Easy to Win, Hard to Master: Optimal Strategies in Parity Games with Costs

Joint work with Martin Zimmermann

Alexander Weinert

Saarland University

December 13th, 2016

MFV Seminar, ULB, Brussels, Belgium

Parity Games

Finitary Parity / Parity Response Games

Goal for Player 0: Bound response times

Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)

Another Example

- Player 1 wins from every vertex,
- but needs to stay longer and longer in vertex of color 0 ⇒ requires infinite memory

Decision Problem

Theorem (Chatterjee et al., Finitary Winning, 2009) The following decision problem is in PTIME: Input: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$

Question: Does there exist a strategy σ with $Cst(\sigma) < \infty$?

Theorem

The following decision problem is PSPACE-*complete:*

Input: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega)),$ bound $b \in \mathbb{N}$

Question: Does there exist a strategy σ with $Cst(\sigma) \leq b$?

From Finitary Parity to Parity

Given: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$, bound $b \in \mathbb{N}$.

Lemma

Deciding if Player 0 has strategy σ with $Cst(\sigma) \leq b$ is in PSPACE. Idea: Simulate \mathcal{G} , keeping track of open requests explicitly. **Result:** Parity game \mathcal{G}' of exponential size.

Lemma

The winner of a play in \mathcal{G}' can be decided after $p(|\mathcal{G}|)$ steps.

Algorithm:

Simulate all plays in \mathcal{G}' on-the-fly for $p(|\mathcal{G}|)$ steps using an alternating Turing machine.

 $\begin{array}{l} \Rightarrow \mbox{Problem is in APTIME} \\ \mbox{(Chandra et al., Alternation, 1981)} \\ \Rightarrow \mbox{Problem is in PSPACE} \end{array}$

Lemma

The following problem is PSPACE-hard: "Given a finitary parity game \mathcal{G} and a bound $b \in \mathbb{N}$, does Player 0 have a strategy σ for \mathcal{G} with $Cst(\sigma) \leq b$?"

Proof

- By reduction from QBF
- Checking the truth of φ = ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) as a two-player game (Player 0 wants to prove truth of φ):
 - **1.** Player 1 picks truth value for x
 - **2.** Player 0 picks truth value for y
 - 3. Player 1 picks clause C
 - **4.** Player 0 picks literal ℓ from C
 - **5.** Player 0 wins $\Leftrightarrow \ell$ is picked to be satisfied in step 1 or 2

The Reduction

Choose bound *b* such that it enforces the following:

Corollary

Let \mathcal{G} be a parity game with costs with d odd colors. If Player 0 has a strategy σ for \mathcal{G} with $Cst(\sigma) = b$, then she also has a strategy σ' with $Cst(\sigma') = b$ and size $(b+2)^d = 2^{d \log(b+2)}$.

Follows from

- \blacksquare proof of PSPACE -membership and
- positional strategies for parity games.

Memory Requirements (for Player 0)

Theorem

Optimal strategies for parity games require exponential memory.

Necessity: Construct family \mathcal{G}_d :

(Fijalkow and Chatterjee, Infinite-state games, 2013)

For optimal play:

Player 0 needs to store d choices of d possible values each

 \Rightarrow Player 0 requires $\approx 2^d$ many memory states

Theorem

For every d > 1, there exists a finitary parity game \mathcal{G}_d such that

- $|\mathcal{G}_d| \in \mathcal{O}(d^2)$ and \mathcal{G}_d has d odd colors, and
- every optimal strategy for Player 0 has at least size $2^d 2$.

Similar bounds (upper and lower) hold true for Player 1.

Corollary

Let \mathcal{G} be a parity game with costs with d odd colors. If Player 0 has a strategy σ for \mathcal{G} with $Cst(\sigma) = b$, then she also has a strategy σ' with $Cst(\sigma') = b$ and size $(b+2)^d = 2^{d \log(b+2)}$.

Results so far

	Parity	Finitary Parity	
		Winning	Optimal
Complexity Strategies	UP∩co-UP Pos.	PTIME Pos.	PSpace-comp. Exp.

Take-away: Forcing Player 0 to answer quickly in (finitary) parity games makes it harder

- to decide whether she can satisfy the bound
- for her to play the game

Tradeoffs

- Recall: Player 0 has winning strategy with cost d² + 2d and size 2^d 2: store all d requests made by Player 1.
- **Smaller strategy:** Only store first *i* unique requests, then default to largest answer.

 \Rightarrow achieves cost $d^2 + 3d - i$ and size $\sum_{i=1}^{i-1} \binom{n}{i}$

These are the smallest strategies achieving this cost.

Tradeoffs

Theorem

Fix some finitary parity game \mathcal{G}_d as before. For every iwith $1 \leq i \leq d$ there exists a strategy σ_i for Player 0 in \mathcal{G}_d such that σ_i has cost $d^2 + 3d - i$ and size $\sum_{j=1}^{i-1} {d \choose j}$. Also, all these strategies are minimal for their respective cost.

Extension 1: Parity Games with Costs

Finitary Streett Games

- in parity game, large responses answer all lower requests
- in Streett games, there are requests and responses, but not hierarchical

Streett Games with Costs

• Streett condition and weights from $\{0,1\}$

No jump in complexity:

- Solving finitary Streett games is already EXPTIME-complete and exponential memory is necessary
 - \Rightarrow Appropriate \mathcal{G}' can be solved directly

Streett Games with Costs

- Deciding winner EXPTIME-complete
- Exponential memory necessary and sufficient

Conclusion

	Parity	Parity with Costs	
		Winning	Optimal
Complexity Strategies	UP∩co-UP Pos.	UP∩co-UP Pos.	PSpace-comp. Exp.
	Streett	Streett with Costs	
		Winning	Optimal
Complexity Strategies	co-NP Exp.	ExpTime Exp.	ExpTime-comp. Exp.

Slides available at react.uni-saarland.de/people/weinert.html