
Automated Software Verification of Hyperliveness

Raven Beutner

CISPA Helmholtz Center for Information Security, Germany
raven.beutner@cispa.de

Abstract. Hyperproperties relate multiple executions of a program and
are commonly used to specify security and information-flow policies.
Most existing work has focused on the verification of k-safety properties,
i.e., properties that state that all k-tuples of execution traces satisfy a
given property. In this paper, we study the automated verification of
richer properties that combine universal and existential quantification
over executions. Concretely, we consider ∀k∃l properties, which state
that for all k executions, there exist l executions that, together, satisfy a
property. This captures important non-k-safety requirements, including
hyperliveness properties such as generalized non-interference, opacity,
refinement, and robustness. We design an automated constraint-based
algorithm for the verification of ∀k∃l properties. Our algorithm leverages
a sound-and-complete program logic and a (parameterized) strongest
postcondition computation. We implement our algorithm in a tool called
ForEx and report on encouraging experimental results.

Keywords: Hyperproperties · Program Logic · Hoare Logic · Symbolic
Execution · Constraint-based Verification · Predicate Transformer · Re-
finement · Strongest Postcondition · Underapproximation.

1 Introduction

Relational properties (also called hyperproperties [21]) move away from a tra-
ditional specification that considers all executions of a system in isolation and,
instead, relate multiple executions. Hyperproperties are becoming increasingly
important and have shown up in various disciplines, perhaps most prominently
in information-flow control. Assume we are given a program P with high-security
input h, low-security input l, and public output o, and we want to formally prove
that the output of P does not leak information about h. One way to ensure this
is to verify that P behaves deterministically in the low-security input l, i.e., if
the low-security input is identical across two executions, so is P’s output.

The above property is a typical example of a 2-safety property stating a re-
quirement on all pairs of traces. More generally, a k-safety property requires that
all k-tuples of executions, together, satisfy a given property. In the last decade,
many approaches for the verification of k-safety properties have been proposed,
based, e.g., on model-checking [55,33,31], abstract interpretation [43,41,4,44],
symbolic execution [30], or program logics [7,56,28,60,49].
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if (h > l) then
o = l + ⋆N

else
x = ⋆N
if (x > l) then

o = x
else

o = l

Fig. 1: Example program

However, for many relational properties, the
implicit universal quantification found in k-safety
properties is too restrictive. Consider the simple
program in Figure 1 (taken from [12]), where ⋆N
denotes the nondeterministic choice of a natural
number. This program clearly violates the 2-safety
property discussed above as the nondeterminism
influences the final value of o. Nevertheless, the
program does not leak any information about the
secret input h. To see this, assume the attacker
observes some fixed low-security input-output pair (l, o), i.e., the attacker ob-
serves everything except the high-security input. The key observation is that
(l, o) is possible for any possible high-security input, i.e., for every value of h,
there exists some way to resolve the nondeterminism such that (l, o) is the obser-
vation made by the attacker. This information-flow policy – called generalized
non-interference (GNI) [45] – requires a combination of universal and existential
reasoning and thus cannot be expressed as a k-safety property.

FEHTs. In this paper, we study the automated verification of such (functional)
∀∗∃∗ properties. Concretely, we consider specifications in a form we call Forall-
Exist Hoare Tuples (FEHT) (also called refinement quadruples [5] or RHLE
triples [26]), which have the form

⟨Φ⟩P1 ⊛ · · ·⊛ Pk ∼ Pk+1 ⊛ · · ·⊛ Pk+l⟨Ψ⟩,

where P1, . . . ,Pk+l are (possibly identical) programs and Φ, Ψ are first-order
formulas that relate k + l different program runs. The FEHT is valid if for all
k + l initial states that satisfy Φ, and for all possible executions of P1, . . . ,Pk

there exist executions of Pk+1, . . . ,Pk+l such that the final states satisfy Ψ . For
example, GNI can be expressed as ⟨l1 = l2⟩P ∼ P⟨o1 = o2⟩, where l1 and o1
(resp. l2 and o2) refer to the value of l and o in the first (resp. second) program
copy. That is, for any two initial states σ1, σ2 with identical values for l (but
possibly different values for h), and any final state σ′

1 reachable by executing P
from σ1, there exists some final state σ′

2 (reachable from σ2 by executing P) that
agrees with σ′

1 in the value of o. The program in Figure 1 satisfies this FEHT. In
the terminology of Clarkson and Schneider [21], GNI is a hyperliveness property,
hence the name of our paper. Intuitively, the term hyperliveness stems from the
fact that – due to the existential quantification in FEHTs – GNI reasons about
the existence of a particular execution. Similar to the definition of liveness in
temporal properties [2], we can, therefore, satisfy GNI by adding sufficiently
many execution traces [22].

Verification Using a Program Logic. For finite-state hardware systems, many
automated verification methods for hyperliveness properties (e.g., in the form
of FEHTs) have been proposed [20,38,15,33,13,14,22]. In contrast, for infinite-
state software, the verification of FEHTs is notoriously difficult; FEHTs mix
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quantification of different types, so we cannot employ purely over-approximate
reasoning principles (as is possible for k-safety). Most existing approaches for
software verification, therefore, require substantial user interaction, e.g., in the
form of a custom Horn-clause template [57], a user-provided abstraction [12], or
a deductive proof strategy [26,5]. See Section 6 for more discussion.

In this paper, we put forward an automatic algorithm for the verification of
FEHTs. Our method is rooted in a novel program logic, which we call Forall-
Exist Hoare Logic (FEHL) (in Section 3). Similar to many program logics for
k-safety properties [56,19], our logic focuses on one of the programs involved in
the verification at any given time (by, e.g., symbolically executing one step in
one of the programs) and thus lends itself to automation. We show that FEHL
is sound and complete (relative to a complete proof system for over- and under-
approximate unary Hoare triples).

Automated Verification. Our verification algorithm – presented in Section 4 –
then leverages FEHL for the analysis of FEHTs. During this analysis, the key al-
gorithmic challenge is to find suitable instantiations for nondeterministic choices
made in existentially quantified executions. Our algorithm avoids a direct instan-
tiation and instead treats the outcome of the nondeterministic choice symboli-
cally, allowing an instantiation at a later point in time. Formally, we define the
concept of a parametric assertion. Instead of capturing a set of states, a paramet-
ric assertion defines a function that maps concrete values for a set of parameters
(in our case, the nondeterministic choices in existentially quantified programs
whose concrete instantiations we have postponed) to sets of states. Our algo-
rithm then recursively computes a parametric postcondition and delegates the
search for appropriate instantiations of the parameters to an SMT solver. Cru-
cially, our algorithm only explores a restricted class of program alignments (as
guided by FEHL). Therefore, the resulting constraints are ordinary (first-order)
SMT formulas, which can be handled using off-the-shelf SMT solvers.

