using different backend solvers. We test each program with vary-
ing bitwidth and depict the largest bitwidth that can be solved by at least one
solver (within a timeout of 60s). We, again, note that spot performs better than
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Table 2: We evaluate HyperQube and AutoHyper on the benchmarks from [31].
We list the system and the property (as given in [31, Table 2]), the quantifier
structure (Q∗), the verification result (Res) (✓ indicates that the property holds
and ✗ that it is violated), and the total running time of either tool (t). For
HyperQube, we additionally list the unrolling bound (k) and the unrolling se-
mantics (Sem). For AutoHyper, we additionally list the size of the intermediate
explicit state space (Size). Times are given in seconds.

HyperQube [31] AutoHyper

System Spec Q∗ Res k Sem t Size t

Bakery3 φS1 ∃∃ ✗ 7 pes 1.9 167 2.3
Bakery3 φS2 ∀∃ ✗ 12 pes 2.0 167 4.2
Bakery3 φS3 ∃∀ ✗! 20 pes 2.8 167 34.6
Bakery3 φsym1 ∀∃ ✗ 10 pes 1.7 167 16.2
Bakery3 φsym2 ∀∃ ✗ 10 pes 1.6 167 2.9
Bakery5 φsym1 ∀∃ ✗ 10 pes 17.3 996 282.1
Bakery5 φsym2 ∀∃ ✗ 10 pes 18.2 996 18.0

SNARK-bug1 φlin ∀∃ ✗ 26 hpes 618.0 4941 96.1

3-Threadcorrect φNI ∀∃ ✓ 10 hopt 1.6 64 1.3
3-Threadincorrect φNI ∀∃ ✗ 57 hpes 12.8 368 7.7

NRP : Tcorrect φfair ∃∀ ✓ 15 hopt 1.3 55 0.5
NRP : Tincorrect φfair ∃∀ ✓! 15 hopt 1.4 54 0.8

Mutant φmut ∃∀ ✓ 8 hopt 1.1 32 0.8

other inclusion checkers and, in particular, scales better when the size of the sys-
tem increases. Note that the number of atomic propositions is 3 in all instances,
so spot’s support for symbolic alphabets has a negligible impact on the running
time. We emphasize that not all instances in Table 1 can be verified using SBV
[19,7] without a user-provided fixed lookahead. Likewise, BMC [31] can never
verify GNI. This provides further evidence why complete model checking tools
(of which AutoHyper is the first) are necessary.

7.2 Explicit Model Checking of Symbolic Systems

In this section, we evaluate AutoHyper on challenging symbolic models (NuSMV
models [13]) that were used by Hsu et al. [31] to evaluate HyperQube.

The properties we verify cover a wide range of properties. For example, we
verify that Lamport’s bakery algorithm [33] does not satisfy various symmetry
properties (as the algorithm prioritizes processes with a lower ticket ID); We
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check linearizability5 [30] on the SNARK datastructure [23] and identify a pre-
viously known bug; And, we generate model-based mutation test cases using the
approach proposed by Fellner et al. [27]. Further details on the benchmarks are
provided in [31].

We check each instance using both HyperQube and AutoHyper and depict
the results in Table 2.6 When using AutoHyper we always apply spot’s inclu-
sion checker.7 For HyperQube we use the unrolling semantics and unrolling depth
listed in [31, Table 2]. We observe that for most instances – despite using explicit
state methods and thus being complete (cf. Section 7.4) – AutoHyper performs
on par with HyperQube. On instances using Lamport’s bakery algorithm, BMC
only needs to unroll to very shallow depths, resulting in very efficient solving,
whereas AutoHyper’s running time is dominated by spot’s LTL-to-NBA transla-
tion (consuming up to 98% of the total time). Conversely, on the large SNARK
example, AutoHyper performs significantly better.

7.3 Hyperproperties for Path Planning

As a last set of benchmarks, we use planning problems for robots encoded into
HyperLTL as proposed by Wang et al. [39]. For example, the synthesis of a
shortest path can be phrased as a ∃∀ property that states that there exists a
path to the goal such that all alternative paths to the goal take at least as long.
Wang et al. [39] propose a solution to check the resulting HyperLTL property
by encoding it in first-order logic, which is then solved by an SMT solver. While
not competitive with state-of-the-art planning tools, HyperLTL allows one to
express a broad range of problems (shortest path, path robustness, etc.) in a
very general way. Hsu et al. [31] observe that the QBF encoding implemented
in HyperQube outperforms the SMT-based approach by Wang et al. [39]. In this
section, we evaluate AutoHyper on these planning-hyperproperties and compare
it with HyperQube8.

We depict the results in Table 3. It is evident that AutoHyper outperforms
HyperQube, sometimes by orders of magnitude. This is surprising as planning
problems (which are essentially reachability problems) on symbolic systems should
be advantageous for symbolic methods such as BMC. The large size of the in-

5 Linearizability asserts that any execution of a concurrent data structure corresponds
to a sequential execution, which is naturally expressed as a ∀∃ hyperproperty.

