Quantitative Reductions and Vertex-Ranked Games

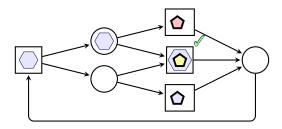
Alexander Weinert

Saarland University

September 13th, 2017

Highlights 2017 - London

Reachability Games

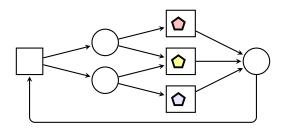


Winning condition: Play reaches either \bigcirc or \bigcirc or \bigcirc

The Big Picture

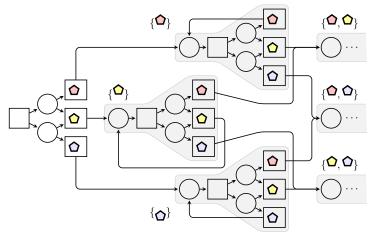
Reachability

Generalized Reachability: The Problem



Winning condition: Reach one from $\{ \bigcirc, \bigcirc \}$ and one from $\{ \bigcirc, \bigcirc \}$.

Generalized Reachability: One Solution



Winning condition: Reach some memory state S with $S \cap \{ \bigcirc, \bigcirc \} \neq \emptyset$ and with $S \cap \{ \bigcirc, \bigcirc \} \neq \emptyset$

Reachability Condition

The Big Picture

Quantitative Generalized Reachability

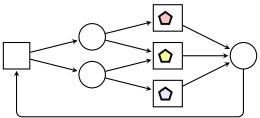
Quantitative

Qualitative

Reachability Generalized Reachability

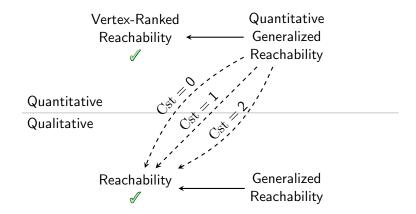
Quantitative Generalized Reachability

Assign cost to each play.



$$\operatorname{Cst}(\rho) = \begin{cases} 0 & \text{if } \{ \textcircled{\bigcirc}, \textcircled{\bigcirc} \} \text{ and } \{ \textcircled{\bigcirc}, \textcircled{\bigcirc} \} \text{ are visited} \\ 1 & \text{if one of them is visited} \\ 2 & \text{if neither is visited} \end{cases}$$

The Big Picture



Conclusion

Contribution

- Lifted reductions to quantitative games
- Solved wide range of general-purpose quantitative games

Next Steps