Implementation and Experiments. We implement our algorithm in a tool called
ForEx and compare it with existing approaches for the verification of ∀∗∃∗
properties (in Section 5). As ForEx can resort to highly optimized off-the-shelf
SMT solvers, it outperforms existing approaches (which often rely on custom
solving strategies) in many benchmarks.

2 Preliminaries

Programs. Let V be a set of program variables. We consider a simple (integer-
valued) programming language generated by the following grammar.

P,Q := skip | x= e | assume(b) | if(b,P,Q) | while(b,P) | P #Q | x= ⋆

where x ∈ V is a variable, e is a (deterministic) arithmetic expressions over
variables in V, and b is a (deterministic) boolean expression. skip denotes the
program that does nothing; x= e assigns x the result of evaluating e; assume(b)
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assumes that b holds, i.e., does not continue execution from states that do not
satisfy b; if(b,P,Q) executes P if b holds and otherwise executes Q; while(b,P)
executes P as long as b holds; P #Q executes P followed by Q; and x= ⋆ assigns
x some nondeterministically chosen integer. For an arithmetic expression e, we
write Vars(e) ⊆ V for the set of all variables used in the expression.

We endow our language with a standard operational semantics operating on
states σ : V → Z. Given a program P, we write JPK(σ, σ′) whenever P – when
executed from state σ – can terminate in state σ′. Our semantics is defined as
expected, and we give a full definition in the full version [10].

Given program states σ1 : V → Z and σ2 : V ′ → Z with V ∩ V ′ = ∅, we write
σ1 ⊕ σ2 : (V ∪ V ′) → Z for the combined state, that behaves as σ1 on V and as
σ2 on V ′. For i ∈ N, we define Vi := {xi | x ∈ V} as a set of indexed program
variables.

Assertions. An assertion Φ is a first-order formula over variables in V (or in the
relational setting over

⋃k
i=1 Vi for some k). Given a state σ, we write σ |= Φ

if σ satisfies Φ. We assume that assertions stem from an arbitrarily expressive
background theory such that every set of states can be expressed as a formula.
This allows us to sidestep the issue of expressiveness in the sense of Cook [23]
(see, e.g., [50,60,56] for similar treatments).

Hyperliveness Specifications. Our verification algorithm targets specifications
that combine universal and existential quantification, similar to RHLE triples
[26] and refinement quadruples [5]:

Definition 1. A Forall-Exist Hoare Tuple (FEHT) has the form

⟨Φ⟩P1 ⊛ · · ·⊛ Pk ∼ Pk+1 ⊛ · · ·⊛ Pk+l⟨Ψ⟩,

where Φ, Ψ are assertions over
⋃k+l

i=1 Vi, and P1, . . . ,Pk+l are programs over vari-
ables V1, . . . ,Vk+l, respectively. The FEHT is valid if for all states σ1, . . . , σk+l

(with domains V1, . . . ,Vk+l, respectively) and σ′
1, . . . , σ

′
k such that

⊕k+l
i=1 σi |= Φ

and JPiK(σi, σ
′
i) for all i ∈ [1, k], there exist states σ′

k+1, . . . , σ
′
k+l such that

JPiK(σi, σ
′
i) for all i ∈ [k + 1, k + l] and

⊕k+l
i=1 σ

′
i |= Ψ .

That is, we quantify universally over initial states for all k + l programs
(under the assumption that they, together, satisfy Φ) and also universally over
executions of P1, . . . ,Pk. Afterward, we quantify existentially over executions of
Pk+1, . . . ,Pk+l and require that the final states of all k+ l executions, together,
satisfy the postcondition Ψ . A relational property usually refers to k+l executions
of the same program P (operating on variables in V); we can model this by
using α-renamed copies P⟨1⟩, . . . ,P⟨k+l⟩ where each P⟨i⟩ is obtained from P by
replacing each variable x ∈ V with xi ∈ Vi. FEHTs capture a range of important
properties, including e.g., non-inference [46], opacity [61], GNI [45], refinement
[59], software doping [16], and robustness [18]. It is easy to see that FEHTs can
also express (purely universal) k-safety properties over programs P1, . . . ,Pk as
⟨Φ⟩P1 ⊛ · · ·⊛ Pk ∼ ϵ⟨Ψ⟩, where ϵ denotes the empty sequence of programs.
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(∀-Reorder)
⊢ ⟨Φ⟩χ∀2 ⊛ χ∀1 ∼ χ∃⟨Ψ⟩
⊢ ⟨Φ⟩χ∀1 ⊛ χ∀2 ∼ χ∃⟨Ψ⟩

(∀-Skip-I)
⊢ ⟨Φ⟩P #skip⊛ χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩P⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∀-Skip-E)
⊢ ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩skip⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∀-If)
⊢ ⟨Φ ∧ b⟩P1 #P3 ⊛ χ∀ ∼ χ∃⟨Ψ⟩
⊢ ⟨Φ ∧ ¬b⟩P2 #P3 ⊛ χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩if(b,P1,P2) #P3 ⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∀-Step)
⊢ {Φ}P1{Φ′}

⊢ ⟨Φ′⟩P2 ⊛ χ∀ ∼ χ∃⟨Ψ⟩
⊢ ⟨Φ⟩P1 #P2 ⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∃-Step)
⊢ [Φ ]P1[Φ

′ ]

⊢ ⟨Φ′⟩χ∀ ∼ P2 ⊛ χ∃⟨Ψ⟩
⊢ ⟨Φ⟩χ∀ ∼ P1 #P2 ⊛ χ∃⟨Ψ⟩

(Done)
⊢ ⟨Φ⟩ϵ ∼ ϵ⟨Φ⟩

(∀-Assume)
⊢ ⟨Φ ∧ b⟩P⊛ χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩assume(b) #P⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∃-Assume)
Φ ⇒ b ⊢ ⟨Φ⟩χ∀ ∼ P⊛ χ∃⟨Ψ⟩
⊢ ⟨Φ⟩χ∀ ∼ assume(b) #P⊛ χ∃⟨Ψ⟩

(∀-Choice)
⊢ ⟨∃x. Φ⟩P⊛ χ∀ ∼ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩x= ⋆ #P⊛ χ∀ ∼ χ∃⟨Ψ⟩

(∃-Choice)
x ̸∈ Vars(e) ⊢ ⟨(∃x. Φ) ∧ x = e⟩χ∀ ∼ P⊛ χ∃⟨Ψ⟩

⊢ ⟨Φ⟩χ∀ ∼ x= ⋆ #P⊛ χ∃⟨Ψ⟩

Fig. 2: Selection of core proof rules of FEHL

3 Forall-Exist Hoare Logic

The verification steps of our constraint-based algorithm (presented in Section 4)
are guided by the proof rules of a novel program logic operating on FEHTs,
which we call Forall-Exist Hoare Logic (FEHL).

