Easy to Win, Hard to Master: Playing Infinite Games Optimally

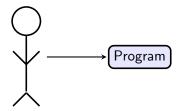
Alexander Weinert

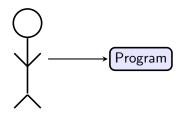
Saarland University

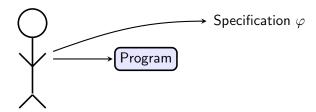
April 26th, 2017

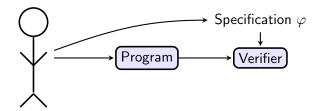
Thesis Proposal Talk

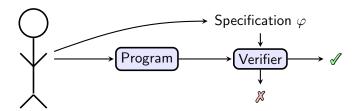
Programming

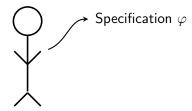


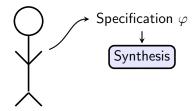


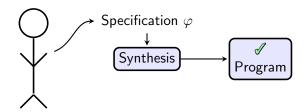


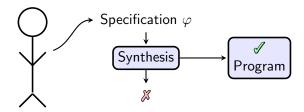


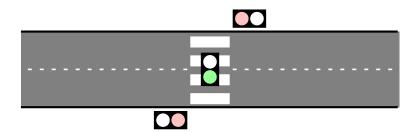


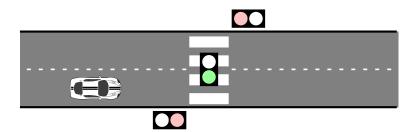


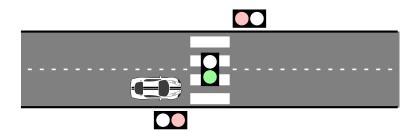


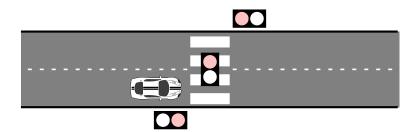


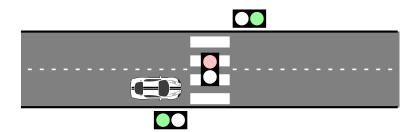


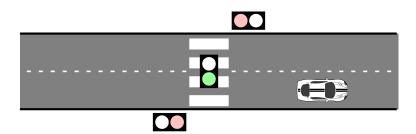




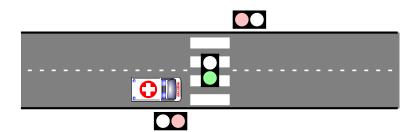


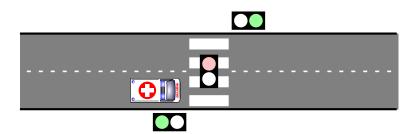


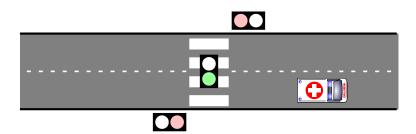


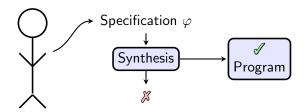




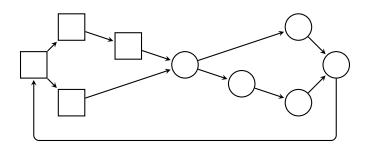




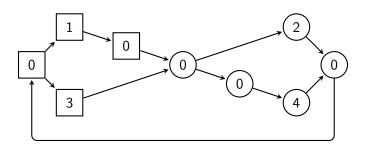




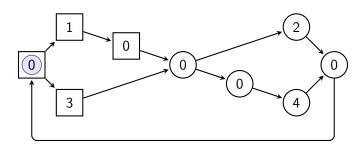
Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)



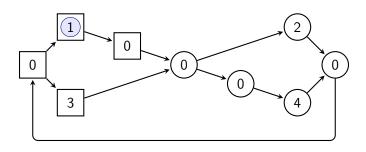
Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)



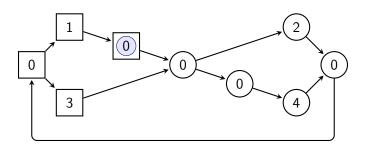
Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)