6 For the two verification instances (Bakery3,φS3) and (NRP : Tincorrect , φfair )
HyperQube provides the wrong verification result. We mark such instances with a
“ !” to avoid confusion when comparing Table 2 with [31, Table 2]. In particular, the
supposedly unfair version of the NRP protocol is, in fact, fair.

7 The automata use a symbolic alphabet with up to 18 letters. A conversion to an
explicit alphabet – as required for RABIT, BAIT, and FORKLIFT – is thus infeasible
(this would require 218 symbols).

8 AutoHyper is intended as a model checking tool, i.e., it only checks if a property
holds or is violated. However, as we show in the full version [9], we could use the
counterexamples returned by the inclusion checker to synthesize an actual plan.
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Table 3: We evaluate HyperQube and AutoHyper on hyperproperties that encode
the existence of a shortest path (φsp) and robust path (φrp). We give the specifi-
cation (Spec), the size of the grid (Grid), and the times taken by HyperQube and
AutoHyper (t). For HyperQube, we additionally give the unrolling depth used
(k) and the file size of the QBF generated (|QBF|). For AutoHyper, we addition-
ally give the size of the generated explicit state space (Size). Times are given in
seconds. The timeout is set to 20 min and indicated by a “-”.

HyperQube [31] AutoHyper

Spec Grid k |QBF| t Size t

φsp

10× 10 20 8 MB 4.6 146 0.7
20× 20 40 26 MB 168.1 188 1.5
40× 40 80 - - 408 22.7
60× 60 120 - - 404 88.8

φrp

10× 10 20 13 MB 4.2 266 0.6
20× 20 40 84 MB 22.4 572 0.7
40× 40 80 419 MB 265.0 1212 1.6
60× 60 120 - - 1852 3.7

termediate QBF indicates that a more optimized encoding (perhaps specific to
path planning) could improve the performance of BMC on such examples.

7.4 Bounded vs. Explicit-State Model Checking

Bounded model checking has seen remarkable success in the verification of trace
properties and frequently scales to systems whose size is well out of scope for
explicit-state methods [20]. Similarly, in the context of alternation-free hyper-
properties, symbolic verification tools such as MCHyper [29] (which internally
reduces to the verification of a circuit using ABC [12]) can verify systems that
are well beyond the reach of explicit-state methods. In contrast, in the context
of model checking for hyperproperties that involve quantifier alternations, our
findings make a strong case for the use of explicit-state methods (as implemented
in AutoHyper):

First, compared to symbolic methods (such as BMC), explicit-state model
checking is currently the only method that is complete. While BMC was able to
verify or refute all properties in Tables 2 and 3, many instances cannot be solved
with the current BMC encoding. As a concrete example, BMC can never verify
formulas whose body contains simple invariants (such as GNI) and can thus not
verify any of the instances in Table 1. The most significant advantage of explicit-
state MC (as implemented in AutoHyper) is thus that it is both push-button and
complete, i.e., it can – at least in theory – verify or refute all properties.
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Second, the performance of AutoHyper seems to be on-par with that of BMC
and frequently outperforms it (even by several orders of magnitude, cf. Table 3).
We stress that this is despite the fact that for the evaluation of HyperQube we
already fix an unrolling depth and unrolling semantics, thus creating favorable
conditions for HyperQube.9 While BMC for trace properties reduces to SAT solv-
ing, BMC of hyperproperties reduces to QBF solving; a problem that is much
harder and has seen less support by industry-strength tools. It is, therefore, un-
clear whether the advance of modern QBF solvers can improve the performance
of hyperproperty BMC, to the same degree that the advance of SAT solvers
has stimulated the success of BMC for trace properties. Our findings seem to
indicate that, at the moment, QBF solving (often) seems inferior to an explicit
(automata-based) solving strategy.

8 Evaluating Strategy-based Verification

So far, we have used AutoHyper to check hyperproperties on instances arising in
the literature. In this last section, we demonstrate that AutoHyper also serves
as a valuable baseline to evaluate different (possibly incomplete) verification
methods. Here we focus on strategy-based verification (SBV), i.e., the idea of
automatically synthesizing a strategy that resolves existential quantification in
∀∗∃∗ HyperLTL properties [19,7].

8.1 Effectiveness of Strategy-based Verification

SBV is known to be incomplete [19,7]. However, due to the previous lack of
complete tools for verifying ∀∗∃∗ properties, a detailed study into how effective
SBV is in practice was impossible on a larger scale (i.e., beyond hand-crafted
examples). With AutoHyper, we can, for the first time, rigorously evaluate SBV.
We use the SBV implementation from [7], which synthesizes a strategy for the
∃-player by translating the formula to a deterministic parity automaton (DPA)
[35] and phrases the synthesizes as a parity game.