3.1 Core Rules

We depict a selection of core rules in Figure 2; a full overview can be found in
[10]. We write χ∀ (resp. χ∃) to abbreviate a list P1 ⊛ · · ·⊛ Pk of programs that
are universally (resp. existentially) quantified. Rule (∀-Reorder) allows for the
reordering of universally quantified programs; (∀-Skip-I) rewrites a program
P into P #skip; (∀-Skip-E) removes a single skip-instruction; and (Done)
derives a FEHL with an empty program sequence. Using skip-insertions and
reordering (and the analogous rules for existentially quantified programs), we
can always bring a program in the form P1 #P2, targeted by the remaining rules.
Rule (∀-If) embeds the branching condition of a conditional into the precon-
ditions of both branches. Rules (∀-Step) and (∃-Step) allow us to resort
to unary reasoning over parts of the program. These rules make the multiplic-
ity of techniques developed for unary reasoning (e.g., symbolic execution [40]
and predicate transformers [27]) applicable to the verification of hyperproperties
in the form of FEHTs. For universally quantified programs of the form P1 #P2,
(∀-Step) requires an auxiliary assertion Φ′ that should hold after all execu-
tions of P1 from Φ. We can express this using the standard (non-relational) Hoare
triple (HT) {Φ}P1{Φ′} [37]. The second premise then ensures that the remaining



6 R. Beutner

(Loop-Counting)
k ≥ 1, B ≥ 1

c1, . . . , ck+l ∈ [1, B]

I1, . . . , IB+1

Φ ⇒ I
I ⇒

∧k+l
i=2(b1 ↔ bi)

I = I1 = IB+1

[
⊢
〈
Ij ∧

k+l∧
i=1|ci≥j

bi
〉 k

⊛
i=1|ci≥j

Pi ∼
k+l

⊛
i=k+1|ci≥j

Pi

〈
Ij+1 ∧

k+l∧
i=1|ci>j

bi
〉]B

j=1

⊢
〈
I ∧

k+l∧
i=1

¬bi
〉 k

⊛
i=1

Qi ⊛ χ∀ ∼
k+l

⊛
i=k+1

Qi ⊛ χ∃

〈
Ψ
〉

⊢ ⟨Φ⟩
k

⊛
i=1

while(bi,Pi) #Qi ⊛ χ∀ ∼
k+l

⊛
i=k+1

while(bi,Pi) #Qi ⊛ χ∃⟨Ψ⟩

Fig. 3: Counting-based loop rule for FEHL

FEHT (after P1 has been executed) holds. For existentially quantified programs,
we, instead, employ an underapproximation. In (∃-Step), we, again, execute
P1 but use an Under-Approximate Hoare triple (UHT) [Φ ]P1[Φ

′ ]. The UHT
[Φ ]P1[Φ

′ ] holds if for all states σ with σ |= Φ, there exists a state σ′ such that
JP1K(σ, σ′) and σ′ |= Φ′.

Remark 1. UHTs behave similar to Incorrectness Triples (ITs) [50,58] in that
they reason about the existence of a particular set of executions. The key differ-
ence is that ITs reason backward (all states in Φ′ are reachable from some state
in Φ), whereas UHTs reason in a forward direction (all states in Φ can reach Φ′).
See, e.g., Lisbon Triples [47, §5] and Outcome Triples [62] for related approaches.
We will later show that FEHL is complete when equipped with some complete
proof system for UHTs (cf. Theorem 2). In the full version [10], we show that
there exists at least one complete proof system for UHTs. △

For assume statements, (∀-Assume) strengthens the precondition by the
assumed expression b; any state that does not satisfy b causes a (universally
quantified) execution to halt and renders the FEHT vacuously valid. In con-
trast, (∃-Assume) assumes that all states in Φ satisfy b; if any state in Φ does
not satisfy b, the FEHT is invalid. Likewise, the handling of a nondeterministic
assignment x= ⋆ differs based on whether we consider a universally quantified
or existentially quantified program. In the former case, (∀-Choice) removes
all knowledge about the value of x within the precondition by quantifying x
existentially (thus enlarging the precondition). In the latter (existentially quan-
tified) case, we can, in a forward-style execution, choose any concrete value for
x. (∃-Choice) formalizes this intuition: we first invalidate all knowledge about
x and then assert that x = e for some arbitrary expression e that does not de-
pend on x. In our automated analysis (cf. Section 4), we use (∃-Choice), but
– instead of fixing some concrete value (or expression) at application time – we
postpone the concrete instantiation by treating the value symbolically.

3.2 Asynchronous Loop Reasoning

A particular challenge when reasoning about relational properties is the align-
ment of loops. In FEHL, we propose a novel counting-based loop rule that sup-
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P1 :=


y1 = x1#
while (y1 > 0)

y1 = y1 - 1#
x1 = 4 * x1

P2 :=


y2 = 2 * x2#
while (y2 > 0)

z2 = ⋆#
y2 = y2 - z2#
x2 = 2 * x2

(a)

〈 I1 ∧
y1 > 0∧
y2 > 0

〉
y1 = y1 - 1#
x1 = 4 * x1

∼
z2 = ⋆#
y2 = y2 - z2#
x2 = 2 * x2

〈
I2 ∧

y2 > 0

〉

(b)

〈
I2 ∧

y2 > 0

〉
ϵ ∼

z2 = ⋆#
y2 = y2 - z2#
x2 = 2 * x2

〈
I3

〉

(c)

Fig. 4: In Figure 4a, we depict two example programs. In Figures 4b and 4c, we
give two intermediate FEHT verification obligations (cf. Example 1).

ports asynchronous alignments while still admitting good automation. Consider
the rule (Loop-Counting) (in Figure 3), which assumes k ≥ 1 universally
and l existentially quantified loops. The rule requires a loop invariant I that (1)
is implied by the precondition (Φ ⇒ I), (2) ensures simultaneous termination
of all loops (I ⇒

∧k+l
i=2(b1 ↔ bi)), and (3) is strong enough to establish the

postcondition for the program suffixes Q1, . . . ,Qk+l executed after the loops.
The key difference from a simple synchronous traversal is that, in each “itera-
tion”, we execute the bodies of the loops for possibly different numbers of times.
Concretely, (Loop-Counting) asks for natural numbers c1, . . . , ck+l (ranging
between 1 and some arbitrary upper bound B), and – starting from the invariant
I – we execute each Pi ci times. Crucially, we need to make sure that each Pi

will execute at least ci times, i.e., the guard bi holds after each of the first ci − 1
executions. In particular, we cannot naïvely analyze ci copies of Pi composed via
# as this might introduce additional executions of Pi that would not happen in
while(bi,Pi). To ensure this, (Loop-Counting) demands B+1 intermediate
assertions I1, . . . , IB+1. In the jth iteration (for 1 ≤ j ≤ B), we (symbolically)
execute – from Ij – all loop bodies Pi that we want to execute at least j times
(i.e., all loop bodies Pi where ci ≥ j). We require that (1) the postcondition
Ij+1 is derivable, and (2) the guards of all loops that we want to execute more
than j times (i.e., loops where ci > j) evaluate to true.