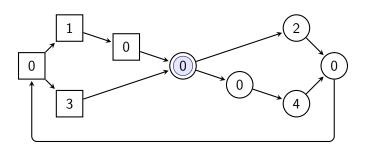
0



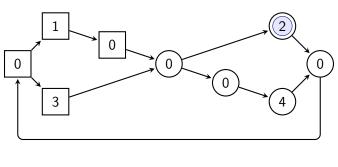
 $0 \rightarrow 1$

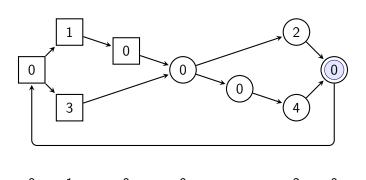


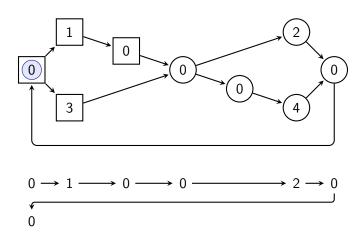
$$0 \rightarrow 1 \longrightarrow 0$$

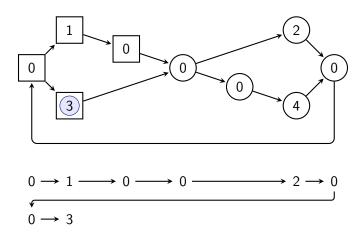


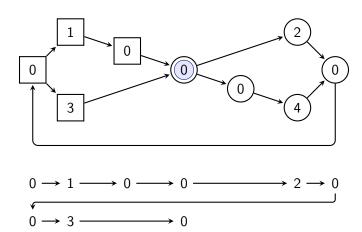
$$0 \rightarrow 1 \longrightarrow 0 \longrightarrow 0$$

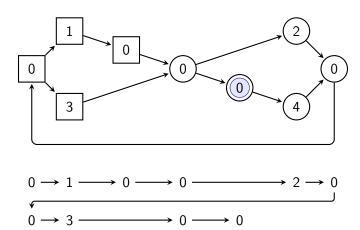


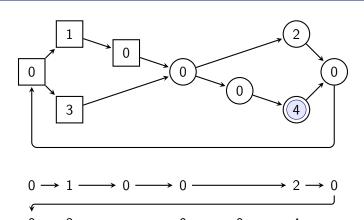


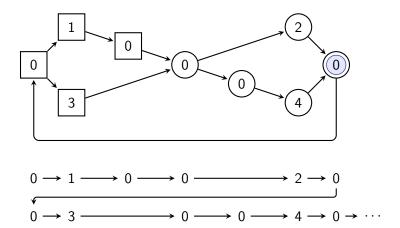




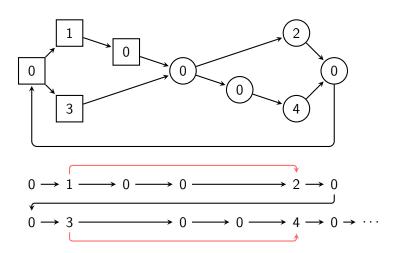




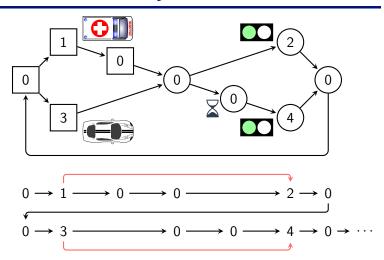




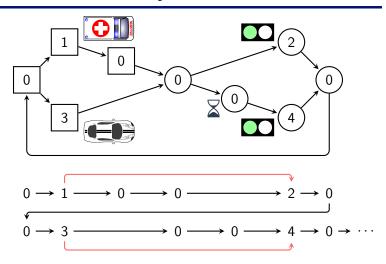
Parity Games



Parity Games

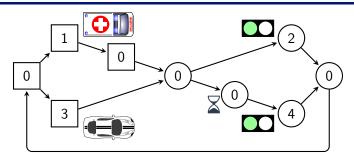


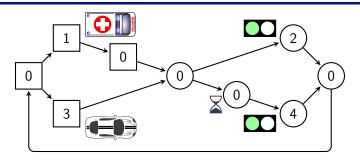
Parity Games

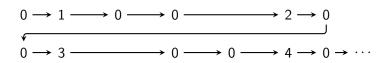


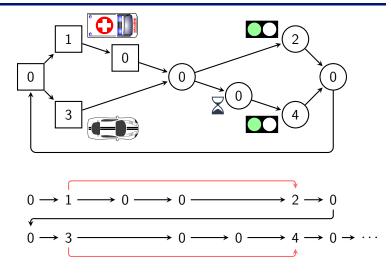
lacktriangle Deciding winner in $NP \cap co\text{-}NP$

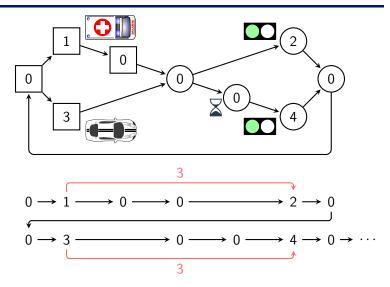
■ Positional Strategies

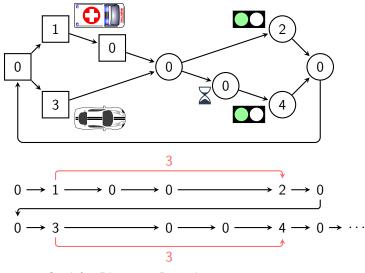












Goal for Player 0: Bound response times

Decision Problem

Theorem (Chatterjee, Henzinger, Horn, 2009)

The following decision problem is in PTIME:

Input: Finitary parity game G

Question: Does there exist a strategy σ with $Cst(\sigma) < \infty$?