We have generated random transition systems and properties of varying sizes
and computed a ground truth using AutoHyper. We then performed SBV (recall
that SBV can never show that a property does not hold and might fail to estab-
lish that it does). We find that for our generated instances, the property holds
in 61.1% of the cases, and SBV can verify the property in 60.4% of the cases.
Successful verification with SBV is thus possible in many cases, even without
the addition of expensive mechanisms such as prophecies [7]. On the other hand,
our results show that random generation produces instances (albeit not many)
9 In Tables 2 and 3, we perform a single query with a fixed unrolling depth k and

semantics, i.e., we already know if we want to show satisfaction or violation and the
depth needed to show this (as done in [31]). In a classical BMC loop, we would check
for satisfaction and violation with an incrementally increasing unrolling depth and
thus perform roughly 2k many QBF queries where k is the least bound for which
satisfaction or violation can be established (if this bound even exists).
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on which SBV fails (so far, examples where SBV fails required careful construc-
tion by hand). Reverting to SBV as the default verification strategy is thus not
possible, further strengthening the case for complete model checking tools (of
which AutoHyper is the first).

8.2 Efficiency of Strategy-based Verification
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Fig. 3: We compare ABV (AutoHyper) and SBV
([7]) on instances of varying system size. We fix
the property size to 20. We generate 100 random
instances for each size and take the average over
the fastest L instances, where L is the minimum
number of instances solved within a 5s timeout
by both methods.

After having analyzed the ef-
fectiveness of SBV (i.e., how
many instances can be veri-
fied), we turn our attention to
the efficiency of SBV. In the-
ory, (automata-based) model
checking of ∀∗∃∗ HyperLTL –
as implemented in AutoHyper
– is EXPSPACE-complete in
the specification and PSPACE-
complete in the size of the
system [15,36]. Conversely,
SBV is 2-EXPTIME-complete
in the size of the specifica-
tion but only PTIME in the
size of the system [19]. Con-
sequently, one would expect
that ABV fares better on
larger specifications and SBV
fares better on larger systems
(the more important measure
in practice).

However, in this section,
we show that this does not
translate into practice (at
least using the current imple-
mentation of SBV [7]). We
compare the running time
of AutoHyper (ABV) (using
spot’s inclusion checker) and SBV. We break the running time into the three
main steps for each method. For ABV, this is the LTL-to-NBA translation, the
construction of the product automaton, and the inclusion check. For SBV, it is
the LTL-to-DPA translation, the construction of the game, and the game-solving.

We depict the average cost for varying system sizes in Figure 3. We observe
that SBV performs worse than ABV and, more importantly, scales poorly in the
size of the system. This is contrary to the theoretical analysis of ABV and SBV.
As the detailed breakdown of the running time suggests, the poor performance
is due to the costly construction of the game and the time taken to solve the
game. An almost identical picture emerges if we compare ABV in SBV relative
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to the property size (we give a plot in the full version [9]). While, in this case, the
results match the theory (i.e., SBV scales worse in the size of the specification),
we find that the bottleneck for SBV is not the LTL-to-DPA translation (which, in
theory, is exponentially more expensive than the LTL-to-NBA translation used
in ABV), but, again the construction and solving of the parity game.

We remark that the SBV engine we used [7] is not optimized and always
constructs the full (reachable) game graph. The poor performance of SBV can
be attributed to the fact that the size of the game does, in the worst case,
scale quadratically in the size of the system (when considering ∀1∃1 properties).
This is amplified in dense systems (i.e., systems with many transitions), as, with
increasing transition density, the size of the parity games approaches its worst-
case size (see the full version [9]). In contrast, the heavily optimized inclusion
checker (in this case spot) seems to be able to check inclusion in almost constant
time (despite being exponential in theory). This efficiency of mature language
inclusion checkers is what enables AutoHyper to achieve remarkable performance
that often exceeds that of symbolic methods such as BMC (cf. Section 7) and
further strengthens the practical impact of Proposition 1.

9 Conclusion

In this paper, we have presented AutoHyper, the first complete model checker
for HyperLTL with an arbitrary quantifier prefix. We have demonstrated that
AutoHyper can check many interesting properties involving quantifier alterna-
tions and often outperforms symbolic methods such as BMC, sometimes by
orders of magnitude. We believe the biggest advantage of AutoHyper to be its
push-button functionality combined with its completeness: As a user, one does
not need to worry whether AutoHyper is applicable to a particular property (dif-
ferent from, e.g., SBV or BMC) and does not need to provide hints (e.g., in the
form of explicit strategies in SBV).

Apart from evaluating AutoHyper’s performance on a range of benchmarks,
we have used AutoHyper to (1) compare various backend language inclusion
checkers, (2) explore practical verification beyond one quantifier alternation
(which is not as infeasible as suggested by the theory), and (3) rigorously eval-
uate the effectiveness and efficiency of strategy-based verification in practice
(which, different than suggested by a theoretical analysis, performs worse than
automata-based methods).
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