Example 1. Consider the two example programs P1,P2 in Figure 4a and the
FEHT ⟨x1 = x2⟩P1 ∼ P2⟨x1 = x2⟩. To see that this FEHT is valid, we can, in
each loop iteration, always choose z2 = 1. In this case, P1 quadruples the value
of x1 for x1 times and P2 doubles the value of x2 for 2x2 times, which, assuming
x1 = x2, computes the same result (x1 = x2 → 4x1x1 = 22x2x2). Verifying this
example automatically is challenging as both loops are executed a different num-
ber of times, so we cannot align the loops in lockstep. Likewise, computing inde-
pendent (unary) summaries of both loops requires complex non-linear reasoning.
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Instead, (Loop-Counting) enables an asynchronous alignment: After apply-
ing (∀-Step) and (∃-Step), we are left with precondition x1 = x2∧y2 = 2y1.
We use (Loop-Counting) and align the loops such that every loop iteration
in P1 is matched by two iterations in P2, which allows us to use a simple (lin-
ear) invariant. We set c1 := 1, c2 := 2 and define I := x1 = x2 ∧ y2 = 2y1,
I1 := I3 := I, and I2 := x1 = 2x2 ∧ y2 = 2y1 + 1. Note that I implies the
desired postcondition (x1 = x2). To establish that I serves as an invariant, we
need to discharge the two proof obligations depicted in Figures 4b and 4c. The
obligation in Figure 4b (corresponding to iteration j = 1) establishes that (1)
I2 is a provable postcondition after executing both loop bodies from I1 and (2)
that the loop in P2 will execute at least one more time, i.e., y2 > 0. We can
easily discharge this FEHT using (∀-Step), (∃-Step), and (∃-Choice) by
choosing z2 to be 1 (note that if y2 = 2y1 and y2 > 0, then y2 − 1 > 0). The
obligation in Figure 4c corresponds to iteration j = 2, where we only execute
the body of P2. We can, again, easily discharge this FEHT using (∃-Step) and
(∃-Choice) (again, choosing z2 to be 1). △

3.3 Soundness and Completeness

We can show that our proof system is sound and complete:

Theorem 1 (Soundness). Assume that ⊢ { · } · { · } and ⊢ [ · ] · [ · ] are
sound proof systems for HTs and UHTs, respectively. If ⊢ ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩ then
⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩ is valid.

Theorem 2 (Completeness). Assume that ⊢ { · } · { · } and ⊢ [ · ] · [ · ] are
complete proof systems for HTs and UHTs, respectively. If ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩ is
valid then ⊢ ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩.

Completeness follows easily by making extensive use of unary reasoning via
(U)HTs, similar to the completeness-proof of relational Hoare logic for k-safety
properties [49]. In fact, (∀-Step), (∃-Step), (Done) along with the reorder-
ing rules (∀-Reorder), (∀-Skip-I), and (∀-Skip-E) (and their analogous
counterparts for existentially quantified programs) already suffice for complete-
ness (see [10]). In the following, we leverage the soundness of FEHL’s rules to
guide our automated verification.

4 Automated Verification of Hyperliveness

Our automated verification algorithm for FEHTs follows a strongest postcondi-
tion computation, as is widely used in the verification of non-relational properties
[1,36,51] and k-safety properties [56,19]. However, due to the inherent presence
of existential quantification in FEHT, the strongest postcondition does, in gen-
eral, not exist. For example, both ⟨⊤⟩ϵ ∼ x= ⋆⟨x = 1⟩ and ⟨⊤⟩ϵ ∼ x= ⋆⟨x = 2⟩
are valid but ⟨⊤⟩ϵ ∼ x= ⋆⟨x = 1 ∧ x = 2 ≡ ⊥⟩ is clearly not. Instead, our
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algorithm uses the proof rules of FEHL and treats the concrete value for non-
deterministic choices in existentially quantified executions symbolically. I.e., we
view the outcome as a fresh variable (called a parameter) that can be instan-
tiated later. This idea of instating nondeterminism at a later point in time has
already found successful application in many areas, such as existential variables
in Coq or symbolic execution [40]. Our analysis brings these techniques to the
realm of hyperproperty verification, which we show to yield an effective auto-
mated verification algorithm. In the following, we formally introduce parametric
assertions and postconditions (in Section 4.1) and show how we can compute
them using the rules of FEHL (in Sections 4.2 and 4.3).

4.1 Parametric Assertions and Postconditions

We assume that P = {µ1, . . . , µn} is a set of parameters. In FEHTs, we use asser-
tions (formulas) over

⋃k+l
i=1 Vi, which we interpret as sets of (relational) states.

A parametric assertion generalizes this by viewing an assertion as a function
mapping into sets of (relational) states. Formally, a parametric assertion is a
pair (Ξ, C) where Ξ is a formula over

⋃k+l
i=1 Vi∪P (called the function-formula),

and C is a formula over P (called the restriction-formula).
Given a function-formula Ξ (over

⋃k+l
i=1 Vi∪P) and a parameter evaluation κ :

P → Z, we define Ξ[κ] as the formula over
⋃k+l

i=1 Vi where we fix concrete values
for all parameters based on κ. We can thus view Ξ as a function mapping each
parameter evaluation κ to the set of states encoded by Ξ[κ]. During our (forward
style) analysis, we will use parameters to postpone nondeterministic choices in
existentially quantified programs. Intuitively, for every parameter evaluation κ
(i.e., any retrospective choice of the nondeterministic outcome), Ξ[κ] should
describe the reachable states (i.e., strongest postcondition) under those specific
outcomes. However, not all concrete values for the parameters are valid in the
sense that they correspond to nondeterministic outcomes that result in actual
executions. To mitigate this, a parametric assertion (Ξ, C) includes a restriction-
formula C (over P) which restrict the domain of the function encoded by Ξ, i.e.,
we only consider those parameter evaluations that satisfy C.