Decision Problem

Theorem (Chatterjee, Henzinger, Horn, 2009)

The following decision problem is in PTIME:

Input: Finitary parity game G

Question: Does there exist a strategy σ with $Cst(\sigma) < \infty$?

Theorem (W., Zimmermann, 2016)

The following decision problem is PSPACE-complete:

Input: Finitary parity game G, bound $b \in \mathbb{N}$

Question: Does there exist a strategy σ with $Cst(\sigma) \leq b$?

Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

Sufficiency: Corollary of proof of PSPACE-membership

Theorem (W., Zimmermann, 2016)

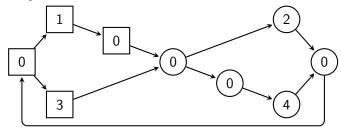
Optimal strategies for finitary parity games need exponential memory

Sufficiency: Corollary of proof of PSPACE-membership

Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

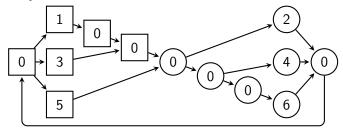
Sufficiency: Corollary of proof of PSPACE-membership



Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

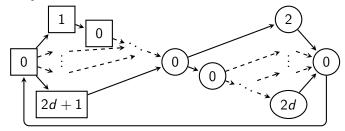
Sufficiency: Corollary of proof of PSPACE-membership



Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

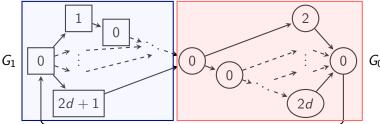
Sufficiency: Corollary of proof of PSPACE-membership



Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

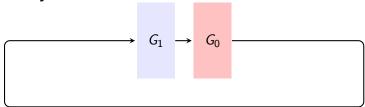
Sufficiency: Corollary of proof of PSPACE-membership



Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

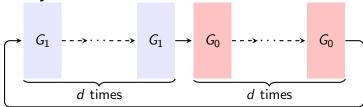
Sufficiency: Corollary of proof of PSPACE-membership



Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

Sufficiency: Corollary of proof of PSPACE-membership

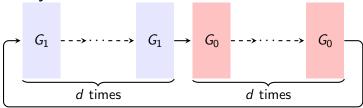


Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

Sufficiency: Corollary of proof of PSPACE-membership

Necessity:



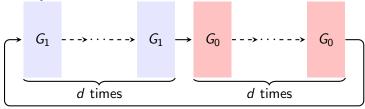
Player 0 needs to recall d positions with d possible values

Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

Sufficiency: Corollary of proof of PSPACE-membership

Necessity:



Player 0 needs to recall d positions with d possible values \Rightarrow Player 0 requires $\approx 2^d$ many memory states

Results so far

	Parity	
Complexity	NP∩co-NP	
Strategy Size	1	

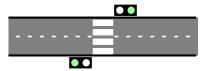
Results so far

	Parity	Finitary Parity	
		Winning	
Complexity	$NP \cap co-NP$	PTIME	
Strategy Size	1	1	

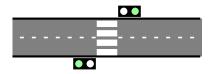
Results so far

	Parity	Finitary Parity		
		Winning	Optimal	
Complexity Strategy Size	$NP \cap CO-NP$	PTIME 1	${\operatorname{PSPACE} ext{-}comp}.$ Exp.	

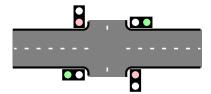
So far



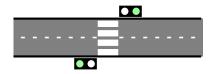
So far



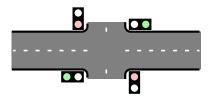
Multi-Dimensional Games



So far

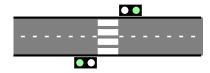


Multi-Dimensional Games

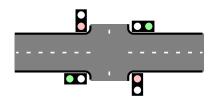


Imperfect Information

So far



Multi-Dimensional Games



Imperfect Information

Conclusion

Results so far: Forcing Player 0 to answer quickly in (finitary) parity games makes it harder

- to decide whether she can satisfy the bound
- for her to play the game

Conclusion

Results so far: Forcing Player 0 to answer quickly in (finitary) parity games makes it harder

- to decide whether she can satisfy the bound
- for her to play the game

Guiding Question: What costs does playing games optimally incur

- in terms of computing a strategy?
- in terms of the complexity of strategies?