Example 2. Before proceeding with a formal development, let us discuss para-
metric assertions informally using an example. Let P1 := x= ⋆ # assume(x ≥ 9)
and P2 := y= ⋆ # assume(y ≥ 2) and assume we want to prove the FEHT
⟨⊤⟩P1 ∼ P2⟨x = y⟩. To verify this tuple in a principled way, we are interested in
potential postconditions Ψ , i.e., assertions Ψ such that ⟨⊤⟩P1 ∼ P2⟨Ψ⟩ is valid.
For example, both Ψ1 = x ≥ 9∧ y = 2 and Ψ2 = x ≥ 9∧ y = 3 are valid postcon-
ditions, but – as already seen before – there does not exist a strongest assertion.
Instead, we capture multiple postconditions using the parametric assertion (Ξ, C)
where Ξ := x ≥ 9 ∧ y = µ and C := µ ≥ 2 for some fresh parameter µ ∈ P;
we say (Ξ, C) is a parametric postcondition for (⊤,P1,P2) (cf. Definition 2). In-
tuitively, we have used the parameter µ instead of assigning some fixed integer
to y. For every concrete parameter evaluation κ : {µ} → Z such that κ |= C,
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formula Ξ[κ] defines the reachable states when using κ(µ) for the choice of y.
Observe how formula C = µ ≥ 2 restricts the possible set of parameter values,
i.e., we may only choose a value for y such that assume(y ≥ 2) holds. △

Definition 2. A parametric postcondition for (Φ,P1, . . . ,Pk+l) is a parametric
assertion (Ξ, C) with the following conditions. For all states σ1, . . . , σk+l, and
σ′
1, . . . , σ

′
k such that

⊕k+l
i=1 σi |= Φ and JPiK(σi, σ

′
i) for all i ∈ [1, k] and any pa-

rameter evaluation κ such that κ |= C the following holds: (1) There exist states
σ′
k+1, . . . , σ

′
k+l such that

⊕k+l
i=1 σ

′
i |= Ξ[κ], and (2) For every σ′

k+1, . . . , σ
′
k+l such

that
⊕k+l

i=1 σ
′
i |= Ξ[κ] we have JPiK(σi, σ

′
i) for all i ∈ [k + 1, k + l].

Condition (1) captures that no parameter evaluation may restrict universally
quantified executions, i.e., if we fix any parameter evaluation κ and reachable fi-
nal states for the universally quantified programs, Ξ[κ] remains satisfiable. This
effectively states that Ξ[κ] over-approximates the set of executions of univer-
sally quantified programs. Condition (2) requires that all executions of exis-
tentially quantified programs allowed under a particular parameter evaluation
are also valid executions, i.e., for any fixed parameter evaluation κ, Ξ[κ] under-
approximates the set of executions of the existentially quantified programs.

We can use parametric postconditions to prove FEHTs:

Theorem 3. Let (Ξ, C) be a parametric postcondition for (Φ,P1, . . . ,Pk+l). If

∀x∈V1∪···∪Vk
x.∃µ∈P µ. C ∧ ∀x∈Vk+1∪···∪Vk+l

x. (Ξ ⇒ Ψ)

holds, then the FEHT ⟨Φ⟩P1 ⊛ · · ·⊛ Pk ∼ Pk+1 ⊛ · · ·⊛ Pk+l⟨Ψ⟩ is valid.

Here, we universally quantify over final states in P1, . . . ,Pk and existentially
quantify over parameter evaluations that satisfy C (recall that C only refers to P).
The choice of the parameters can thus depend on the final states of universally
quantified programs (as in the semantics of FEHTs). Afterward, we quantify
(again universally) over final states of Pk+1, . . . ,Pk+l and state that if Ξ holds,
so does the postcondition Ψ .

Example 3. Consider the FEHT and parametric postcondition from Example 2.
Following Theorem 3, we construct the SMT formula ∀x. ∃µ. µ ≥ 2 ∧ ∀y.

(
(x ≥

9 ∧ y = µ) ⇒ x = y
)
. This formula holds; the FEHT is valid. △

Note that (Ξ,⊥) is always a parametric postcondition: no parameter evalua-
tion satisfies ⊥, so the conditions in Definition 2 are vacuously satisfied. However,
(Ξ,⊥) is useless when it comes to proving FEHTs via Theorem 3.

4.2 Generating Parametric Postconditions

Algorithm 1 computes a parametric postcondition based on the proof rules of
FEHL from Section 3. As input, Algorithm 1 expects a formula Φ over

⋃k+l
i=1 Vi∪P

– think of Φ as a precondition already containing some parameters – and two
program lists χ∀ and χ∃. It outputs a parametric postcondition.
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Algorithm 1 Parametric postcondition generation for FEHT verification
1 def genpp(Φ,χ∀,χ∃):
2 if χ∀ = χ∃ = ϵ:
3 return (Φ,⊤) //(Done)
4 else if ∀P ∈ χ∀ ∪ χ∃.P = while(_,_) #_:
5 return genppLoops(Φ, χ∀, χ∃)
6 else if ∃P ∈ χ∀.P ̸= while(_,_) #_:
7 // Take a step in χ∀
8 match χ∀:
9 | skip ⊛ χ∀

′: //(∀-Skip-E)
10 return genpp(Φ,χ∀

′,χ∃)
11 | skip #P ⊛ χ∀

′: //(∀-Step)
12 return genpp(Φ,P ⊛ χ∀

′,χ∃)
13 | (P1 #P2) #P3 ⊛ χ∀

′:
14 return genpp(Φ,P1 #(P2 #P3) ⊛ χ∀

′,χ∃)
15 | P ⊛ χ∀

′ when P ̸= _ #_: //(∀-Skip-I)
16 return genpp(Φ,P #skip ⊛ χ∀

′,χ∃)
17 | x= e #P ⊛ χ∀

′: //(∀-Step)
18 Φ′ := ∃x′.Φ[x′/x] ∧ x = e[x′/x]
19 return genpp (Φ′,P ⊛ χ∀

′,χ∃)
20 | if(b,P1,P2) #P3 ⊛ χ∀

′:
21 //(∀-If)
22 (Ξ1,C1) :=
23 genpp(Φ ∧ b,P1 #P3 ⊛ χ∀

′,χ∃)
24 (Ξ2,C2) :=
25 genpp(Φ ∧ ¬b,P2 #P3 ⊛ χ∀

′,χ∃)
26 return (Ξ1 ∨ Ξ2,C1 ∧ C2)
27 | assume(b) #P ⊛ χ∀

′: //(∀-Assume)
28 return genpp(Φ ∧ b,P ⊛ χ∀

′,χ∃)

29 | x= ⋆ #P ⊛ χ∀
′: //(∀-Choice)

30 Φ′ := ∃x. Φ
31 return genpp(Φ′,P ⊛ χ∀

′,χ∃)
32 | P ⊛ χ∀

′: //(∀-Reorder)
33 return genpp(Φ,χ∀

′ ⊛ P,χ∃)
34 else:
35 // Take a step in χ∃
36 match χ∃:
37 | skip ⊛ χ∃

′ | skip #P ⊛ χ∃
′

38 | (P1 #P2) #P3 ⊛ χ∃
′

39 | P ⊛ χ∃
′ when P ̸= _ #_

40 | x= e #P ⊛ χ∃
′

41 | if(b,P1,P2) #P3 ⊛ χ∃
′:

42 //As in lines 9, 11, 17
43 //20, 13, and 15
44 | assume(b) #P ⊛ χ∃

′:
45 //(∃-Assume)
46 Cassume :=
47 ∀x∈V1∪···∪Vk+l

x. (Φ ⇒ b)

48 (Ξ,C) :=
49 genpp(Φ ∧ b,χ∀,P ⊛ χ∃

′)
50 return (Ξ,C ∧ Cassume)
51 | x= ⋆ #P ⊛ χ∃

′: //(∃-Choice)
52 µ := freshParameter()
53 Φ′ := (∃x.Φ) ∧ x = µ
54 return genpp(Φ′,χ∀,P ⊛ χ∃

′)
55 | P ⊛ χ∃

′:
56 return genpp(Φ,χ∀,χ∃

′ ⊛ P)

Remark 2. For intuition, it is oftentimes helpful to consider Φ as a parameter-
free formula over

⋃k+l
i=1 Vi. In this case, most of our steps correspond to the

computation of the strongest postcondition [27,56,19] in a purely universal (k-
safety) setting. △

Our algorithm analyses the structure of each program and applies the insights
from FEHL: If χ∀ and χ∃ are empty, we return (Φ,⊤) (line 3), i.e., we do not
place any restrictions on the parameters. In case all programs are loops (line 5),
we invoke a subroutine genppLoops (discussed in Section 4.3). Otherwise, some
program has a non-loop statement at the top level, allowing further symbolic
analysis. We consider possible steps in χ∀ (lines 7-33) and in χ∃ (lines 35-56).

We first consider the case where a universally quantified program has a non-
loop statement at its top level (lines 7-33). In lines 9, 11, 13, and 15, we bring
the first program into the form P1 #P2 where P1 ̸= _ # _ by potentially inserting
skip statements in line 15. For a program x= e #P (line 17), we use (∀-Step)
to handle the assignment. Here, we can compute the strongest postcondition of
the assignment as ∃x′.Φ[x′/x] ∧ x = e[x′/x] (using Floyd’s forward running rule
[35]). For conditionals (line 20), we analyze both branches under the strength-
ened precondition. As our analysis operates on parametric assertions, some of the
parameters found in the precondition Φ can be restricted in both branches. After
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we have computed a parametric postcondition for each branch, we therefore com-
bine them into a parametric postcondition for the entire program by constructing
the disjunction of the function-formulas Ξ1 and Ξ2 (describing the set of states
reachable in either of the branches), and conjoining the restriction-formulas C1
and C2. For assume statements (line 27), we strengthen the precondition. For
nondeterministic assignments x= ⋆ (line 29), we invalidate all knowledge about
x. If a program matches none of the previous cases (line 33), it must be of the
form while(_,_) # _, and we move it to the end of χ∀, continuing the analy-
sis of the renaming programs in the next recursive iteration. If no universally
quantified program can be analyzed further, we continue the investigation with
existentially quantified ones (lines 35-56). Many cases are analogous to the treat-
ment in universally quantified programs (lines 37-43), but some cases are handled
fundamentally differently: If we encounter an assume statement assume(b) (line
45), we need to certify that b holds in all states in Φ (cf. (∃-Assume)). As we
already hinted in Example 2, we accomplish this by restricting the viable set
of parameters in Φ, i.e., we restrict the domain of the function formula Φ. Con-
cretely, we consider the formula Cassume := ∀x∈V1∪···∪Vk+l

x. (Φ ⇒ b) (which is a
formula over P) that characterizes exactly those parameters that ensure that all
states in Φ satisfy b. After analyzing the remaining programs, we then conjoin
Cassume with the remaining restrictions.

Remark 3. As in Remark 2, we can consider the case where Φ contains no pa-
rameter. In this case, Cassume is a variable-free formula that is equivalent to ⊤
iff all states in Φ satisfy b. If Φ does not imply b (so Cassume ≡ ⊥), the resulting
parametric postcondition thus cannot prove any FEHT via Theorem 3. △

For nondeterministic assignments x= ⋆ (line 51), we create a fresh parame-
ter µ and continue the analysis under the precondition that x = µ, effectively
postponing the choice of a concrete value for x (cf. Example 2).

Example 4. Our algorithm will automatically compute the parametric postcon-
dition from Example 2. In particular, for the assume(y ≥ 2) statement, we
match line 45 with Φ = x ≥ 9 ∧ y = µ for µ ∈ P and compute Cassume :=
∀x, y. Φ ⇒ y ≥ 2, which is logically equivalent to µ ≥ 2. △

4.3 Generating Parametric Postconditions for Loops

We sketch the postcondition generation for loops in Algorithm 2. As input,
genppLoops expects a precondition Φ over

⋃k+l
i=1 Vi ∪P and universally and ex-

istentially quantified loop programs. In the first step, we guess a loop invariant
I and counter values c1, . . . , ck+l ∈ [1, B] (cf. (Loop-Counting)). In lines 4
and 5, we ensure that I is initial and guarantees simultaneous termination by
computing restrictions Cinit and Csim on the parameters present in Φ (similar to
assume statements in line 45 of Algorithm 1). Again, in the special case where
Φ contains no parameter (as is, e.g., the case when applying our algorithm to
k-safety properties), Cinit (resp. Csim) is equivalent to ⊤ iff the invariant is initial



Automated Software Verification of Hyperliveness 13

Algorithm 2 Parametric postcondition generation for loops
1 def genppLoops(Φ,⊛k

i=1

(
while(bi,Pi) #Qi

)
,⊛k+l

i=k+1

(
while(bi,Pi) #Qi

)
):

2 I, c1, . . . , ck+l := guessInvariantAndCounts()
3 B := max(c1,. . .,ck+l)
4 Cinit := ∀x∈V1∪···∪Vk+l

x. (Φ ⇒ I)

5 Csim := ∀x∈V1∪···∪Vk+l
x. (I ⇒

∧k+l
i=2 b1 ↔ bi)

6 Ξ1 := I
7 for j from 1 to B:

8 (Ξj+1, Cj+1) := genpp(Ξj ∧
∧k+l

i=1|ci≥j
bi,⊛k

i=1|ci≥j Pi,⊛k+l
i=k+1|ci≥j

Pi)

9 Ccont
j+1 := ∀x∈V1∪···∪Vk+l

x. (Ξj+1 ⇒
∧k+l

i=1|ci>j
bi)

10 Cind := ∀x∈V1∪···∪Vk+l
x. (ΞB+1 ⇒ I)

11 (Ξrem , Crem ) := genpp(I ∧
∧k+l

i=1 ¬bi,⊛
k
i=1 Qi, ⊛k+l

i=k+1 Qi)

12 return (Ξrem,Cinit ∧ Csim ∧
∧B+1

j=2 Cj ∧
∧B+1

j=2 Ccont
j ∧ Cind ∧ Crem)

(resp. guarantees simultaneous termination). Afterward, we check the validity of
the guessed counter values c1, . . . , ck+l. For each j from 1 to B, we compute
a parametric postcondition (Ξj+1, Cj+1) for the bodies of all loops that should
be executed at least j times (i.e., ci ≥ j) starting from precondition Ξj via
a (mutually recursive) call to genpp (line 8). To ensure valid derivation using
(Loop-Counting) we need to ensure that – in Ξj+1 – the guard of all loops
that we want to execute more than j times still evaluates to true. We ensure
this by computing the restriction-formula Ccont

j+1 , which restricts the parameters
(both those already present in the precondition Φ and those added during the
analysis of the loop bodies) such that all states in Ξj+1 fulfill the guards of all
loops with ci > j (line 9). After we have symbolically executed all loops the
desired number of times, we construct a parameter restriction Cind that ensures
that we end within the invariant, i.e., ΞB+1 ⇒ I (line 10). In the last step, we
compute a parametric postcondition (Ξrem , Crem) for the program suffix exe-
cuted after the loops. We return the parametric postcondition that consists of
the function-formula Ξrem and the conjunction of all restriction-formulas.

4.4 The Main Verification

From the soundness of FEHL (Theorem 1) we directly get:

Proposition 1. genpp(Φ,χ∀,χ∃) computes some parametric postcondition for
(Φ, χ∀, χ∃).

Given an FEHT ⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩, we can thus invoke genpp(Φ,χ∀,χ∃) to com-
pute a parametric postcondition, which (if strong enough) allows us to prove that
⟨Φ⟩χ∀ ∼ χ∃⟨Ψ⟩ is valid via Theorem 3. If the postcondition is too weak, we can
re-run genpp using updated invariant guesses (cf. Section 5). For loop-free pro-
grams, it is easy to see that genpp computes the “strongest possible“ parametric
postcondition (it effectively executes the programs symbolically without incur-
ring the imprecision inserted by loop invariants). In this case, the query from
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Theorem 3 holds if and only if the FEHT is valid; our algorithm thus constitutes
a complete verification method.

Invalid FEHTs. We stress that the goal of our algorithm is the verification of
FEHTs and not proving that an FEHT is invalid. For k-safety properties, a refu-
tation (counterexample) consists of a k-tuple of concrete executions that violate
the property [56,19]. In contrast, refuting an FEHT corresponds to proving a
∃∗∀∗ property, an orthogonal problem that requires independent proof ideas.

5 Implementation and Experiments

We have implemented our verification algorithm in a tool called ForEx [9] (short
for Forall Exists Verification), supporting programs in a minimalistic C-like lan-
guage that features basic control structures (cf. Section 2), arrays, and bitvectors.
ForEx uses Z3 [48] to discharge SMT queries and supports the theory of lin-
ear integer arithmetic, the theory of arrays, and the theory of finite bitvectors.
Compared to the presentation in Section 4, we check satisfiability of restriction-
formulas eagerly : For example, in Algorithm 2, we compute multiple restriction-
formulas and return their conjunction. In ForEx, we immediately check these
intermediate restrictions for satisfiability; if any restriction is unsatisfiable on
its own, any conjunction involving it will be as well, so we can abort the anal-
ysis early and re-start parts of the analysis using, e.g., updated invariants and
counter values.

5.1 Loop Invariant Generation

Our loop invariant generation and counter value inference follows a standard
guess-and-check procedure [34,54,56,19,53], i.e., we generate promising candi-
dates by combining expressions found in the programs and equalities between
variables in the loop guards. In most loops, there exist “anchor” variables that
effectively couple executions of multiple loops together [56,19]; even in asyn-
chronous cases like Example 1. Exploring more advanced invariant generation
techniques is interesting future work. However – even in the simpler setting of
k-safety properties – many tools currently rely on a guess-and-check approach
[56,19]. We maintain a lattice of possible candidates ordered by implication,
which allows us for efficient pruning. For example, if the current candidate is
not initial (i.e., Cinit computed in line 4 of Algorithm 2 is unsatisfiable), we do
not need to consider stronger candidates. Likewise, if the candidate does not
ensure simultaneous termination (Csim) we can prune all weaker invariants.

5.2 Experiments

We evaluate ForEx in various settings where FEHT-like specifications arise.
We compare with HyPA (a predicate-abstraction-based solver) [12], PCSat (a
constraint-based solver that relies on predicate templates) [57], and HyPro (a
model-checker for ∀∗∃∗ properties in finite-state systems) [11]. Our results were
obtained on a M1 Pro CPU with 32GB of memory.
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Instance tHyPA tForEx

DoubleSquareNI† 67.12 0.71
Exp1x3 3.79 0.30
Fig3 8.78 0.39
DoubleSquareNIff 4.91 0.37
Fig2† 17.7 0.73
ColIitemSymm 15.51 0.20
CounterDet 5.28 0.55
MultEquiv 13.13 0.60
HalfSquareNI 68.04 -
SquaresSum 17.03 -
ArrayInsert 16.17 -

(a)

Instance tHyPA tForEx

NonDetAdd 3.63 0.76
CounterSum 5.05 1.95
AsynchGNI 5.20 0.69
CompilerOpt1 1.79 0.59
CompilerOpt2 2.71 1.02
Refine 10.1 0.57
Refine2 9.87 0.64
Smaller 2.21 0.69
CounterDiff 8.05 0.63
Fig. 3 8.92 0.57

(b)

Instance tPCSat tForEx

TI_GNI_hFF 26.2 0.58
TI_GNI_hTT 32.5 0.10
TI_GNI_hFT†,‡ 36.2 0.70
TS_GNI_hFF 36.6 0.58
TS_GNI_hTT‡ 96.2 0.16
TS_GNI_hFT†,‡ 123.3 2.88
TI_GNI_hTF 26.1 -
TS_GNI_hTF 44.1 -

(c)
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Fig. 5: In Tables 5a and 5b, we compare ForEx with HyPA [12] on k-safety
and ∀∗∃∗ properties, respectively. For instances marked with †, ForEx required
additional user-provided invariant hints. In Table 5c, we compare ForEx with
PCSat [57]. For instances marked with ‡, PCSat required additional invariant
hints. In Figure 5d, we compare the running time of ForEx (■) and HyPro [11]
(•). We check each of the 4 GNI instances from [11] with varying bitwidth. The
timeout is set to 3 min (marked by the horizontal dotted line).

Limitations of ForEx’s Loop Alignment. Before we evaluate ForEx on ∀∗∃∗
properties, we investigate the counting-based loop alignment principle underly-
ing ForEx. We collect the k-safety benchmarks from HyPA [12] (which themself
were collected from multiple sources [32,31,55,57]) and depict the verification re-
sults in Table 5a. We observe that ForEx can verify many of these instances. As
it explores a restricted class of loop alignments (guided by (Loop-Counting)),
it is more efficient on the instances it can solve. However, for some of the
instances, ForEx’s counting-based alignment is insufficient. Instead, these in-
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stances require a loop alignment that is context-dependent, i.e., the alignment
is chosen based on the current state of the programs [12,55,32,57].

ForEx and HyPA. HyPA [12] explores a liberal program alignment by exploring
a user-provided predicate abstraction. The verification instances considered in
[12] include a range of ∀∗∃∗ properties on very small programs, including, e.g.,
GNI and refinement properties. In Table 5b, we compare the running time of
ForEx with that of HyPA (using the user-defined predicates for its abstraction).1
We observe that ForEx can verify the instances significantly quicker. Moreover,
we stress that ForEx solves a much more challenging problem as it analyzes the
program fully automatically without any user intervention.

ForEx and PCSat. Unno et al. [57] present an extension of constraint Horn
clauses, called pfwCSP, that is able to express a range of relational properties
(including ∀∗∃∗ properties). Their custom pfwCSP solver (called PCSat) instan-
tiates predicates with user-provided templates. We compare PCSat and ForEx
in Table 5c. ForEx can verify 6 out of the 8 ∀∗∃∗ instances. ForEx currently
does not support termination proofs for loops in existentially quantified pro-
grams (which are needed for TI_GNI_hTF and TS_GNI_hTF), whereas
PCSat features loop variant templates and can thus reason about the termina-
tion of existentially quantified loops in isolation. In the instances that ForEx
can solve, it is much faster. We conjecture that this is due to the fact that the
constraints generated by ForEx can be solved directly by SMT solvers, whereas
PCSat’s pfwCSP constraints first require a custom template instantiation.

ForEx and HyPro. Programs whose variables have a finite domain (e.g., boolean)
can be checked using explicit-state techniques developed for logics such as Hy-
perLTL [20]. We verify GNI on variants of the four boolean programs from [11]
with a varying number of bits. We compare ForEx with the HyperLTL verifier
HyPro [11], which converts a program into an explicit-state transition system.
We depict the results in Figure 5d. We observe that, with increasing bitwidth,
the running time of explicit-state model-checking increases exponentially (note
that the scale is logarithmic). In contrast, ForEx can employ symbolic bitvector
reasoning, resulting in orders of magnitude faster verification.

6 Related Work

Most methods for k-safety verification are centered around the self-composition
of a program [6] and often improve upon a naïve self-composition by, e.g., ex-
ploiting the commutativity of statements [55,31,32,29]. Relational program logics

1 The properties checked by HyPA [12] are temporal, i.e., properties about the infinite
execution of programs of the form while(⊤,P). To make such programs analyzable
in ForEx (which reasons about finite executions), we replaced the infinite loop with
a loop that executes P some fixed (but arbitrary) number of times.
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for k-safety offer a rich set of rules to over -approximate the program behav-
ior [7,60,56,49,28,3,8]. Recently, much effort has been made to employ under-
approximate methods that find bugs instead of proving their absence; so far,
mostly for unary (non-hyper) properties [50,58,52,47,42,17,62,24].

Dardinier et al. [25] propose Hyper Hoare Logic – a logic that can express ar-
bitrary hyperproperties, but requires manual deductive reasoning. Dickerson et
al. [26] introduce RHLE, a program logic for the verification of ∀∗∃∗ properties,
focusing on the composition (and under-approximation) of function calls. They
present a weakest-precondition-based verification algorithm that aligns loops in
lock-step via user-provided loop invariants. Unno et al. [57] present an extension
of constraint Horn-clauses (called pfwCSP). They show that pfwCSP can encode
many relational verification conditions, including many hyperliveness properties
like GNI (see Section 5). Compared to the pfwCSP encoding, we explore a less
liberal program alignment (guided by (Loop-Counting)). However, we gain
the important advantage of generating standard (first-order) SMT constraints
that can be handled using existing SMT solvers (which shows significant perfor-
mance improvement, cf. Section 5).

Most work on the verification of hyperliveness has focused on more general
temporal properties, i.e., properties that reason about infinite executions, based
on logics such as HyperLTL [20,33,13]. Coenen et al. [22] study a method for
verifying hyperliveness in finite-state transition systems using strategies to re-
solve existential quantification. This approach is also applicable to infinite-state
systems by means of an abstraction [12,39] (see HyPA in Section 5). Bounded
model-checking (BMC) for hyperproperties [38] unrolls the system to a fixed
bound and can, e.g., find violations to GNI. Existing BMC tools target finite-
state (boolean) systems and construct QBF formulas; lifting this to support
infinite-state systems by constructing SMT constraints is an interesting future
work and could, e.g., complement ForEx in the refutation of FEHTs.

7 Conclusion

We have studied the automated program verification of relational ∀∗∃∗ proper-
ties. We developed a constraint-based verification algorithm that is rooted in a
sound-and-complete program logic and uses a (parametric) postcondition com-
putation. Our experiments show that – while our logic-guided tool explores a
restricted class of possible loop alignments – it succeeds in many of the instances
we tested. Moreover, the use of off-the-shelf SMT solvers results in faster verifi-
cation, paving the way toward a future of fully automated tools that can check
important hyperliveness properties such as GNI and opacity.
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